JPH0352641B2 - - Google Patents

Info

Publication number
JPH0352641B2
JPH0352641B2 JP58133032A JP13303283A JPH0352641B2 JP H0352641 B2 JPH0352641 B2 JP H0352641B2 JP 58133032 A JP58133032 A JP 58133032A JP 13303283 A JP13303283 A JP 13303283A JP H0352641 B2 JPH0352641 B2 JP H0352641B2
Authority
JP
Japan
Prior art keywords
magnetic
film
magnetic recording
phase
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58133032A
Other languages
Japanese (ja)
Other versions
JPS6025012A (en
Inventor
Masahiko Naoe
Shozo Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP13303283A priority Critical patent/JPS6025012A/en
Priority to US06/630,514 priority patent/US4690744A/en
Priority to EP84304963A priority patent/EP0132398B1/en
Priority to DE8484304963T priority patent/DE3480039D1/en
Publication of JPS6025012A publication Critical patent/JPS6025012A/en
Publication of JPH0352641B2 publication Critical patent/JPH0352641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Heads (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 1 産業上の利用分野 本発明は垂直磁気記録用磁気ヘツドに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application The present invention relates to a magnetic head for perpendicular magnetic recording.

2 従来技術 従来、磁気テープ、磁気デイスク等の磁気記録
媒体は、ビデオ、オーデイオ、デイジタル等の各
種電気信号の記録に幅広く利用されている。基体
上に形成された磁性層(磁気記録層)の面内長手
方向における磁化を用いる方式においては、新規
の磁性体や新しい塗布技術等により高密度化が計
られている。また一方、近年、磁気記録の高密度
化に伴ない、磁気記録媒体の磁性層の厚さ方向の
磁化(いわゆる垂直磁化)を用いる垂直磁化記録
方式が、最近になつて提案されている(例えば、
「日経エレクトロニクス」1978年8月7日号No.
192)。この記録方式によれば、記録波長が短くな
るに伴なつて媒体内の残留磁化に作用する反磁界
が減少するので、高密度化にとつて好ましい特性
を有し、本質的に高密度記録に適した方式であり
現在実用化に向けて研究が行なわれている。
2. Prior Art Conventionally, magnetic recording media such as magnetic tapes and magnetic disks have been widely used for recording various electrical signals such as video, audio, and digital signals. In a method that uses magnetization in the in-plane longitudinal direction of a magnetic layer (magnetic recording layer) formed on a substrate, higher density is being achieved by using new magnetic materials and new coating techniques. On the other hand, in recent years, with the increase in the density of magnetic recording, a perpendicular magnetization recording method that uses magnetization in the thickness direction of the magnetic layer of a magnetic recording medium (so-called perpendicular magnetization) has recently been proposed (for example, ,
"Nikkei Electronics" August 7, 1978 No.
192). According to this recording method, as the recording wavelength becomes shorter, the demagnetizing field that acts on the residual magnetization in the medium decreases, so it has favorable characteristics for increasing density, and is essentially suitable for high-density recording. It is a suitable method and research is currently being conducted to put it into practical use.

3 発明の目的 本発明は、上記した如き磁気記録方式に好適で
高磁化、低抗磁力、高耐食性を期待できる垂直磁
気記録用磁気ヘツドを提供することを目的とする
ものである。
3. Object of the Invention The object of the present invention is to provide a magnetic head for perpendicular magnetic recording, which is suitable for the above-mentioned magnetic recording system and can be expected to have high magnetization, low coercive force, and high corrosion resistance.

4 発明の構成 即ち、本発明は、磁気記録媒体の一方の面側に
配置される補助磁極に対し、前記磁気記録媒体の
他方の面側に配置される垂直磁気記録用の主磁極
として、前記磁気記録媒体の磁気記録面にほぼ直
交するように配置される基体と、この基体上に設
けられた透磁層とからなり、この透磁層の少なく
とも一部が純鉄よりも高飽和磁化を示すα−Fe
とγ′−Fe4Nとの混相又はγ′−Fe4N単相によつて
対向ターゲツトスパツタ法で形成されたものであ
る垂直磁気記録用磁気ヘツドに係るものである。
4. Structure of the Invention That is, the present invention provides an auxiliary magnetic pole disposed on one surface of a magnetic recording medium, and a main magnetic pole for perpendicular magnetic recording disposed on the other surface of the magnetic recording medium. It consists of a base body arranged almost perpendicular to the magnetic recording surface of the magnetic recording medium and a magnetically permeable layer provided on this base body, and at least a part of this magnetically permeable layer has a higher saturation magnetization than pure iron. α−Fe
This invention relates to a magnetic head for perpendicular magnetic recording, which is formed by a facing target sputtering method using a mixed phase of γ'-Fe 4 N and γ'-Fe 4 N single phase.

5 実施例 以下、本発明の実施例を図面について詳細に説
明する。
5 Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、磁気テープ等の磁気記録媒体15を
垂直磁気記録するのに使用する磁気ヘツド16,
17を示すものである。このうち、ヘツド16は
補助磁極として働らき、これに対向配置されるヘ
ツド17は主磁極として機能せしめられる。
FIG. 1 shows a magnetic head 16, which is used for perpendicular magnetic recording on a magnetic recording medium 15 such as a magnetic tape.
17. Of these, the head 16 functions as an auxiliary magnetic pole, and the head 17 placed opposite thereto functions as a main magnetic pole.

ここで特徴的なことは、主磁極17として、ガ
ラス基体S上に窒化鉄(FexN)、特にγ′−Fe4N
又は(α−Fe+γ′−Fe4N)からなる磁性膜14
を被着せしめ、これを別のガラス板等の保持具1
8で保護した構造のものを使用していることであ
る。磁性膜14を構成するFexNは、後述するこ
とから明らかなように、飽和磁化が大きくて信号
記録を充分に行なえると同時に、ヘツドに要求さ
れる低い抗磁力(Hc)を示す。従つて、そうし
た磁性膜14を透磁層として有するヘツドの性能
は極めて良好となる。しかも、FexNは窒素の含
有によつて耐食性も良好となり、これもヘツド特
性の向上に寄与している。
What is characteristic here is that the main magnetic pole 17 is made of iron nitride (FexN), especially γ'-Fe 4 N, on the glass substrate S.
Or a magnetic film 14 made of (α-Fe+γ′-Fe 4 N)
and attach it to a holder 1 such as another glass plate.
The reason is that a structure protected by 8 is used. As will be clear from what will be described later, FexN constituting the magnetic film 14 has a large saturation magnetization and is capable of sufficient signal recording, while at the same time exhibiting a low coercive force (Hc) required for the head. Therefore, the performance of the head having such a magnetic film 14 as a magnetically permeable layer is extremely good. Furthermore, FexN also has good corrosion resistance due to the nitrogen content, which also contributes to improved head characteristics.

なお、例えば、この垂直磁気記録方式において
は、補助磁極16が磁気信号により励磁され、そ
こから媒体15側へ磁界が発生し、これにより面
内方向に主磁極17へ向けてフラツクスが集中
し、媒体15の磁性層に主磁極17に対応した磁
気記録がなされる。
Note that, for example, in this perpendicular magnetic recording method, the auxiliary magnetic pole 16 is excited by a magnetic signal, and a magnetic field is generated from there toward the medium 15 side, which causes flux to concentrate in the in-plane direction toward the main magnetic pole 17. Magnetic recording corresponding to the main pole 17 is performed on the magnetic layer of the medium 15 .

第2図には、本発明の参考例としての磁気ヘツ
ド27を示したが、このヘツドでも、例えばフエ
ライトからなるコア材Sの磁気ギヤツプ20側の
対向面にFexNからなる磁性膜14が夫々形成さ
れている。なお、ヘツド全面がFexNで覆われて
いるヘツドであつてもよい。これらのFexNより
形成されているヘツドは特に高密度記録に適して
いる。
FIG. 2 shows a magnetic head 27 as a reference example of the present invention, and in this head as well, magnetic films 14 made of FexN are formed on the opposing surface of the core material S made of ferrite, for example, on the magnetic gap 20 side. has been done. Note that the entire head may be covered with FexN. These heads made of FexN are particularly suitable for high-density recording.

また、上記のFexN磁性膜14は、上記以外の
磁気ヘツド(例えば薄膜ヘツド)にも形成するこ
とができる。
Furthermore, the FexN magnetic film 14 described above can also be formed on magnetic heads other than those described above (for example, thin film heads).

次に、上記の磁気ヘツドの製造方法を説明す
る。
Next, a method of manufacturing the above magnetic head will be explained.

まず、基板S(ガラス板、フエライトコア材等)
を用意し、その所定の面上に以下に説明する方法
によつてFexN膜14を形成する。このために、
第3図〜第8図に示すイオンビーム発生装置を使
用するのが望ましい。
First, the substrate S (glass plate, ferrite core material, etc.)
is prepared, and a FexN film 14 is formed on a predetermined surface thereof by the method described below. For this,
It is desirable to use the ion beam generator shown in FIGS. 3-8.

第3図に示す装置は基本的には、対向ターゲツ
トスパツタ部Aと、このスパツタ部からイオン化
粒子を導出するイオンビーム導出部Bとからなつ
ている。
The apparatus shown in FIG. 3 basically consists of a facing target sputter section A and an ion beam extraction section B that extracts ionized particles from this sputter section.

スパツタ部Aにおいて、1は真空槽、2は真空
槽1内に所定のガス(Ar+N2)を導入してガス
圧力を10-3〜10-5Torr程度に設定するガス導入
管である。真空槽1の排気系は図示省略した。
In the sputter section A, 1 is a vacuum chamber, and 2 is a gas introduction pipe for introducing a predetermined gas (Ar+N 2 ) into the vacuum chamber 1 and setting the gas pressure to about 10 -3 to 10 -5 Torr. The exhaust system of the vacuum chamber 1 is not shown.

ターゲツト電極は、ターゲツトホルダー4によ
りFe製の一対のターゲツトT1,T2を互いに隔て
て平行に対向配置した対向ターゲツト電極として
構成されている。これらのターゲツト間には、外
部の磁界発生手段(マグネツトコイル)3による
磁界が形成される。なお、図中の5は冷却水導入
管、6は同導出管であり、13は加速用の電極で
ある。
The target electrodes are configured as opposed target electrodes in which a pair of targets T 1 and T 2 made of Fe are separated from each other by a target holder 4 and are placed facing each other in parallel. A magnetic field is formed between these targets by external magnetic field generating means (magnetic coil) 3. In the figure, 5 is a cooling water inlet pipe, 6 is a cooling water outlet pipe, and 13 is an acceleration electrode.

このように構成されたスパツタ装置において、
平行に対向し合つた両ターゲツトT1,T2の各表
面と垂直方向に磁界を形成し、この磁界により陰
極降下部(即ち、第4図に明示する如く、ターゲ
ツトT1−T2間に発生したプラズマ雰囲気7と各
ターゲツトT1及びT2との間の領域8,9)での
電界で加速されたスパツタガスイオンのターゲツ
ト表面に対する衝撃で放出されたγ電子をターゲ
ツト間の空間にとじ込め、対向した他方のターゲ
ツト方向へ移動させる。他方のターゲツト表面へ
移動したγ電子は、その近傍の陰極降下部で反射
される。こうして、γ電子はターゲツトT1−T2
間において磁界に束縛されながら往復運動を繰返
すことになる。この往復運動の間に、γ電子は中
性の雰囲気ガスと衝突して雰囲気ガスのイオンと
電子とを生成させ、これらの生成物がターゲツト
からのγ電子の放出と雰囲気ガスのイオン化を促
進させる。従つて、ターゲツトT1−T2間の空間
には高密度のプラズマが形成され、これに伴つて
ターゲツト物質が充分にスパツタされることにな
る。
In the sputtering device configured in this way,
A magnetic field is formed in a direction perpendicular to the surfaces of both targets T 1 and T 2 facing each other in parallel, and this magnetic field creates a gap between the cathode fall area (i.e., between targets T 1 and T 2 as clearly shown in FIG. 4). The γ electrons emitted by the impact of the sputtering gas ions accelerated by the electric field on the target surface in the regions 8, 9) between the generated plasma atmosphere 7 and each target T1 and T2 are transferred to the space between the targets. Lock it in and move it towards the other target. The γ electrons that have moved to the other target surface are reflected by the cathode fall section nearby. Thus, the γ electrons reach the target T 1 −T 2
In between, the reciprocating motion is repeated while being constrained by a magnetic field. During this reciprocating motion, the γ electrons collide with the neutral atmospheric gas to generate ions and electrons of the atmospheric gas, and these products promote the release of γ electrons from the target and the ionization of the atmospheric gas. . Therefore, a high-density plasma is formed in the space between the targets T1 and T2 , and the target material is sputtered sufficiently.

この対向ターゲツトスパツタ装置は、他の飛翔
手段に比べて、高速スパツタによる高堆積速度の
製膜が可能であり、また基体がプラズマに直接曝
されることがなく、低い基体温度での製膜が可能
である。
Compared to other flying methods, this facing target sputtering device enables film formation at a high deposition rate using high-speed sputtering, and the substrate is not directly exposed to plasma, allowing film formation at low substrate temperatures. is possible.

第3図の装置で注目されるべき構成は、スパツ
タ部Aにおいてターゲツトから叩き出されたFe
と反応ガス(N2)とが反応してイオン化された
粒子、即ちFexNのイオンを効率良く外部へ導出
するための導出部Bを有していることである。即
ち、この導出部Bは、ターゲツトT2の外側近傍
に配されたスクリーングリツドGを有し、これら
のターゲツトT2及びグリツドGは夫々所定の電
位に保持されると同時に、イオン化粒子10を通
過させるための小孔11,12が夫々対応した数
及びパターンに形成されている。これは、第5図
及び第6図に夫々明示した。各小孔11,12は
例えば2mmφであつて5mmの間隔を置いて形成さ
れ、グリツドGの厚みは1mmであつてよい。
The structure of the device shown in Fig. 3 that should be noted is that the Fe ejected from the target in the spatter section A
The present invention has a derivation section B for efficiently deriving ionized particles, ie, FexN ions, to the outside through the reaction between the reactant gas (N 2 ) and the reaction gas (N 2 ). That is, this derivation part B has a screen grid G arranged near the outside of the target T 2 , and the target T 2 and the grid G are each held at a predetermined potential, and at the same time, the ionized particles 10 are Small holes 11 and 12 for passage are formed in corresponding numbers and patterns, respectively. This is clearly shown in FIGS. 5 and 6, respectively. Each small hole 11, 12 may have a diameter of 2 mm, for example, and be formed with an interval of 5 mm, and the thickness of the grid G may be 1 mm.

第7図は、上記装置を動作させる際の電気回路
系を概略的に示すが、加速電極13に加速電圧
Vpを印加した状態で、両ターゲツトT1,T2に負
電圧Vtを与え、かつグリツドGを接地している。
また、イオンビーム導出部B側に配した基板Sも
接地している。第8図は各部のポテンシヤル分布
を示し、Vpは0〜200Vに、Vtは500〜1000Vに
設定される。
FIG. 7 schematically shows an electric circuit system for operating the above device.
With Vp applied, a negative voltage Vt is applied to both targets T 1 and T 2 , and grid G is grounded.
Further, the substrate S disposed on the side of the ion beam deriving section B is also grounded. FIG. 8 shows the potential distribution of each part, where Vp is set to 0 to 200V and Vt is set to 500 to 1000V.

このような条件で上記装置を動作させると、ス
パツタ部A(真空度10-3〜10-4Torr)において発
生したプラズマ中のイオンは下部ターゲツトT2
の陰極降下部9(第4図参照)で加速電極13に
よつて加速された後、ターゲツトT2−グリツド
G間の電界によつて減速されながら上記小孔1
1,12を通過し、基板Sとプラズマとの間の電
位差に相当するエネルギーを以つて導出される。
導出されたイオンビーム10は、導出部B(真空
度10-5Torr以上)側に形成される電界E(第3図
参照)の作用で効果的に集束せしめられ、上記エ
ネルギーを以つて基板Sに入射することになる。
こうして、加速電極(又は陽極)13に加える陽
極電圧Vpを変化させることにより、基板S上へ
の堆積イオン(FexN)のエネルギーを制御しな
がら、グリツドGの作用で効率良くイオンビーム
10を引出し、基板S上へ導くことができる。ま
た、基板Sのある側は10-5Torr以上の高真空に
引かれているので、クリーンで不純物の少ない磁
性膜を堆積させることができる。
When the above device is operated under such conditions, ions in the plasma generated in the sputtering section A (vacuum level 10 -3 to 10 -4 Torr) are transferred to the lower target T 2 .
After being accelerated by the accelerating electrode 13 in the cathode descending section 9 (see Fig. 4), the small hole 1 is decelerated by the electric field between the target T 2 and the grid G.
1 and 12, and is extracted with energy corresponding to the potential difference between the substrate S and the plasma.
The derived ion beam 10 is effectively focused by the action of the electric field E (see Fig. 3) formed on the side of the deriving section B (vacuum level 10 -5 Torr or higher), and the above energy is used to direct the ion beam 10 toward the substrate S. It will be incident on .
In this way, by changing the anode voltage Vp applied to the accelerating electrode (or anode) 13, the ion beam 10 is efficiently extracted by the action of the grid G while controlling the energy of the ions (FexN) deposited on the substrate S. It can be guided onto the substrate S. Furthermore, since the side on which the substrate S is located is drawn to a high vacuum of 10 -5 Torr or more, a clean magnetic film with few impurities can be deposited.

なお、イオンビームを引出す側に配されたター
ゲツトT2の小孔11,12は必要以上に大きく
しない方がよいが、あまり大きくするとスパツタ
部Aと導出部Bとのガス圧差によつて基板S側へ
不要なガスがリークして堆積膜の純度低下が生じ
易く、或いはターゲツトT2及びグリツドGの強
度面でも望ましくなく、しかもターゲツト面積が
減少してスパツタ効率も低下し易くなることが考
えられる。
Note that it is better not to make the small holes 11 and 12 of the target T2 arranged on the side from which the ion beam is extracted more than necessary; This is likely to cause unnecessary gas to leak to the side, resulting in a decrease in the purity of the deposited film, or it may be undesirable in terms of the strength of the target T2 and the grid G, and furthermore, the target area may be reduced, resulting in a decrease in sputtering efficiency. .

以上に説明した方法及び装置によつて、例えば
第1図や第2図に示す如く、基板S上に厚さ例え
ば2000ÅのFexN磁性膜14を有する磁気ヘツド
を作成することができる。この磁気ヘツドは、特
に高密度記録用の面内長手方向記録用や垂直磁気
記録用として好適な磁性膜14を有したものとな
つている。
By using the method and apparatus described above, it is possible to fabricate a magnetic head having a FexN magnetic film 14 having a thickness of, for example, 2000 Å on a substrate S, as shown in FIGS. 1 and 2, for example. This magnetic head has a magnetic film 14 suitable for in-plane longitudinal recording and perpendicular magnetic recording, particularly for high-density recording.

次に、上記の磁化膜(FexN)について、実験
結果に基いて更に詳述する。
Next, the above magnetized film (FexN) will be described in more detail based on experimental results.

(A) FexN膜の構造 形成された膜は、すべて結晶性を示し、その
結晶構造は窒素ガス混合率、基板温度(Ts)
およびイオン加速電圧(Vp)に依存して変化
した。
(A) Structure of FexN film All of the formed films exhibit crystallinity, and the crystal structure depends on the nitrogen gas mixture ratio and substrate temperature (Ts).
and varied depending on the ion acceleration voltage (Vp).

第9図に、全圧Ptotal=5×10-4Torr、Vp
=20V(一定)の条件で作製した膜の結晶構造
と、PN2・Tsの関係を示す(但、基板は(111)
Si基板)。Ts=200℃の場合、形成される結晶
相はPN2の上昇とともに、α−Feとγ′−Fe4Nの
混相→γ′−Fe4N単相→ε→Fe3Nとζ−Fe2N
の混相→ζ→Fe2Nと変化し、膜の窒化度が高
まつていく。また、α−Fe、γ′−Fe4Nの混相
膜には、面間隔1.9〜2.0Åを持つ不明の結晶相
(U.K.)が存在していた。Tsが200℃以上に上
昇すると、各領域間の境界は高PN2側に移動す
る。Tsが200℃以下の場合にも、Tsが減少す
ると膜の窒化度が減少する傾向が見られ、Ts
=80℃、PN2≦4×10-5Torrでは、α−Fe相の
みが形成された。
In Figure 9, total pressure Ptotal=5×10 -4 Torr, Vp
The relationship between the crystal structure of a film prepared under the condition of =20V (constant) and P N2 / Ts (however, the substrate is (111)
Si substrate). When Ts = 200℃, the crystal phase formed changes from a mixed phase of α-Fe and γ′-Fe 4 N → a single phase of γ′-Fe 4 N → ε → Fe 3 N and ζ-Fe as P N2 increases. 2 N
The mixed phase of ζ → Fe 2 N changes, and the degree of nitridation of the film increases. In addition, an unknown crystal phase (UK) with a lattice spacing of 1.9 to 2.0 Å was present in the α-Fe and γ′-Fe 4 N mixed-phase film. When Ts rises above 200°C, the boundaries between each region move toward the high P N2 side. Even when Ts is below 200℃, there is a tendency for the degree of nitridation of the film to decrease as Ts decreases, and Ts
At =80°C and P N2 ≦4×10 -5 Torr, only the α-Fe phase was formed.

第10図に、種々の条件で形成された膜の一
例のX線回折図形を示す。形成される相のう
ち、ε相およびζ相はランダムな結晶方位を示
したが、bcc構造のα−Fe相は<110>方向、
fcc構造のγ′−Fe4N相は<100>方向が膜面垂
直に強く配向していた。従来、堆積粒子に中性
粒子のみを用いる通常のスパツタ法で作製され
るα−Fe、γ′−Fe4N膜は、雰囲気圧力の低下
とともに各々(110)、(111)面(各相の最密充
填面)が配向する傾向を示すことから、上述の
結果は、本発明のイオンビームデポジシヨン法
では堆積粒子の持つ高い運動エネルギーと一様
な方向性が膜の配向を促進すること、および配
向する面は堆積粒子の電荷の影響をうけ、化合
物の種類によつては最密充填面以外の面が配向
しやすくなることを示していると言える。
FIG. 10 shows X-ray diffraction patterns of examples of films formed under various conditions. Among the phases formed, the ε phase and ζ phase showed random crystal orientation, but the α-Fe phase with the bcc structure had a <110> direction,
The <100> direction of the γ′-Fe 4 N phase with the fcc structure was strongly oriented perpendicular to the film surface. Conventionally, α-Fe and γ′-Fe 4 N films, which are fabricated by the normal sputtering method using only neutral particles as deposited particles, have been produced by (110) and (111) planes (of each phase) as the atmospheric pressure decreases. The above results indicate that in the ion beam deposition method of the present invention, the high kinetic energy and uniform directionality of the deposited particles promote the orientation of the film. This can be said to indicate that the oriented planes are affected by the charge of the deposited particles, and that depending on the type of compound, planes other than the closest-packed planes become more likely to be oriented.

なお、Ptotal=5×10-4Torr、PN2=1.5×
10-5Torr、Ts=150℃一定の条件で作製した膜
のX線回折図形グラムのVpによる変化を調べ
た。Vp=0Vでは、(110)面が配向したα−Fe
相の回折線のみだが、Vp=40Vではγ′−Fe4N
相(111)、(200)面回折位置にブロードなピー
クが明瞭に現われ、Vp=60Vでは再びα−Fe
相(110)面の回折線のみとなる。これらは、
Vp=0〜40Vの範囲では、Vpの上昇につれて
γ′−Fe4N相の量の割合が増大することを示し
ている。また、Vp=40V、Ts=150℃で堆積し
た膜のγ′−Fe4N相の配向性はランダムで、前
述のVp=20V、Ts=200℃で堆積した膜中の
γ′相が(200)配向を示したのと異なつていた。
Vpの上昇は、堆積イオンの運動エネルギーの
上昇をもたらすので、基板の表面温度および堆
積粒子の基板表面における移動度が増大して、
その結果、鉄−窒素間の反応が促進されたもの
と考えられる。Vp=60Vの結果は、イオンの
運動エネルギーが過大になると、鉄−窒素間の
結合が抑制されるか、または一度結合しても別
の粒子による衝撃により、再分離してしまうこ
とを示すものと考えられる。また、膜の配向性
は、Vpの上昇により生成される高エネルギー
粒子の基板衝撃により、低下すると言える。
In addition, Ptotal=5×10 -4 Torr, P N2 =1.5×
Changes in the X-ray diffraction pattern of a film prepared under constant conditions of 10 -5 Torr and Ts = 150°C due to Vp were investigated. At Vp=0V, α-Fe with (110) plane oriented
Only the phase diffraction line, but at Vp = 40V, γ′−Fe 4 N
Broad peaks clearly appear at the (111) and (200) plane diffraction positions, and α-Fe again appears at Vp = 60V.
Only the diffraction lines of the phase (110) plane are present. these are,
It is shown that in the range of Vp = 0 to 40V, the ratio of the amount of γ'-Fe 4 N phase increases as Vp increases. Furthermore, the orientation of the γ'-Fe 4 N phase in the film deposited at Vp = 40V and Ts = 150°C is random, and the γ' phase in the film deposited at Vp = 20V and Ts = 200°C is ( 200) The orientation was different from that shown.
An increase in Vp results in an increase in the kinetic energy of the deposited ions, which increases the surface temperature of the substrate and the mobility of the deposited particles at the substrate surface.
It is thought that as a result, the reaction between iron and nitrogen was promoted. The result for Vp = 60V indicates that when the kinetic energy of the ions becomes excessive, the bond between iron and nitrogen is suppressed, or even if they are once bonded, they are re-separated due to impact from another particle. it is conceivable that. Furthermore, it can be said that the orientation of the film decreases due to the impact of the high-energy particles generated by the increase in Vp on the substrate.

(B) FexN膜の飽和磁化 膜の飽和磁化(4πMs)は、磁気天秤によつ
て測定した。第11図、第12図に4πMsと各
作製条件の関係を示す。Ptotal=5×
10-5Torr、Vp=20V(一定)の条件で作製した
膜の4πMsのPN2およびTsの依存性を示す。
4πMsは、膜の結晶構造がα−Fe+γ′−Fe4N+
U.K.(Unknown)の混相の場合およびγ′相単相
の領域で、純鉄の4πMs(21.6KG)を上回る値
を示し、特に両領域の境界近傍では約25KGと
非常に高い値となつている。この高い4πMsは、
γ′相およびU.K.相に起因していると言える。こ
の高4πMsの領域は、第9図中に斜線で示した
が、この領域では高4πMsと同時に低Hcも得ら
れ、ヘツド材として好適なFexN膜となる。報
告されているγ′相の4πMsは、約24KGであり、
本発明におけるγ′単相膜のそれも22〜24KGで
ほぼ一致している。したがつて、膜の4πMsが
25KGに達するということはU.K.相の4πMsが
γ′相よりも高いことを意味している。高4πMs
膜がα+γ′+U.K.とγ′単相領域との境界近傍で
得られたことから、U.K.相がFe8Nである可能
性がある。
(B) Saturation magnetization of FexN film The saturation magnetization (4πMs) of the film was measured using a magnetic balance. FIG. 11 and FIG. 12 show the relationship between 4πMs and each manufacturing condition. Ptotal=5×
The dependence of 4πMs on P N2 and Ts of a film prepared under the conditions of 10 -5 Torr and Vp = 20 V (constant) is shown.
In 4πMs, the crystal structure of the film is α−Fe+γ′−Fe 4 N+
In the UK (Unknown) mixed phase case and in the γ′ single phase region, the value exceeds the 4πMs (21.6KG) of pure iron, and the value is particularly high at approximately 25KG near the boundary between the two regions. . This high 4πMs is
This can be said to be caused by the γ' phase and UK phase. This region of high 4πMs is indicated by diagonal lines in FIG. 9, and in this region, both high 4πMs and low Hc can be obtained, making the FexN film suitable as a head material. The reported 4πMs of the γ′ phase is about 24KG,
The values of the γ' single-phase film in the present invention are also approximately the same at 22 to 24 KG. Therefore, the 4πMs of the membrane is
Reaching 25KG means that the 4πMs of the UK phase is higher than that of the γ′ phase. High 4πMs
Since the film was obtained near the boundary between α+γ′+U.K. and the γ′ single phase region, it is possible that the UK phase is Fe 8 N.

Ptotal=5×10-4Torr、Vp=20Vのもとで
高4πMsを持つ膜が得られる作製条件範囲は、
Ts=250℃一定の場合、PN2=1.1×10-5〜4.0×
10-5Torr(窒素ガス混合比PN2/Ptotal=2.0〜
8.0%)、PN2=3×10-5Torr一定の場合、Ts=
150〜250℃であつた。これらを通常のRスパ
ツタ装置を用いて堆積した膜で高い4πMsが得
られる条件PN2/Ptotal=2.7〜4.0%と比べると
窒素ガス混合率の範囲が広くなつている。高
4πMsを持つFe8Nと考えられている相は、高エ
ネルギー粒子の基板衝撃や基板温度の上昇に弱
いことが報告されているが、通常Rスパツタ
法の場合、窒素ガス混合比の変動により、プラ
ズマポテンシヤルやスパツタ効率が変化して高
エネルギー粒子の基板衝撃効果や基板温度の変
動が生じ、これらが結晶の成長を阻害する方向
に働く場合(準安定相の破壊など)、形成範囲
が狭くなる。これに対し、本発明のイオンビー
ムデポジシヨン法では、窒素ガス混合比を独立
に変化させられるため、高4πMs膜の作製範囲
が広がつたものと考えられる。
The production condition range in which a film with high 4πMs can be obtained under Ptotal=5×10 -4 Torr and Vp=20V is as follows:
When Ts=250℃ constant, P N2 =1.1×10 -5 ~4.0×
10 -5 Torr (nitrogen gas mixture ratio P N2 /Ptotal=2.0~
8.0%), P N2 = 3 × 10 -5 Torr constant, Ts =
The temperature was 150-250℃. Compared to the condition P N2 /Ptotal=2.7 to 4.0% under which a high 4πMs can be obtained with a film deposited using a normal R sputtering device, the range of the nitrogen gas mixing ratio is wider. high
It has been reported that the Fe 8 N phase with 4πMs is vulnerable to substrate impact by high-energy particles and increases in substrate temperature; If the plasma potential or sputtering efficiency changes, resulting in substrate impact effects of high-energy particles or fluctuations in substrate temperature, which act in a direction that inhibits crystal growth (e.g. destruction of metastable phases), the formation range becomes narrower. . On the other hand, in the ion beam deposition method of the present invention, the nitrogen gas mixture ratio can be changed independently, so it is thought that the range of fabrication of high 4πMs films has been expanded.

また、4πMsのPtotalによる変化を測定した
ところ、Ptotalが上昇するにつれて、高い
4πMsを持つ膜が得られる基板温度は上昇する
傾向を示すことが分つた。これは、Ptotalの上
昇にともなう堆積粒子のイオンの割合の減少に
よつて、形成される膜の結晶性が低下するため
と考えられる。
In addition, when we measured the change in 4πMs due to Ptotal, we found that as Ptotal increases, the
It was found that the substrate temperature at which a film with 4πMs can be obtained tends to increase. This is considered to be because the crystallinity of the formed film decreases due to a decrease in the proportion of ions in the deposited particles as Ptotal increases.

第13図に、4πMsのVpによる変化を示す。
ここでの試料は、Ptotal=5×10-4Torr、Ts
=150℃およびPtotal=1×10-3Torr、Ts=
150℃の条件で作製したものである。4πMsは、
Vpの上昇にともない減少する傾向を示した。
この結果は、Fe−N膜では堆積粒子エネルギ
ーが30eV(Vp=20Vに対応)を越えると膜の
短距離秩序が急速に低下することを示してい
る。
FIG. 13 shows the change in 4πMs due to Vp.
The sample here is Ptotal=5×10 -4 Torr, Ts
=150℃ and Ptotal=1×10 -3 Torr, Ts=
It was produced under the condition of 150℃. 4πMs is
It showed a tendency to decrease as Vp increased.
This result shows that for Fe-N films, the short-range order of the film decreases rapidly when the deposited particle energy exceeds 30 eV (corresponding to Vp = 20 V).

以上に述べた結果を要約すると、以下のように
なる。
The results described above can be summarized as follows.

(a) 各膜堆積条件を独立に制御することによ
り、Fe−N膜の結晶構造の窒素分圧・基板
温度依存性が明らかとなり、再現性良く膜を
形成できる。
(a) By controlling each film deposition condition independently, the dependence of the crystal structure of the Fe-N film on nitrogen partial pressure and substrate temperature becomes clear, and the film can be formed with good reproducibility.

(b) イオン加速電圧Vp=20Vの場合、得られ
た結晶のうち、α−Fe、γ′−Fe4N相は、そ
れぞれ(110)、(200)面が膜面平行に強く配
向していた。これは、堆積粒子の持つ高い運
動エネルギー、一様な方向性および電荷の効
果によるものと考えられる。
(b) When the ion acceleration voltage Vp = 20 V, the α-Fe and γ′-Fe 4 N phases of the obtained crystals have (110) and (200) planes strongly oriented parallel to the film plane, respectively. Ta. This is considered to be due to the high kinetic energy, uniform directionality, and charge effects of the deposited particles.

(c) 膜の飽和磁化4πMsは、結晶構造がα+
γ′+U.N.(Unknown)混相状態からγ′単相に
遷移する作製条件領域で、約25KGと純鉄よ
り高い値を示した。
(c) The saturation magnetization 4πMs of the film has a crystal structure of α+
In the production condition region where the γ′+U.N. (Unknown) mixed phase state transitions to the γ′ single phase state, it showed a value of approximately 25KG, which is higher than pure iron.

(d) 高い、4πMsが得られる基板温度は、全圧
Ptotalの減少にともなつて低下し、Ptotalが
5×10-5Torr以下の場合、150〜250℃とな
つた。これから堆積粒子中のイオンの割合を
増加させることにより、低基板温度でも膜の
秩序度を向上させ得ることがわかつた。
(d) The substrate temperature at which high 4πMs can be obtained is the total pressure
The temperature decreased as Ptotal decreased, and when Ptotal was 5×10 −5 Torr or less, the temperature was 150 to 250°C. It has been found that by increasing the proportion of ions in the deposited particles, the degree of order in the film can be improved even at low substrate temperatures.

このうち、(a)は本発明のイオンビームデポジシ
ヨン法の良好な制御性が、(d)はイオン化の効果が
現われたものであり、従来の作成法では形成困難
な高品位膜を、このイオンビームデポジシヨン法
を用いれば再現性が良く形成できることを示して
おり、イオンビームデポジシヨン法が極めて優れ
た作製法であることの証左である。
Among these, (a) shows the good controllability of the ion beam deposition method of the present invention, and (d) shows the effect of ionization. This shows that the ion beam deposition method can be formed with good reproducibility, which proves that the ion beam deposition method is an extremely superior manufacturing method.

また、上記のFexN膜は、窒素の含有によつて
耐食性が充分となつており、この点でも優れたも
のである。
Furthermore, the above FexN film has sufficient corrosion resistance due to the nitrogen content, and is also excellent in this respect.

なお、上述した例は種々変形が可能である。 Note that the above-described example can be modified in various ways.

例えば、第3図において、グリツドGを複数枚
セツトし、イオンビームの制御を種々に行なうこ
ともできる。また、下部ターゲツトT2に小孔1
1を形成せず、両ターゲツトT1−T2間の側方に
上述した如きスクリーングリツドを(縦に)配
し、ここからイオンビームを側方へ引出すように
してもよい。第3図の例では、基板S上に直接
FexN膜を堆積せしめたが、基板Sの代りに仮想
線で示す如くに第3のターゲツトT3を配し、こ
のターゲツトT3にイオンビーム10を衝撃せし
め、叩き出された(スパツタされた)別のイオン
化粒子を上記FexN粒子と一緒に基板S′上に導び
き、両者の混合膜を基板S′上に堆積させることが
できる。例えば、ターゲツトT3としてパーマロ
イ(Ni80Fe20)を使用すれば、基板S′上には
FexNとパーマロイとの混合物の薄膜が得られ
る。
For example, in FIG. 3, a plurality of grids G can be set to control the ion beam in various ways. Also, there is a small hole in the lower target T2 .
1 may not be formed, but a screen grid as described above may be arranged (vertically) laterally between both targets T 1 and T 2 , and the ion beam may be drawn out laterally from there. In the example in Figure 3, the
A FexN film was deposited, but instead of the substrate S, a third target T3 was placed as shown by the imaginary line, and the ion beam 10 was applied to this target T3, causing it to be ejected (spattered). Another ionized particle can be introduced onto the substrate S' together with the FexN particles, and a mixed film of both can be deposited on the substrate S'. For example, if permalloy (Ni 80 Fe 20 ) is used as the target T 3 , there will be
A thin film of a mixture of FexN and permalloy is obtained.

6 発明の効果 本発明は上述した如く、垂直磁気記録用の主磁
極として、前記磁気記録媒体の磁気記録面にほぼ
直交するように配置される基体と、この基体上に
設けられた透磁層とで磁気ヘツドを構成し、この
透磁層の少なくとも一部を純鉄よりも高飽和磁化
を示すα−Feとγ′−Fe4Nとの混相又はγ′−Fe4N
単相によつて対向ターゲツトスパツタ法で形成し
ているので、同窒化鉄による優れた高磁化、低
Hc、耐食性を発揮させることができ、高性能の
垂直磁気記録用のヘツドを提供できる。しかも、
対向ターゲツトスパツタ法で上記の窒化鉄を堆積
させているので、高速スパツタによる高堆積速度
の製膜が可能であり、また基体がプラズマに直接
曝されることがなく、低い基体温度での製膜が可
能となり、結晶成長を十分に進行させて高磁気特
性の膜を再現性よく形成できる。
6 Effects of the Invention As described above, the present invention comprises a base body disposed as a main pole for perpendicular magnetic recording so as to be substantially orthogonal to the magnetic recording surface of the magnetic recording medium, and a magnetically permeable layer provided on the base body. constitutes a magnetic head, and at least a part of this permeable layer is made of a mixed phase of α-Fe and γ′-Fe 4 N or γ′-Fe 4 N, which has a higher saturation magnetization than pure iron.
Since it is formed by the facing target sputtering method using a single phase, it has excellent high magnetization and low magnetization due to the iron nitride.
Hc, corrosion resistance can be exhibited, and a head for high performance perpendicular magnetic recording can be provided. Moreover,
Since the above-mentioned iron nitride is deposited using the facing target sputtering method, it is possible to form a film at a high deposition rate using a high-speed sputtering method, and since the substrate is not directly exposed to plasma, it can be formed at a low substrate temperature. This makes it possible to sufficiently advance crystal growth and form a film with high magnetic properties with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を説明するためのものであつて、
第1図、第2図は磁気ヘツドの二例を示す各概略
図、第3図はイオンビーム発生装置の断面図、第
4図は対向ターゲツトスパツタの原理図、第5図
はイオンビーム導出側のターゲツト及びグリツド
の平面図、第6図は第5図のX−X線断面図、第
7図は上記装置の電気回路系を示す図、第8図は
各部のポテンシヤル分布図、第9図は堆積膜の結
晶構造と窒素分圧、基板温度との関係を示す図、
第10図は堆積膜のX線回折図、第11図は堆積
膜の飽和磁化及び抗磁力と窒素分圧との関係を示
すグラフ、第12図は堆積膜の飽和磁化と基板温
度との関係を示すグラフ、第13図は堆積膜の飽
和磁化と加速電圧との関係を示すグラフである。 なお、図面に示した符号において、2……ガス
導入管、3……マグネツトコイル、10……イオ
ンビーム、11,12……小孔、13……陽極
(加速電極)、14……磁性(化)膜、T1,T2
…ターゲツト、G……スクリーングリツド、A…
…スパツタ部、B……イオンビーム導出部、S…
…基板である。
The drawings are for explaining the present invention, and
Figures 1 and 2 are schematic diagrams showing two examples of magnetic heads, Figure 3 is a cross-sectional view of the ion beam generator, Figure 4 is a principle diagram of opposed target sputtering, and Figure 5 is the ion beam extraction. 6 is a cross-sectional view taken along the line X-X of FIG. 5, FIG. 7 is a diagram showing the electric circuit system of the above device, FIG. The figure shows the relationship between the crystal structure of the deposited film, nitrogen partial pressure, and substrate temperature.
Figure 10 is an X-ray diffraction diagram of the deposited film, Figure 11 is a graph showing the relationship between the saturation magnetization and coercive force of the deposited film, and nitrogen partial pressure, and Figure 12 is the relationship between the saturation magnetization of the deposited film and the substrate temperature. FIG. 13 is a graph showing the relationship between the saturation magnetization of the deposited film and the acceleration voltage. In addition, in the symbols shown in the drawings, 2...Gas introduction tube, 3...Magnetic coil, 10...Ion beam, 11, 12...Small hole, 13...Anode (acceleration electrode), 14...Magnetic (chemical) membrane, T 1 , T 2 ...
...Target, G...Screen grid, A...
...Spatter part, B...Ion beam extraction part, S...
...It is a board.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気記録媒体の一方の面側に配置される補助
磁極に対し、前記磁気記録媒体の他方の面側に配
置される垂直磁気記録用の主磁極として、前記磁
気記録媒体の磁気記録面にほぼ直交するように配
置される基体と、この基体上に設けられた透磁層
とからなり、この透磁層の少なくとも一部が純鉄
よりも高飽和磁化を示すα−Feとγ′−Fe4Nとの
混相又はγ′−Fe4N単相によつて対向ターゲツト
スパツタ法で形成されたものである垂直磁気記録
用磁気ヘツド。
1. In contrast to an auxiliary magnetic pole placed on one side of the magnetic recording medium, as a main magnetic pole for perpendicular magnetic recording placed on the other side of the magnetic recording medium, a magnetic pole approximately on the magnetic recording surface of the magnetic recording medium is used. It consists of a base body arranged orthogonally to each other and a magnetically permeable layer provided on this base body, and at least a part of this magnetically permeable layer contains α-Fe and γ′-Fe, which exhibit higher saturation magnetization than pure iron. A magnetic head for perpendicular magnetic recording, which is formed by a facing target sputtering method using a mixed phase with 4 N or a single phase of γ'-Fe 4 N.
JP13303283A 1983-07-20 1983-07-20 Magnetic head Granted JPS6025012A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13303283A JPS6025012A (en) 1983-07-20 1983-07-20 Magnetic head
US06/630,514 US4690744A (en) 1983-07-20 1984-07-13 Method of ion beam generation and an apparatus based on such method
EP84304963A EP0132398B1 (en) 1983-07-20 1984-07-20 A method and apparatus for ion beam generation
DE8484304963T DE3480039D1 (en) 1983-07-20 1984-07-20 A method and apparatus for ion beam generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13303283A JPS6025012A (en) 1983-07-20 1983-07-20 Magnetic head

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23116490A Division JPH0648526B2 (en) 1990-08-31 1990-08-31 Method of manufacturing magnetic head

Publications (2)

Publication Number Publication Date
JPS6025012A JPS6025012A (en) 1985-02-07
JPH0352641B2 true JPH0352641B2 (en) 1991-08-12

Family

ID=15095210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13303283A Granted JPS6025012A (en) 1983-07-20 1983-07-20 Magnetic head

Country Status (1)

Country Link
JP (1) JPS6025012A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969962A (en) * 1988-08-20 1990-11-13 Victor Company Of Japan, Ltd. Magnetic alloys for magnetic head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102723A (en) * 1977-02-21 1978-09-07 Hitachi Ltd Magnetic head
JPS5836908A (en) * 1981-08-24 1983-03-04 Sumitomo Special Metals Co Ltd Manufacture of magnetic body of thin nitride film
JPS58180008A (en) * 1982-04-15 1983-10-21 Sony Corp Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102723A (en) * 1977-02-21 1978-09-07 Hitachi Ltd Magnetic head
JPS5836908A (en) * 1981-08-24 1983-03-04 Sumitomo Special Metals Co Ltd Manufacture of magnetic body of thin nitride film
JPS58180008A (en) * 1982-04-15 1983-10-21 Sony Corp Magnetic recording medium

Also Published As

Publication number Publication date
JPS6025012A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
Terada et al. Synthesis of iron-nitride films by means of ion beam deposition
Naoe et al. Facing targets type of sputtering method for deposition of magnetic metal films at low temperature and high rate
EP0132398B1 (en) A method and apparatus for ion beam generation
US4354909A (en) Process for production of magnetic recording medium
US5403457A (en) Method for making soft magnetic film
JPS6320304B2 (en)
JPH035644B2 (en)
JPH0352641B2 (en)
JPH033743B2 (en)
JPH0648526B2 (en) Method of manufacturing magnetic head
JPH0313731B2 (en)
Matsuoka et al. rf and dc discharge characteristics for opposed‐targets sputtering
JPS60106966A (en) Confronting target type sputtering apparatus
US4835068A (en) Magnetic recording medium
WO1999034029A1 (en) Magnetic body sputtering target
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JPS59147422A (en) Formation of magnetic layer
JPH06325312A (en) Ferhgasi soft magnetic material for induction magnetic head
JP2752179B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JPS60101721A (en) Formation of barium ferrite layer
JPS6131529B2 (en)
JPH02177122A (en) Magnetic recording medium
JPS62241138A (en) Production of magnetic recording medium
JPS5887271A (en) Method and device for planar magnetron sputtering
JP3545160B2 (en) Method of manufacturing magnetic thin film for magnetic head, magnetic thin film and magnetic head