JPS6161445B2 - - Google Patents

Info

Publication number
JPS6161445B2
JPS6161445B2 JP11193779A JP11193779A JPS6161445B2 JP S6161445 B2 JPS6161445 B2 JP S6161445B2 JP 11193779 A JP11193779 A JP 11193779A JP 11193779 A JP11193779 A JP 11193779A JP S6161445 B2 JPS6161445 B2 JP S6161445B2
Authority
JP
Japan
Prior art keywords
substrate
angle
thin film
magnetic
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11193779A
Other languages
Japanese (ja)
Other versions
JPS5637829A (en
Inventor
Saburo Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP11193779A priority Critical patent/JPS5637829A/en
Publication of JPS5637829A publication Critical patent/JPS5637829A/en
Publication of JPS6161445B2 publication Critical patent/JPS6161445B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高密度記録に適した磁気記録媒体の
製造方法に関するものである。 近年、より高い記録密度を有する磁気記録媒体
に対する要望が強まり、蒸着、スパツタ、マグネ
トロン高速スパツタ、イオンプレーテイング、電
気メツキ、無電解メツキ等により非磁性基体上に
強磁性薄膜を形成した金属薄膜型の磁気記録媒体
の開発が盛んに行われている。このような金属薄
膜型磁気記録媒体の場合、記録密度を高める上で
の必須条件としての高保磁力を得るためには、何
らかの手段で強磁性薄膜に磁気異方性を付与する
必要がある。そして、このような磁気異方性を付
与する技術としては、ポリエステルフイルム等の
基体に対し、真空中で、Fe、Co、Ni、あるいは
これらの合金等の強磁性材料の蒸気流を斜めに入
射しながら被着を行う、特公昭41−19389号公報
等に開示されている、いわゆる斜め蒸着法が知ら
れている。 このような斜め蒸着法によれば、強磁性薄膜に
は蒸気異方性が付与される結果、保磁力が高めら
れ、又被着薄膜の密着性が向上し、更には短波長
領域での出力が向上するものである。しかし、そ
の反面、薄膜の成膜速度が遅く、又強磁性材料の
蒸発量に対する被着効率が悪く、製造効率はきわ
めて低いものとなり、更には出力向上は短波長領
域のみで得られるため、電磁変換効率や最大出力
の周波数特性の直線性が好ましくないという欠点
がある。 本発明は、このような従来の斜め蒸着法の欠点
を解消するためになされたものであり、保持力が
高く、薄膜の密着強度が大きく、しかも、成膜速
度と被着効率が効上し、製造効率が高くなり、更
には短波長領域の高出力に加えて長波長領域の出
力向上をも実現し、直線性のすぐれた高出力の磁
気記録媒体の製造方法を提供することを主たる目
的とする。 本発明者は、このような目的につき鋭意検討を
重ねた結果、本発明をなすに至つたものである。 すなわち、本発明は、真空中で、非磁性基体を
移行させながら、強磁性材料の蒸気流を基体に斜
めに入射し、基体上に強磁性薄膜を形成する場合
において、基体の移行に従い、蒸気流と基体法線
のなす角度を、低角から高角へと段階的に変化さ
せることにある。 以下、本発明を第1図に示される実施例を参照
しつつ説明する。 本発明における強磁性薄膜の形成は真空蒸着に
よつて行われ、その際蒸着、スパツタ、イオンプ
レーテイング等公知のいずれの真空蒸着技術を用
いてもよい。従つて、本発明の製造方法は所定の
真空中で実施されることになり、用いる装置は真
空槽1内に収納される。真空槽1は、第1図に示
されるように、例えばロータリーポンプおよび拡
散ポンプからなる排気装置2により、所定の真空
に保持されるよう構成され、一方、必要に応じ、
不活性気体等を槽内に導入する手段を具える。 このような真空槽1内には蒸気発生器3が配置
される。蒸気発生器3は、抵抗加熱方式、電子ビ
ーム加熱方式、高周波誘導加熱方式等公知のいず
れの加熱方式のものでもよく、その構造、材質、
寸法、形状等は適宜任意に決定することができ
る。一方、蒸気発生器3内には、強磁性材料4が
収納され、蒸気発生器による加熱により蒸発し、
その蒸気流が発生するように構成される。この場
合、強磁性材料としては、公知の強磁性材料を用
いればよく、例えばFe、CoもしくはNi、または
これらの合金、あるいはこれらに他の添加元素を
加えたもの、更にあるいはこれらの酸化物等いず
れも使用可能である。 一方、真空槽1内において、通常、蒸気発生器
3上方には、非磁性基体5が移行するよう構成さ
れる。この場合、非磁性基体5は、フイルム状連
続体を用いるのが一般的であり、このとき、基体
5は所定の速度で連続的に搬送移行せしめられ
る。そして、このような連続的な搬送は、通常
は、第1図に示されるように、公知の方法に従
い、供給リール6に巻回された基体を、巻取りリ
ール7に巻きとるような構成で行うことになり、
一般にこの供給リール6、巻取りリール7間で、
基体5は蒸気発生器3上方をほぼ斜め上方に搬送
される。又、非磁性基体5の材質としては、ポリ
エステル、ポリイミド等の有機高分子材料や、ア
ルミニウム、亜鉛等の非磁性金属材料等、公知の
基体材料はいずれも使用可能であり、本発明にお
ける強磁性薄膜の被着に先立ち、必要に応じそれ
らは予め種々の下地表面処理、下地膜形成、裏面
処理等を施しておくこともできる。なお、基体5
の厚さ等は広範囲に選択でき、又その搬送速度は
一般に0.1〜10m/min程度とすればよい。 このような、従来の斜め蒸着法におけるとほぼ
同様な構成の下で、本発明においては、搬送され
る基体5の移行に従い、蒸気流と基体法線のなす
角度(入射角)が、低角から高角へと段階的に変
化するようにする。このように構成するには、基
体5としてフイルム状連続体を用い、それを連続
的に搬送するのが通常であるので、そのときに
は、蒸気発生器3上方の被着有効領域内に走行ガ
イドを配し、この走行ガイドに沿つて移行する基
体には2面以上の直線面が形成されるようにな
し、この複数の直線面への蒸気流入射角(直線面
法線と蒸気流のなす角度)が低角から高角へと非
連続的に段階的に増加するようにすればよい。こ
の場合、蒸気流は、そのまわりこみを無視して、
蒸気発生器3内の強磁性材料4の蒸発面の中心か
ら、放射直線状にのびる直線として考えればよ
く、又直線面法線とは、厳密には、蒸気流のまわ
りこみを無視したときの上記直線面における被着
有効領域の中心にたてた法線であるが、基体5は
蒸気発生器3上方の被着有効領域内をほぼ斜め上
方に移行するようにするのが通常であるので、そ
のときには走行ガイドにより形成される各直線面
が垂直線となす角度が段階的に減少するようにす
ることになる。なお、走行ガイドとしては、種々
のガイド方式が可能であるが、常用されるガイド
ロールを用い、このガイドロールにより基体5を
その裏面からガイドするようにするのが一般的で
ある。又このガイド位置を可変とすれば、上記入
射角は種々変更可能となり、得ようとする磁気記
録媒体の所望特性を適宜実現することができる。 このような場合の好ましい1例が第1図に示さ
れる。第1図においては、供給リール6と巻取り
ロール7間に3個の走行ガイド81,82,83
を配し、各ガイド81,82,83および巻取り
ロール7間で形成される3つの直線面が垂直線と
なす角度θ,θ,θをθ>θ>θ
なるように設定し、各ガイド81,82,83に
沿つて基体5が矢印P方行に移動するように構成
されている。なお、このような場合、走行ガイド
の数、それによつて形成される直線面の数、各直
線面の長さ等は種々変更可能であり、又各直線面
が垂直線となす角度の大きさおよび各角度の変化
度も、最終直線面が概ね垂直線と10〜40゜の範囲
内にある限りにおいて種々変更可能であり、これ
らは用いる強磁性材料と要求磁気特性値等から適
宜決定すればよい。 このような構成において、基体を上記のとおり
移行させつつ、常法に従い強磁性材料の被着を行
えば、基体一面上に強磁性薄膜が形成された設層
体が連続的に製造されることになる。なお、この
ように形成された設層体はそれ自体で磁気記録媒
体として機能するものであるが、必要に応じ、薄
膜上面および基体裏面に所定の加工を施し、次い
で裁断し、各種磁気テープ等の磁気記録媒体とさ
れる。 本発明は、基体の移行に従い、蒸気流と基体法
線のなす角度が低角から高角へと段階的に変化す
るようにして、被着を行うものであるので、得ら
れる強磁性薄膜は、下方に比較的低保磁力を、又
上方に比較的高保磁力をもつている。このため、
薄膜全体として高い保磁力を有することになり、
又斜め蒸着法の特長である短波長領域の出力向上
に加え、長波長領域の出力向上も実現し、このた
め高出力で周波数特性も良好となる。加えて、密
着強度も従来の斜め蒸着法に対し遜色なく、しか
も成膜速度および被着効率は、従来の斜め蒸着法
によりほぼ同等の保磁力を得る場合と比較して、
格段と向上し、製造効率はきわめて良好である。 本発明者は、本発明の効果を確認するため種々
実験を行つた。以下にその1例を示す。 実験例 第1図に示される装置を用いて本発明の効果を
確認した。基体5としては、6μ厚のポリエチレ
ンテレフタレートフイルムを用い、搬送速度はほ
ぼ1m/minとした。又、各直線面と垂直線との
なす角度θ,θ,θはθ=55゜、θ
40゜、θ=25゜とし、各直線面長は等長とし
た。一方、強磁性材料としては、80wt%のCoと
20wt%のNiとからなる合金を用い、これを40mm
φのアルミ製ルツボ内にタングステン巻線を施
し、さらに巻線の内側に容量20c.c.のアルミ製容器
を配してなる抵抗加熱型の蒸気発生器3内に収納
しこの巻線に5Kwの交流電流を通じ、20×
10-6Torrの真空槽1内で蒸発させた。 一方、比較のため、従来の斜め蒸着法に従い、
走行ガイド82,83は用いず、ガイド81と巻
取りロール7で形成される直線面が垂直線と60゜
をなすようして、上記と同様の条件下で蒸着を行
つた。 上記2つの方法に従つた場合の成膜速度、得ら
れた薄膜の磁気特性を第1表に示す。なお、被着
効率は、本発明による場合、上記従来の斜め蒸着
法による場合と比較して約30%増加していた。
The present invention relates to a method of manufacturing a magnetic recording medium suitable for high-density recording. In recent years, there has been a growing demand for magnetic recording media with higher recording densities, and metal thin film types in which a ferromagnetic thin film is formed on a nonmagnetic substrate by vapor deposition, sputtering, magnetron high speed sputtering, ion plating, electroplating, electroless plating, etc. Development of magnetic recording media is actively underway. In the case of such metal thin film magnetic recording media, in order to obtain high coercive force, which is an essential condition for increasing recording density, it is necessary to impart magnetic anisotropy to the ferromagnetic thin film by some means. The technology for imparting such magnetic anisotropy is to obliquely inject a vapor flow of a ferromagnetic material such as Fe, Co, Ni, or an alloy thereof in a vacuum onto a substrate such as a polyester film. A so-called oblique vapor deposition method is known, which is disclosed in Japanese Patent Publication No. 19389/1989, etc., in which the film is deposited while the film is being deposited. According to such an oblique vapor deposition method, vapor anisotropy is imparted to the ferromagnetic thin film, resulting in increased coercive force, improved adhesion of the deposited thin film, and even higher output in the short wavelength region. This will improve the results. However, on the other hand, the deposition rate of the thin film is slow, and the deposition efficiency is poor relative to the amount of evaporation of the ferromagnetic material, resulting in extremely low manufacturing efficiency.Furthermore, the output power can only be improved in the short wavelength region, so electromagnetic The disadvantage is that the conversion efficiency and the linearity of the maximum output frequency characteristics are unfavorable. The present invention has been made to eliminate these drawbacks of the conventional oblique vapor deposition method, and provides a method with high holding power, high adhesion strength of the thin film, and effective film formation speed and deposition efficiency. The main objective is to provide a method for manufacturing a high-output magnetic recording medium with excellent linearity, which increases manufacturing efficiency, and also achieves improved output in the long wavelength region in addition to high output in the short wavelength region. shall be. The inventor of the present invention has made the present invention as a result of extensive studies regarding such an objective. That is, in the case of forming a ferromagnetic thin film on a substrate by obliquely injecting a vapor flow of a ferromagnetic material onto the substrate while moving a non-magnetic substrate in vacuum, the vapor flow follows the transfer of the substrate. The purpose is to gradually change the angle between the flow and the normal to the substrate from a low angle to a high angle. The present invention will be explained below with reference to the embodiment shown in FIG. The ferromagnetic thin film in the present invention is formed by vacuum evaporation, and any known vacuum evaporation technique such as evaporation, sputtering, ion plating, etc. may be used. Therefore, the manufacturing method of the present invention is carried out in a predetermined vacuum, and the apparatus used is housed in the vacuum chamber 1. As shown in FIG. 1, the vacuum chamber 1 is configured to be maintained at a predetermined vacuum by an evacuation device 2 consisting of, for example, a rotary pump and a diffusion pump.
A means for introducing an inert gas or the like into the tank is provided. A steam generator 3 is disposed within such a vacuum chamber 1. The steam generator 3 may be of any known heating method such as a resistance heating method, an electron beam heating method, or a high frequency induction heating method, and its structure, material,
The dimensions, shape, etc. can be arbitrarily determined as appropriate. On the other hand, a ferromagnetic material 4 is stored in the steam generator 3, and is evaporated by heating by the steam generator.
The vapor flow is configured to be generated. In this case, a known ferromagnetic material may be used as the ferromagnetic material, such as Fe, Co, Ni, an alloy thereof, a mixture thereof with other additive elements, or an oxide thereof, etc. Both can be used. On the other hand, in the vacuum chamber 1, the non-magnetic substrate 5 is usually moved above the steam generator 3. In this case, a film-like continuous body is generally used as the nonmagnetic substrate 5, and at this time, the substrate 5 is continuously conveyed and transferred at a predetermined speed. Such continuous conveyance is normally carried out by winding the substrate wound around a supply reel 6 onto a take-up reel 7 according to a known method, as shown in FIG. I am going to do it,
Generally, between the supply reel 6 and the take-up reel 7,
The base body 5 is conveyed substantially diagonally upward above the steam generator 3. Furthermore, as the material of the non-magnetic substrate 5, any known substrate material can be used, such as organic polymer materials such as polyester and polyimide, and non-magnetic metal materials such as aluminum and zinc. Prior to the deposition of the thin film, they may be subjected to various base surface treatments, base film formation, back surface treatments, etc., if necessary. Note that the base 5
The thickness etc. can be selected from a wide range, and the conveying speed may generally be about 0.1 to 10 m/min. In the present invention, under a configuration similar to that in the conventional oblique evaporation method, the angle between the vapor flow and the normal line of the substrate (incident angle) changes to a low angle as the substrate 5 is transferred. The angle changes gradually from high to high. In order to configure this, it is normal to use a film-like continuous body as the base 5 and to convey it continuously. The substrate is arranged so that two or more straight surfaces are formed on the base body that moves along this traveling guide, and the steam inflow angle to these multiple straight surfaces (the angle between the normal to the straight surface and the steam flow) is ) may be made to increase discontinuously and stepwise from a low angle to a high angle. In this case, the steam flow, ignoring its surroundings, is
It can be thought of as a straight line extending radially from the center of the evaporation surface of the ferromagnetic material 4 in the steam generator 3, and the normal to the straight line is strictly speaking the above-mentioned line when the roundabout of the steam flow is ignored. Although this is a normal line drawn to the center of the effective adhesion area on a straight plane, the base body 5 is normally moved almost obliquely upward within the effective adhesion area above the steam generator 3. At that time, the angle that each linear plane formed by the traveling guide makes with the vertical line is gradually reduced. Although various guiding methods are possible as the traveling guide, it is common to use commonly used guide rolls and guide the base 5 from the back surface thereof. Furthermore, if this guide position is made variable, the above-mentioned incident angle can be changed in various ways, and the desired characteristics of the magnetic recording medium to be obtained can be appropriately realized. A preferred example of such a case is shown in FIG. In FIG. 1, three running guides 81, 82, 83 are provided between the supply reel 6 and the take-up roll 7.
are arranged, and the angles θ 1 , θ 2 , θ 3 made by the three straight planes formed between each guide 81, 82, 83 and the winding roll 7 with the vertical line are θ 1 > θ 2 > θ 3 . The base body 5 is configured to move in the direction of arrow P along each guide 81, 82, 83. In such cases, the number of running guides, the number of linear surfaces formed by them, the length of each linear surface, etc. can be changed in various ways, and the size of the angle that each linear surface makes with the vertical line can be changed. The degree of change of each angle can also be changed as long as the final straight line is approximately within a range of 10 to 40 degrees from the perpendicular line, and these can be determined as appropriate based on the ferromagnetic material used and the required magnetic property values, etc. good. In such a configuration, if the substrate is transferred as described above and the ferromagnetic material is deposited according to a conventional method, a layered structure in which a ferromagnetic thin film is formed on one surface of the substrate can be continuously manufactured. become. The layered body formed in this way functions as a magnetic recording medium by itself, but if necessary, the upper surface of the thin film and the back surface of the substrate may be subjected to prescribed processing, then cut, and used for various magnetic tapes, etc. It is considered as a magnetic recording medium. In the present invention, deposition is carried out in such a way that the angle between the vapor flow and the normal to the substrate changes stepwise from a low angle to a high angle as the substrate moves, so that the resulting ferromagnetic thin film is It has a relatively low coercive force at the bottom and a relatively high coercive force at the top. For this reason,
The thin film as a whole has a high coercive force,
In addition to improving the output in the short wavelength region, which is a feature of the oblique evaporation method, it also improves the output in the long wavelength region, resulting in high output and good frequency characteristics. In addition, the adhesion strength is comparable to that of the conventional oblique evaporation method, and the film formation speed and deposition efficiency are higher than those obtained by the conventional oblique evaporation method, which achieves almost the same coercive force.
This has been greatly improved, and the manufacturing efficiency is extremely good. The inventor conducted various experiments to confirm the effects of the present invention. An example is shown below. Experimental Example The effects of the present invention were confirmed using the apparatus shown in FIG. A polyethylene terephthalate film with a thickness of 6 μm was used as the substrate 5, and the conveyance speed was approximately 1 m/min. Also, the angles θ 1 , θ 2 , θ 3 between each straight line and the vertical line are θ 1 = 55°, θ 2 =
40°, θ 3 =25°, and the length of each straight line surface was made equal. On the other hand, as a ferromagnetic material, 80wt% Co and
Using an alloy consisting of 20wt% Ni, this was made into a 40mm
A tungsten wire is wound inside a φ aluminum crucible, and the winding is housed in a resistance-heating type steam generator 3 consisting of an aluminum container with a capacity of 20 c.c. Through an alternating current of 20×
It was evaporated in vacuum chamber 1 at 10 -6 Torr. On the other hand, for comparison, according to the conventional oblique evaporation method,
Vapor deposition was carried out under the same conditions as above, without using the running guides 82 and 83, but with the straight plane formed by the guide 81 and the take-up roll 7 making an angle of 60° with the vertical line. Table 1 shows the film formation speed and magnetic properties of the obtained thin films when the above two methods were followed. Note that the deposition efficiency was increased by about 30% in the case of the present invention compared to the case of the conventional oblique vapor deposition method.

【表】 又、上記両方法により得た設層体を裁断して、
オープンテープとした後、その電磁変換効率およ
び最大出力(M.O.L)の周波数特性を測定した。
電磁変換効率については第2図、M.O.Lについて
は第3図にその結果を示す。両図中、上記本発明
による場合が曲線a、上記従来の斜め蒸着法によ
る場合が曲線cであり、曲線bは市販のγ−
Fe2O3塗布型テープの結果である。両図から、本
発明による場合は、γ−Fe2O3テープに比較して
高域で10dB程度高く、又低域においては従来の
斜め蒸着法による場合より10dB程度高く、周波
数特性が改良されていることがわかる。 これらの結果から、本発明によつもたらされる
上述の効果は明白であるものと確信する。
[Table] In addition, the layered structure obtained by both of the above methods was cut,
After creating an open tape, its electromagnetic conversion efficiency and maximum output (MOL) frequency characteristics were measured.
The electromagnetic conversion efficiency is shown in Figure 2, and the MOL is shown in Figure 3. In both figures, curve a is the case according to the present invention, curve c is the case according to the conventional oblique evaporation method, and curve b is the commercially available γ-
These are the results for Fe 2 O 3 coated tape. From both figures, the frequency characteristics of the present invention are about 10 dB higher in the high range compared to the γ-Fe 2 O 3 tape, and about 10 dB higher in the low range than in the case of the conventional oblique evaporation method, and the frequency characteristics are improved. You can see that From these results, it is believed that the above-mentioned effects brought about by the present invention are obvious.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を説明するための概略
図であり、第2図および第3図は、それぞれ本発
明の効果を説明するための、電磁変換特性および
最大出力の周波数特性を表わす線図である。 4……強磁性材料、5……非磁性基体。
FIG. 1 is a schematic diagram for explaining an embodiment of the present invention, and FIGS. 2 and 3 show electromagnetic conversion characteristics and maximum output frequency characteristics, respectively, for explaining the effects of the present invention. It is a line diagram. 4...Ferromagnetic material, 5...Nonmagnetic substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 真空中で、非磁性基体を移行させながら、強
磁性材料の蒸気流を当該基体に対し斜めに入射
し、当該基体上に強磁性薄膜を形成する磁気記録
媒体の製造方法において、上記基体の移行に従
い、蒸気流と基体法線のなす角度を、低角から高
角へと段階的に変化させることを特徴とする磁気
記録媒体の製造方法。
1. A method for producing a magnetic recording medium in which a vapor flow of a ferromagnetic material is obliquely incident on a non-magnetic substrate while moving the substrate in a vacuum to form a ferromagnetic thin film on the substrate. A method for manufacturing a magnetic recording medium, characterized in that the angle between the vapor flow and the normal to the substrate is changed stepwise from a low angle to a high angle according to the transition.
JP11193779A 1979-09-01 1979-09-01 Manufacture of magnetic recording medium Granted JPS5637829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11193779A JPS5637829A (en) 1979-09-01 1979-09-01 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11193779A JPS5637829A (en) 1979-09-01 1979-09-01 Manufacture of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5637829A JPS5637829A (en) 1981-04-11
JPS6161445B2 true JPS6161445B2 (en) 1986-12-25

Family

ID=14573867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11193779A Granted JPS5637829A (en) 1979-09-01 1979-09-01 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5637829A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3108094C2 (en) * 1981-03-04 1985-09-26 Mapa GmbH Gummi- und Plastikwerke, 2730 Zeven Pacifiers

Also Published As

Publication number Publication date
JPS5637829A (en) 1981-04-11

Similar Documents

Publication Publication Date Title
JPS6161445B2 (en)
JPH044649B2 (en)
JPH0546013B2 (en)
JPH0330213B2 (en)
JPH0479065B2 (en)
JP2629847B2 (en) Manufacturing method of magnetic recording medium
JPH01264632A (en) Method and apparatus for producing magnetic recording medium
JPS62185246A (en) Production of magnetic recording medium
JP3041105B2 (en) Manufacturing method of magnetic recording medium and crucible for vapor deposition
JPS5966106A (en) Magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
EP0688016A2 (en) Method for manufacturing magnetic recording medium and apparatus therefor
JP2953138B2 (en) Manufacturing method of magnetic recording medium
JPH0510732B2 (en)
JPH0226294B2 (en)
JPH103659A (en) Apparatus for production of magnetic recording medium and processing therefor
JPS60209927A (en) Magnetic recording medium and its production
JPH033118A (en) Production of magnetic recording medium
JPH044659B2 (en)
JPH04132015A (en) Perpendicular magnetic recording tape consisting of cocr and production thereof
JPH07240019A (en) Magnetic recording medium and its production and apparatus for production
JPH07105045B2 (en) Method of manufacturing magnetic recording medium
JPH06112043A (en) Magnetic recording medium and manufacture thereof
JPH09128751A (en) Production of magnetic recording medium
JPH0519767B2 (en)