JP2953138B2 - Manufacturing method of magnetic recording medium - Google Patents

Manufacturing method of magnetic recording medium

Info

Publication number
JP2953138B2
JP2953138B2 JP26345691A JP26345691A JP2953138B2 JP 2953138 B2 JP2953138 B2 JP 2953138B2 JP 26345691 A JP26345691 A JP 26345691A JP 26345691 A JP26345691 A JP 26345691A JP 2953138 B2 JP2953138 B2 JP 2953138B2
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
layer
manufacturing
endless belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26345691A
Other languages
Japanese (ja)
Other versions
JPH05101381A (en
Inventor
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26345691A priority Critical patent/JP2953138B2/en
Publication of JPH05101381A publication Critical patent/JPH05101381A/en
Application granted granted Critical
Publication of JP2953138B2 publication Critical patent/JP2953138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高密度磁気記録に適す
る強磁性金属薄膜を磁気記録層とする磁気記録媒体の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium using a ferromagnetic metal thin film suitable for high-density magnetic recording as a magnetic recording layer.

【0002】[0002]

【従来の技術】近年、磁気記録の高密度化の進展は目覚
ましく、1ビット1μ2での記録再生が期待され、強磁
性金属薄膜を磁気記録層とする磁気記録媒体の開発が盛
んである。このような磁気記録媒体は、ポリエチレンテ
レフタレート等の高分子フィルム上にCo−O、Co−
Ni−O、Co−Cr等の強磁性金属薄膜を配し、保護
潤滑層やバックコート層を必要に応じて配したテープ
状、ディスク状のものである。
2. Description of the Related Art In recent years, the density of magnetic recording has been remarkably increasing, and recording / reproduction at 1 bit 1 μ 2 is expected, and magnetic recording media using a ferromagnetic metal thin film as a magnetic recording layer have been actively developed. Such a magnetic recording medium is composed of Co-O, Co-
It is a tape-shaped or disk-shaped one in which a ferromagnetic metal thin film such as Ni-O or Co-Cr is provided, and a protective lubricating layer and a back coat layer are provided as necessary.

【0003】以下に従来の磁気記録媒体の製造方法につ
いて説明する。図2は従来の磁気記録媒体の製造に用い
ている真空蒸着装置の要部構成図である。図2におい
て、1は高分子フィルム、2はクーリングキャン、3は
送り出し軸、4は巻取り軸、5は蒸発源、6はマスク、
7はガス導入ポートである。
Hereinafter, a conventional method for manufacturing a magnetic recording medium will be described. FIG. 2 is a main part configuration diagram of a vacuum evaporation apparatus used for manufacturing a conventional magnetic recording medium. In FIG. 2, 1 is a polymer film, 2 is a cooling can, 3 is a feed shaft, 4 is a winding shaft, 5 is an evaporation source, 6 is a mask,
7 is a gas introduction port.

【0004】以上のように構成された真空蒸着装置につ
いて、以下その動作について説明する。例えば、厚み1
0μmで、直径15nmのSiO2微粒子を、ミミズ状に
分散塗布したポリエチレンテレフタレートからなるフィ
ルム1を直径1mのクーリングキャン2に沿わせて移動
しながら、ガス導入ポートから酸素ガスを導入しなが
ら、Co−Ni(Ni:20wt%)を電子ビーム蒸着す
る。蒸着は接線に近い蒸気流成分から開始されマスク6
で限定される最小入射角、例えば35度の成分の範囲で
の斜め蒸着によって行われる。酸素ガスの導入によって
斜め蒸着によって構成される柱状微粒子が微細化され、
柱状微粒子の表面の酸化層が粒子間の磁気的結合を弱め
雑音を改善するが、更に雑音を改善する目的で、蒸着を
例えば1回で800Åとし、それを2回くり返して、計
1600Åとすることが行われる。そうすることで、1
度で1600Å蒸着した場合よりも1〜2(dB)C/N
を向上させることができる。
The operation of the vacuum evaporation apparatus configured as described above will be described below. For example, thickness 1
While moving along a cooling can 2 having a diameter of 1 m, a film 1 made of polyethylene terephthalate in which SiO 2 microparticles having a diameter of 15 μm and having a diameter of 15 nm are dispersed and applied is moved while introducing oxygen gas from a gas introduction port. -Ni (Ni: 20 wt%) is electron beam deposited. The deposition starts with the vapor stream component near the tangent and the mask 6
Is performed by oblique vapor deposition in the range of the minimum incident angle limited by, for example, 35 degrees. By introducing oxygen gas, columnar fine particles formed by oblique deposition are refined,
The oxide layer on the surface of the columnar fine particles weakens the magnetic coupling between the particles and improves the noise, but in order to further improve the noise, the vapor deposition is performed once, for example, at 800 °, and the deposition is repeated twice to obtain a total of 1600 °. Is done. By doing so, 1
1 to 2 (dB) C / N than when 1600 ° is deposited
Can be improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、1層目と2層目の間の酸化層が厚くな
り、短波長C/Nの向上の程度が十分でないという問題
点を有していた。
However, the above-mentioned conventional structure has a problem that the oxide layer between the first layer and the second layer becomes thick, and the short wavelength C / N is not sufficiently improved. Was.

【0006】本発明は上記従来の問題点を解決するもの
で、短波長でのC/Nを向上させた磁気記録媒体を大量
に製造できる方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method capable of mass-producing a magnetic recording medium with improved C / N at a short wavelength.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の磁気記録媒体の製造方法は、エンドレスベル
トに沿わせて移動する高分子フィルムに2層蒸着する
際、エンドレスベルトをくぼませて形成した空間でグロ
ー放電処理する構成を有している。
In order to achieve the above object, a method for manufacturing a magnetic recording medium according to the present invention is characterized in that when depositing two layers on a polymer film moving along an endless belt, the endless belt is depressed. The glow discharge treatment is performed in the space formed.

【0008】[0008]

【作用】この構成によって、1層目と2層目の間の非磁
性層部分の厚みが小さくできると共に1層目の飽和磁束
密度も2層目の飽和磁束密度も、酸素導入量を減らせる
ことから大きくでき、出力増大と雑音改良を共に行える
ことから、短波長でのC/Nを一層向上させることがで
きる。
With this structure, the thickness of the nonmagnetic layer portion between the first and second layers can be reduced, and both the saturation flux density of the first layer and the saturation flux density of the second layer can reduce the amount of oxygen introduced. Therefore, since the output can be increased and the noise can be improved at the same time, the C / N at a short wavelength can be further improved.

【0009】[0009]

【実施例】【Example】

(実施例1)以下、本発明の一実施例について、図面を
参照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1において、従来例と同じ構成でも良い
ものは、同一の番号を付してある。8はエンドレスベル
トで、このエンドレスベルトは蒸着側の一部にくぼみを
形成し、その空間をグロー放電処理空間9とする。10
は放電電極で、複数本であっても良い。11,12,1
3,14,15,16はクーリングキャンで、温度設定
は−30℃〜+30℃の範囲で適宜行えば良い。17は
蒸着に供される蒸気流を模式的に示したものである。
In FIG. 1, components which may have the same configuration as the conventional example are denoted by the same reference numerals. Reference numeral 8 denotes an endless belt. The endless belt forms a recess in a part on the vapor deposition side, and the space is used as a glow discharge processing space 9. 10
Is a discharge electrode, which may be plural. 11,12,1
3, 14, 15, and 16 are cooling cans, and the temperature may be appropriately set within a range of -30 ° C to + 30 ° C. Reference numeral 17 schematically shows a vapor flow used for vapor deposition.

【0011】以上のように構成された蒸着装置につい
て、その動作を説明する。厚み70μmのチタン箔をル
ープ状に接続して得たエンドレスベルト8を用い、入射
角90度から、蒸着を開始し、入射角が47度の位置
に、くぼみを作り、グロー放電処理空間9を形成し、矢
印Aで示したスキ間は0.7mmとし、放電電極10は内
部にマグネットを配した棒状のものを1本配し、200
Hzの電圧を印加できるようにし、酸素ガスを導入し、内
部を約0.05Torrにして放電処理するようにした。最
小入射角は18度とし、最小入射角を規定するマスク6
の内側からも酸素ガスを導入した。蒸発源5はCo−N
i(Ni:20wt%)を、30kV、最大出力150kWの
電子ビームで加熱したものを用いた。このような装置を
用いて、厚み10μmの微粒子塗布層をもつポリエチレ
ンテレフタレートからなるフィルム1をエンドレスベル
ト8に沿わせて搬送する。先ず接線近くからCo−Ni
が蒸着される。この時グロー放電処理空間9には0.3
(l/min)の酸素ガスを導入し、350V、0.9
(A)のグロー放電で処理するようにした。酸素ガスは
グロー放電処理空間9からスキ間Aを通って蒸着側に放
出される。その酸素ガスは1層目に対して作用すると共
に、グロー放電処理空間9にCo−Ni蒸気流が進入す
るのを防止するようにも働く。2層部分は、マスク6の
内側のガス導入ポート7より導入する酸素がガスの影響
を強く受ける。酸素ガスは0.9(l/min)導入し
た。電子ビーム加熱は30kV、95kWで行い、フィルム
1の移動速度は130(m/min)とした。1層目と2
層目の間の酸化層は、この場合100Åで、2層目の表
面酸化層は140Åである。1層目部分が900Åで2
層目部分は750Åである。この蒸着層の上にパーフル
オロアラキン酸を約40Å塗布し8ミリ幅の磁気テープ
にした。従来例は、最小入射角35度を決めるマスク6
の内側から酸素ガスを1.4(l/min)導入し、直径
1mのクーリングキャン2に沿わせて得たもので、1層
目と2層目の間の酸化層は220Å、2層目の表面酸化
層は140Åであった。
The operation of the vapor deposition apparatus configured as described above will be described. Using an endless belt 8 obtained by connecting 70 μm-thick titanium foil in a loop shape, vapor deposition was started at an incident angle of 90 °, a depression was formed at a position where the incident angle was 47 °, and a glow discharge treatment space 9 was formed. The discharge electrode 10 is formed as a bar having a magnet inside, and the discharge electrode 10 has a gap of 0.7 mm.
A voltage of Hz could be applied, oxygen gas was introduced, and the inside was set to about 0.05 Torr to perform discharge treatment. The minimum incident angle is set to 18 degrees, and the mask 6 for defining the minimum incident angle is used.
Oxygen gas was also introduced from the inside. The evaporation source 5 is Co-N
i (Ni: 20 wt%) heated by an electron beam having a power of 30 kV and a maximum output of 150 kW was used. Using such an apparatus, the film 1 made of polyethylene terephthalate having a fine particle coating layer having a thickness of 10 μm is transported along the endless belt 8. First, from near the tangent, Co-Ni
Is deposited. At this time, 0.3 g
(L / min) oxygen gas at 350 V, 0.9 V
The treatment was performed by the glow discharge of (A). The oxygen gas is discharged from the glow discharge processing space 9 to the vapor deposition side through the gap A. The oxygen gas acts on the first layer and also functions to prevent the Co—Ni vapor flow from entering the glow discharge processing space 9. In the two-layer portion, the oxygen introduced from the gas introduction port 7 inside the mask 6 is strongly affected by the gas. Oxygen gas was introduced at 0.9 (l / min). Electron beam heating was performed at 30 kV and 95 kW, and the moving speed of the film 1 was 130 (m / min). First layer and 2
The oxide layer between the layers is 100 ° in this case, and the surface oxide layer of the second layer is 140 °. The first layer is 900Å and 2
The layer thickness is 750 °. Approximately 40 ° of perfluoroarachinic acid was applied on the deposited layer to form an 8 mm wide magnetic tape. The conventional example uses a mask 6 that determines the minimum incident angle of 35 degrees.
The oxygen gas was introduced along the cooling can 2 having a diameter of 1 m by introducing 1.4 (l / min) oxygen gas from the inside. Had a surface oxide layer of 140 °.

【0012】本実施例による磁気記録媒体の製造方法に
より得られた磁気記録媒体と、従来法により得られた磁
気記録媒体の特性を(表1)に比較して示している。
Table 1 shows the characteristics of the magnetic recording medium obtained by the method for manufacturing a magnetic recording medium according to the present embodiment and the characteristics of the magnetic recording medium obtained by the conventional method.

【0013】[0013]

【表1】 [Table 1]

【0014】この(表1)から明らかなように、本実施
例による磁気記録媒体は、短波長記録でのC/N特性
と、スチル耐久性の点で優れた効果が得られる。
As is evident from Table 1, the magnetic recording medium according to this embodiment has excellent effects in terms of C / N characteristics in short-wavelength recording and still durability.

【0015】以上のように本実施例によれば、エンドレ
スベルト8にくぼみをもたせて、くぼみ部でグロー放電
処理して蒸着を2層化して行うことで、C/Nを向上さ
せると共に、スチル耐久性も向上させた媒体を製造でき
るといったすぐれた効果がある。
As described above, according to the present embodiment, the endless belt 8 is provided with depressions, and a glow discharge treatment is performed at the depressions to deposit two layers, thereby improving the C / N and improving the stillness. There is an excellent effect that a medium with improved durability can be manufactured.

【0016】なお、本実施例において、放電ガスを酸素
ガス単体としたが、Ar,Kr,Xe,N2他の気体と混合
しても良いし、放電は高周波や直流であっても良い。本
発明は、くぼみ部を2ヶ所にして3層構造をもつ磁気記
録媒体の製造にも適用できるものであるし、発展形とし
て、最小入射角限定のマスクの内側のガス導入ポート部
をくぼみの放電空間に置きかえガス導入を兼ねてもよ
い。表面酸化層の形成がその場合はガス導入による部分
とグロー放電による酸化とが重なることになり、より高
速化を図れる利点もある。
In this embodiment, the discharge gas is a single oxygen gas. However, the discharge gas may be mixed with other gases such as Ar, Kr, Xe, and N 2 , and the discharge may be high frequency or direct current. The present invention can also be applied to the manufacture of a magnetic recording medium having a three-layer structure with two recessed portions. As a development, the gas introduction port inside the mask with the minimum incident angle is limited. It may be replaced with a discharge space and also serve as gas introduction. In this case, when the surface oxide layer is formed, the portion due to the introduction of the gas and the oxidation due to the glow discharge overlap, and there is also an advantage that the speed can be further increased.

【0017】又蒸着は斜め蒸着に限るものではなく垂直
磁化膜の形成に適用してもよいし、Co、Co−Fe、
Co−Ta、Co−Mn等Co−Ni以外の蒸着にも適
用できるものである。
The vapor deposition is not limited to the oblique vapor deposition, but may be applied to the formation of a perpendicular magnetization film.
Co-Ta, Co-Mn, etc. can be applied to deposition other than Co-Ni.

【0018】[0018]

【発明の効果】以上のように、本発明はエンドレスベル
トにくぼみを形成し、その部分でグロー放電処理を行っ
て2層化蒸着をすることで、短波長のC/Nとスチル耐
久性にすぐれた磁気記録媒体を製造する方法を実現でき
るものである。
As described above, according to the present invention, a short-wavelength C / N and still durability can be obtained by forming a depression in an endless belt and performing a glow discharge treatment at that portion to perform two-layer deposition. An excellent method for manufacturing a magnetic recording medium can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気記録媒体の製造方法を実施するの
に用いた蒸着装置の要部構成図
FIG. 1 is a main configuration diagram of a vapor deposition apparatus used to carry out a method of manufacturing a magnetic recording medium according to the present invention.

【図2】従来の磁気記録媒体の製造に用いた蒸着装置の
要部構成図
FIG. 2 is a main part configuration diagram of a vapor deposition apparatus used for manufacturing a conventional magnetic recording medium.

【符号の説明】[Explanation of symbols]

8 エンドレスベルト 9 グロー放電処理空間 10 放電電極 8 Endless belt 9 Glow discharge treatment space 10 Discharge electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エンドレスベルトに沿わせて移動する高分
子フィルムに2層蒸着する際、2層間で、エンドレスベ
ルトをくぼませて形成した空間でグロー放電処理するこ
とを特徴とする磁気記録媒体の製造方法。
1. A magnetic recording medium according to claim 1, wherein when depositing two layers on the polymer film moving along the endless belt, a glow discharge treatment is performed in a space formed by recessing the endless belt between the two layers. Production method.
JP26345691A 1991-10-11 1991-10-11 Manufacturing method of magnetic recording medium Expired - Fee Related JP2953138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26345691A JP2953138B2 (en) 1991-10-11 1991-10-11 Manufacturing method of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26345691A JP2953138B2 (en) 1991-10-11 1991-10-11 Manufacturing method of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH05101381A JPH05101381A (en) 1993-04-23
JP2953138B2 true JP2953138B2 (en) 1999-09-27

Family

ID=17389767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26345691A Expired - Fee Related JP2953138B2 (en) 1991-10-11 1991-10-11 Manufacturing method of magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2953138B2 (en)

Also Published As

Publication number Publication date
JPH05101381A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
JP2953138B2 (en) Manufacturing method of magnetic recording medium
JPH044649B2 (en)
JPH0546013B2 (en)
JPS61240429A (en) Magnetic recording medium
JPH05109046A (en) Magnetic recording medium and its manufacture
JPS62185246A (en) Production of magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH01166322A (en) Magnetic recording medium
JPS6378336A (en) Production of magnetic recording medium
JPS60129921A (en) Magnetic recording medium
JPS615428A (en) Magnetic recording medium
JPS63251928A (en) Production of magnetic recording medium
JPS6334728A (en) Production of magnetic recording medium
JPH04172617A (en) Manufacture of magnetic disc
JPH04147433A (en) Production of magnetic recording medium
JPS6161445B2 (en)
JPH05274643A (en) Magnetic recording medium
JPH04129021A (en) Magnetic recording medium
JPH05258270A (en) Magnetic recording medium
JPH01176311A (en) Magnetic recording medium
JPH03116526A (en) Production of magnetic recording medium
JPH03116525A (en) Production of magnetic disk
JPS6378322A (en) Magnetic recording medium
JPH01205713A (en) Magnetic recording medium
JPS60209927A (en) Magnetic recording medium and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees