JPS62241138A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS62241138A
JPS62241138A JP8557686A JP8557686A JPS62241138A JP S62241138 A JPS62241138 A JP S62241138A JP 8557686 A JP8557686 A JP 8557686A JP 8557686 A JP8557686 A JP 8557686A JP S62241138 A JPS62241138 A JP S62241138A
Authority
JP
Japan
Prior art keywords
iron nitride
vapor deposition
ion
phase
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8557686A
Other languages
Japanese (ja)
Inventor
Keiji Sato
恵二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP8557686A priority Critical patent/JPS62241138A/en
Publication of JPS62241138A publication Critical patent/JPS62241138A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form a thin magnetic film having excellent coercive force and magnetic characteristics and to improve density and grade by diagonally depositing iron nitride ions formed from an ion source by evaporation in a high-vacuum vapor deposition chamber through an ion accelerating and decelerating systems. CONSTITUTION:The iron nitride ions formed by the ion source 1 are introduced through the acceleration system 2 and the decelerating system 4 into the vacuum deposition chamber 5, the inside of which is evacuated to a high vacuum. A mass separator 3 for selecting ion seeds is installed between the systems 2 and 4. The source 1 and the chamber 5 are made separate and the vapor deposition is executed in the high vacuum by controlling irradiation energy at >=45 deg. incident angle, by which the vapor deposition effect is improved and the thin magnetic iron nitride film having the high coercive force and excellent characteristic is obtd. The control of the phase to be formed by the vapor deposition selecting the specific ion kind is facilitated and the performance, stability and reliability of the thin magnetic iron nitride film are improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窒化鉄錫膜を有する磁気記録媒体の製造方法に
関するものである (発明の概要) 本発明は窒化a導膜磁性層としてもつ磁気記録媒体の製
造方法において、照射エネルギーの制御された窒化鉄イ
オンを高真空に排気された、蒸着室内の非磁性媒体上に
斜め入射蒸着させることにより、またその際、窒化鉄イ
オンを質清分離し、蒸着イオン種を制御することにより
、斜め入射効果が高められ高保持力化を可能とし、また
生成相の制御が容易となり、これにより窒化鉄磁性導膜
の品質の向りと安定化を可能とすることにより、高密度
ですぐれた磁気記録媒体の製造を可能とするものである
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a magnetic recording medium having an iron-tin nitride film (Summary of the Invention) The present invention relates to a method for producing a magnetic recording medium having an iron-tin nitride film as a magnetic layer. In a method for manufacturing a recording medium, iron nitride ions are deposited at an oblique incidence on a non-magnetic medium in a vapor deposition chamber evacuated to a high vacuum with controlled irradiation energy, and at that time, iron nitride ions are separated into fine particles. However, by controlling the ion species to be deposited, the oblique incidence effect can be enhanced and high coercive force can be achieved, and the generated phase can be easily controlled, thereby improving the direction and stabilization of the quality of the iron nitride magnetic conductive film. By making this possible, it is possible to manufacture high-density and excellent magnetic recording media.

(従来の技術) 窒化鉄には強磁性体として、FOIBN2. Fea 
N。
(Prior art) FOIBN2. is used as a ferromagnetic material for iron nitride. Fea
N.

ε−FexN(2<X≦3)などがあり、これらは耐食
性、耐摩耗性にすぐれており、飽和磁化も金属に匹敵す
る値をもつなど、磁気記録媒体として適しており、たと
えば雑誌「固体物理J1984年(7)VOl、11 
、 kl 9の721頁から727頁に詳しく述べられ
ている。
These include ε-FexN (2<X≦3), which have excellent corrosion resistance and wear resistance, and have saturation magnetization values comparable to metals, making them suitable as magnetic recording media. Physics J 1984 (7) VOl, 11
, kl 9, pages 721 to 727.

この窒化鉄を記録媒体として利用する場合、針状「C粒
子を窒化した針状窒化鉄磁性粒子を使用づる塗布法が考
えられるが、この場合は金属磁性粒子を上回る特性は得
られない。
When using this iron nitride as a recording medium, a coating method using acicular iron nitride magnetic particles obtained by nitriding acicular C particles may be considered, but in this case, characteristics superior to those of metal magnetic particles cannot be obtained.

窒化鉄本来の特性を生かすには導膜化することが考えら
れる。
In order to take advantage of the original characteristics of iron nitride, it is possible to make it into a conductive film.

窒化鉄は融点以下で分解するため、導膜形成方法として
は、 ■−を蒸発諒とする窒素ガス雰囲気中での反応性イオン
ブレーティング。
Since iron nitride decomposes below its melting point, the method for forming the conductive film is reactive ion blating in a nitrogen gas atmosphere with - vaporized.

■−をターゲットとする窒素ガス雰囲気中での反応性ス
パッタ。
■Reactive sputtering in a nitrogen gas atmosphere using − as a target.

■窒化鉄をターゲットとするスパッタ。■Sputtering targeting iron nitride.

などが主に利用される。etc. are mainly used.

(発明が解決しようとする問題点) ゛窒化鉄自体は結晶磁気異方性が小さいため何らかの方
法で保持力〃大きくしてやる必要がある。
(Problems to be Solved by the Invention) ``Since iron nitride itself has low magnetocrystalline anisotropy, it is necessary to increase the coercive force by some method.

たとえば斜めS着により保持力が大きくなることが知ら
れているが、窒化鉄の場合、窒素ガス雰囲気中での活性
化反応性蒸着となるため斜め入射効果が弱められ、満足
ずべき結果が得られない。
For example, it is known that oblique S deposition increases the holding force, but in the case of iron nitride, the activated reactive vapor deposition is performed in a nitrogen gas atmosphere, which weakens the oblique incidence effect and yields unsatisfactory results. I can't.

また従来法では生成する窒化鉄相が単−相でなく、α相
Fc、Fe4N、ε相FexN(2<X≦3)。
Further, in the conventional method, the iron nitride phase produced is not a single phase, but α phase Fc, Fe4N, and ε phase FexN (2<X≦3).

Fe2Nなどの混在した相となり、磁気特性が安定せず
、経時劣化なども生じた。
This resulted in a mixed phase of Fe2N, etc., resulting in unstable magnetic properties and deterioration over time.

そこで本発明は上記のような欠点を解決し、窒化鉄に高
保持力を付与し、更に生成相の制御を容易にすることに
より、すぐれた特性をbつ窒化鉄id膜磁気記録媒体の
!il造を可能とするものである。
Therefore, the present invention solves the above-mentioned drawbacks, imparts high coercive force to iron nitride, and further facilitates control of the generated phase, thereby achieving excellent characteristics of iron nitride ID film magnetic recording media! This makes it possible to create an image.

(問題点を解決するための手段) 本発明では窒化鉄を利用した導膜磁性層に高保持力を付
与し、生成する窒化鉄相の制御を容易にするために、 ■イオン発生源で生成させた窒化鉄イオンをイオンの加
速及び減速系を経由して、高真空に排気された蒸着室に
導入し、そのなかに設置した非磁性基体上に、照射エネ
ルギーを制御した窒化鉄イオンを入射角45″以上で蒸
着する。
(Means for solving the problem) In the present invention, in order to impart high coercive force to the conductive magnetic layer using iron nitride and to facilitate control of the generated iron nitride phase, The iron nitride ions are introduced into a deposition chamber evacuated to a high vacuum via an ion acceleration and deceleration system, and the iron nitride ions with controlled irradiation energy are introduced onto a non-magnetic substrate placed inside the chamber. Vapor deposition is performed on corners of 45" or more.

■更に窒化鉄イオンを質jd分離することににり特定イ
オン種だけを選択して蒸着する。
(2) Furthermore, by separating the iron nitride ions, only specific ion species are selected and deposited.

(作用) 上記のようにイオン発生源と蒸着室を別々にし、蒸着を
高真空で行なえるようにし、更に照射エネルギーを制御
して斜め蒸着を行なうことにより、斜め蒸着効果が高め
られ、保持力の高い、すぐれた特性をもつ窒化鉄磁性導
膜が得られる。
(Function) As mentioned above, by separating the ion generation source and the deposition chamber to perform the deposition in a high vacuum, and by controlling the irradiation energy to perform the oblique deposition, the oblique deposition effect is enhanced and the retention force is increased. An iron nitride magnetic conductive film with high properties and excellent properties can be obtained.

更に特定イオン種だけを選択して蒸着すれば、生成相の
制御が容易となり、窒化鉄磁性Fc膜の性能と安定性、
信頼性が向上する。
Furthermore, if only specific ion species are selected and deposited, the generated phase can be easily controlled, improving the performance and stability of the iron nitride magnetic Fc film.
Improved reliability.

(実施例) 以下、図面をもちいて詳細に説明する。(Example) A detailed explanation will be given below with reference to the drawings.

第1図は蒸着装置の概略図である。FIG. 1 is a schematic diagram of a vapor deposition apparatus.

イオン源1により生成した窒化鉄イオンは加速系2及び
減速系4を経て、10’Torr程度の高真空に排気さ
れた蒸着室5に導入される。
Iron nitride ions generated by the ion source 1 are introduced into a deposition chamber 5 which is evacuated to a high vacuum of about 10'Torr through an acceleration system 2 and a deceleration system 4.

イオン種選択のための質量分離53は加速系2と減速系
4の間に設置される。
A mass separator 53 for selecting ion species is installed between the acceleration system 2 and the deceleration system 4.

第2図にイAン源の1例を概略図に示す。FIG. 2 schematically shows an example of an ion source.

ヒルーネルラン形と呼ばれるイオン源であり、鉄よりな
るターゲット6と陽l4i7の間に窒素ガス雰囲気中で
放電が行なわれ、窒化鉄あるいは窒化鉄イオンが発生さ
1られ、フィラメント8により効率よくイオン化が行な
われる。
This is an ion source called a Hiruneran type ion source, in which a discharge is performed in a nitrogen gas atmosphere between a target 6 made of iron and a positive 14i7, iron nitride or iron nitride ions are generated, and the filament 8 ionizes them efficiently. It will be done.

以1のようにして生成した窒化鉄イオンは引き出し電極
9によりイオン源より導出される。
The iron nitride ions generated as described above are extracted from the ion source by the extraction electrode 9.

この時生成する窒化鉄とその導膜の飽和磁化と窒素分圧
との関係を第3図に示す。
FIG. 3 shows the relationship between the saturation magnetization of the iron nitride and its conductive film produced at this time and the nitrogen partial pressure.

窒素分圧が高くなるに従い、α相1bからγ′相(Fe
4N)、ε相、ζ相(r−e2N)と窒化度の高い窒化
鉄相が生成し、同時に飽和磁化は減少する。
As the nitrogen partial pressure increases, the α phase 1b changes from the γ′ phase (Fe
4N), ε phase, ζ phase (r-e2N) and iron nitride phase with a high degree of nitridation are generated, and at the same time, the saturation magnetization decreases.

ζ相(Fe2N)は非磁性体である。The ζ phase (Fe2N) is a nonmagnetic material.

生成相は単−相にはなりがたく、接近した相との混在し
た状態となりやすい。
The generated phase is difficult to be a single phase, and tends to be in a mixed state with adjacent phases.

第4図は入射角を示す図であり、基体10の垂線と照射
イオン流とのなす角が入射角11である。
FIG. 4 is a diagram showing the incident angle, and the angle formed by the perpendicular to the substrate 10 and the irradiated ion flow is the incident angle 11.

蒸着用の基体としてガラスを使用し、然4至を10’T
orrに排気し、30cVで照射した時の入射角と保持
力(エルステッド)の関係を第5図に示す。膜厚は0.
15mである。
Glass was used as the substrate for vapor deposition, and the temperature was 10'T.
FIG. 5 shows the relationship between the incident angle and the coercive force (Oersteds) when irradiating at 30 cV with exhaust to 30 cV. Film thickness is 0.
It is 15m.

r−eaNとεFexN混合相の入射角−保持力特性曲
線12とMffi分離により単−相としたFeaNの入
射角−保持力特性曲線13に示すように、本発明の方法
で形成した窒化鉄導膜の保持力は800エルステツドか
ら10.00エルスデツドの値を示し、高密度な磁気記
録媒体に充分使用できる値である。
As shown in the incident angle-retention force characteristic curve 12 of the r-eaN and εFexN mixed phase and the incident angle-retention force characteristic curve 13 of FeaN made into a single phase by Mffi separation, the iron nitride conductor formed by the method of the present invention The film has a coercive force of 800 Oersted to 10.00 Oersted, which is a value sufficient for use in high-density magnetic recording media.

またFe4N単相の場合、飽和磁化は135 emu/
9で保持力は820エルステツドの場合、10日間での
飽和磁化の経時劣化は一3%であり、一方Fe4Nとε
相rxNの混合状態での飽和磁化は108 etau/
gで保持力は790エルステツドが値られ、この場合の
飽和磁化の経時劣化は10日間で一12%であった。
In addition, in the case of Fe4N single phase, the saturation magnetization is 135 emu/
9 and the coercive force is 820 oersted, the aging deterioration of saturation magnetization in 10 days is 13%, while Fe4N and ε
The saturation magnetization in the mixed state of phase rxN is 108 etau/
The coercive force was 790 oersted in g, and the deterioration of saturation magnetization over time in this case was -12% in 10 days.

これで明らかなように質;d分離にJ二り単−相となっ
たFeaNよりなる薄Il!磁性層は質量分離を行なわ
ず混合状態となった窒化鉄の導膜磁性層よりすぐれた磁
気特性を示す、かつ飽和磁化の経時劣化を大幅に減少さ
せることができる。
As is clear from this, the thin Il made of FeaN, which has a single phase of J2 due to the quality; d separation! The magnetic layer exhibits better magnetic properties than a magnetic film-conducting layer made of iron nitride in a mixed state without mass separation, and can significantly reduce the deterioration of saturation magnetization over time.

(発明の効果) 以上述べたJ、うに本発明ではイオン源で生成させた窒
化鉄イオンを高真空に排気された蒸着室内で斜め蒸着す
ることにより、またその際、蒸着イAン種を制御するこ
とにより、工保持力で磁気特性にずぐれ、安定な窒化鉄
磁性導膜を形成することができ、従って高密度で高品位
な磁気記録媒体の製造が可能となる。
(Effects of the Invention) In the present invention, iron nitride ions generated in an ion source are obliquely deposited in a deposition chamber evacuated to a high vacuum, and at that time, the deposited iron species can be controlled. By doing so, it is possible to form a stable iron nitride magnetic conductive film with superior coercive force and magnetic properties, and thus it is possible to manufacture a high-density, high-quality magnetic recording medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱着装置の概略図であり、第2図はイオン源の
概略図であり、第3図は生成相と飽和磁化と窒素分圧の
関係を示す図であり、第4図は入射角を示す図であり、
第5図は入射角と保持力の関係を示す図である。 1・・・イオン源 2・・・加速系 3・・・質旦分離器 4・・・減速系 5・・・蒸着室 6・・・ターゲット 7・・・陽極 8・・・フィラメント 9・・・引き出し電極 10・・・基体 11・・・入射角 12・・・144NとεFexN混合相の入射角−保持
力特性曲線
Fig. 1 is a schematic diagram of the thermal bonding device, Fig. 2 is a schematic diagram of the ion source, Fig. 3 is a diagram showing the relationship between the generated phase, saturation magnetization, and nitrogen partial pressure, and Fig. 4 is a diagram showing the relationship between the generated phase, saturation magnetization, and nitrogen partial pressure. It is a diagram showing the angle of incidence,
FIG. 5 is a diagram showing the relationship between the incident angle and the holding force. 1... Ion source 2... Acceleration system 3... Temperature separator 4... Deceleration system 5... Vapor deposition chamber 6... Target 7... Anode 8... Filament 9...・Extraction electrode 10...Base 11...Incidence angle 12...144N and εFexN mixed phase incident angle-retention force characteristic curve

Claims (2)

【特許請求の範囲】[Claims] (1)あらかじめ生成させた窒化鉄イオンをイオン加速
及び減速系を経由して、蒸着室に設置した非磁性基体上
に入射角45°以上で蒸着することを特徴とする窒化鉄
導膜を有する磁気記録媒体の製造方法。
(1) It has an iron nitride conductive film characterized by depositing pre-generated iron nitride ions via an ion acceleration and deceleration system onto a non-magnetic substrate placed in a deposition chamber at an incident angle of 45° or more. A method for manufacturing a magnetic recording medium.
(2)窒化鉄イオンを質量分離により、特定のイオンだ
け選択して蒸着することを特徴とする特許請求の範囲第
1項記載の磁気記録媒体の製造方法。
(2) The method for manufacturing a magnetic recording medium according to claim 1, wherein only specific ions of iron nitride ions are selected and deposited by mass separation.
JP8557686A 1986-04-14 1986-04-14 Production of magnetic recording medium Pending JPS62241138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8557686A JPS62241138A (en) 1986-04-14 1986-04-14 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8557686A JPS62241138A (en) 1986-04-14 1986-04-14 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62241138A true JPS62241138A (en) 1987-10-21

Family

ID=13862637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8557686A Pending JPS62241138A (en) 1986-04-14 1986-04-14 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62241138A (en)

Similar Documents

Publication Publication Date Title
EP0132398B1 (en) A method and apparatus for ion beam generation
US4003813A (en) Method of making a magnetic oxide film with high coercive force
JPS6228487B2 (en)
US4539264A (en) Magnetic recording medium
JPH061551B2 (en) Method of manufacturing magnetic recording medium
JPS62241138A (en) Production of magnetic recording medium
JPS5836413B2 (en) Magnetic recording medium manufacturing method and its manufacturing device
US4588636A (en) Magnetic recording medium
JPH035644B2 (en)
KR900001141B1 (en) Mafnetic recording medium and its producing method there of
JP2752179B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JPS59147422A (en) Formation of magnetic layer
US20040052935A1 (en) Magnetic thin film and production method therefor
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JPH033743B2 (en)
JPS5836908A (en) Manufacture of magnetic body of thin nitride film
JPH0313731B2 (en)
JPS60243843A (en) Production of photothermomagnetic recording medium
JPH03150709A (en) Production of magnetic head
JPH0352641B2 (en)
JP2894253B2 (en) Manufacturing method of highly functional thin film
JP2830478B2 (en) Vacuum deposition equipment
JPS62200530A (en) Manufacture of vertical magnetic recording medium
JPH0334621B2 (en)
JPH03280214A (en) Perpendicular magnetic recording medium and its production