JPS5966106A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS5966106A
JPS5966106A JP57177797A JP17779782A JPS5966106A JP S5966106 A JPS5966106 A JP S5966106A JP 57177797 A JP57177797 A JP 57177797A JP 17779782 A JP17779782 A JP 17779782A JP S5966106 A JPS5966106 A JP S5966106A
Authority
JP
Japan
Prior art keywords
oxygen
magnetic
magnetic layer
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57177797A
Other languages
Japanese (ja)
Inventor
Makoto Nagao
信 長尾
Akira Nahara
明 名原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP57177797A priority Critical patent/JPS5966106A/en
Publication of JPS5966106A publication Critical patent/JPS5966106A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having excellent electromagnetic transducing characteristics by a method wherein a magnetic layer containing Co, Ni, Cr and oxygen each in a thermally determined quantity is formed on a nonmagnetic macromolecule film by a rhombic evaporation method. CONSTITUTION:A magnetic layer composed at least of Co, Ni, Cr and oxygen and formed by a trimetric evaporation method is provided on a nonmagnetic macromolecule film 13. In this magnetic layer, the average content of Cr is made to be 2-8 atom%, the average content of oxygen 5-25 atom% and the ratio in the average number of atoms of oxygen to Cr 2-10, and the distribution of the ratio in the number of atoms of oxygen to Cr in the direction of the thickness of the film is made to be larger as nearer to the nonmagnetic macromolecule film side. The minimum trimetric incidence angle theta min formed when the magnetic layer is evaporated by the rhombic evaporation method is preferably 30 to 70 degrees for practical use.

Description

【発明の詳細な説明】 本発明は真空雰囲気内で強磁性材料を加熱蒸発させて得
る蒸気流を支持体に対して斜め方向から入射させて強磁
性結晶柱を支持体に対して斜めに形成したいわゆる斜方
蒸着型磁性層を有する磁気記録媒体の改良に関する。
Detailed Description of the Invention The present invention involves forming ferromagnetic crystal columns obliquely with respect to the support by making a vapor flow obtained by heating and vaporizing a ferromagnetic material in a vacuum atmosphere enter the support from an oblique direction. The present invention relates to improvements in magnetic recording media having so-called obliquely deposited magnetic layers.

近年、情報量の増大とともに、高密度磁気記録媒体の出
現が望まれており、喝に理想的な高密度磁気記録媒体と
して金属薄膜型磁気記録媒体の開発が盛んに進められて
いる。薄膜化技術としては、真空蒸着法、イオンブレー
ティング法、スパッタリング法、湿式メッキ法等の各種
方法が挙げられるが、高密度記録に適した高保磁力媒体
を安定に得るには、特公昭41−19,389号に開示
されたいわゆる斜方蒸着法がすぐれた方法である。斜方
蒸着法とは、真空雰囲気内で、Co、 Co −Ni等
の強磁性材料を加熱蒸発せしめて得る蒸気流を高分子等
から成る非磁性支持体に対し、蒸気流の方向と支持体上
に立てた法線とのなす角が、通常45度以上の角度で支
持体に入射させて強磁性結晶柱を支持体に対して斜めに
形成する真空蒸着法である。この斜方蒸着法により形成
された磁性層は斜方蒸着型磁性層と呼ばれる。Co又は
Co−Ni材料を用いて1.0000e程度の高保磁力
を得るには通常、最小斜入射角度θminは約60度以
上にする必要がある。
In recent years, with the increase in the amount of information, there has been a desire for the emergence of high-density magnetic recording media, and the development of metal thin-film magnetic recording media as an ideal high-density magnetic recording medium is actively underway. Film thinning techniques include various methods such as vacuum evaporation, ion blating, sputtering, and wet plating, but in order to stably obtain a high coercive force medium suitable for high-density recording, The so-called oblique evaporation method disclosed in No. 19,389 is an excellent method. The oblique evaporation method is a process in which a vapor flow obtained by heating and evaporating a ferromagnetic material such as Co or Co-Ni in a vacuum atmosphere is applied to a non-magnetic support made of a polymer, etc., in the direction of the vapor flow and the support. This is a vacuum evaporation method in which ferromagnetic crystal columns are formed obliquely to the support by making the ferromagnetic crystal pillars incident on the support at an angle of usually 45 degrees or more with the normal line erected above. A magnetic layer formed by this oblique evaporation method is called an oblique evaporation type magnetic layer. In order to obtain a high coercive force of about 1.0000e using Co or Co-Ni material, the minimum oblique incidence angle θmin usually needs to be about 60 degrees or more.

しかしながら、このようにθmlnを60度以上の条件
で蒸着した場合、蒸気流をマスクでさまたげる割合が急
激に増加し、支持体に付着する蒸気流の量が著しく減少
し、蒸着効率が極めて低くなったり、また蒸着スピード
が低下する等の欠点が生ずる。これらの欠点を改良する
方法として酸素中斜方蒸着法が開示されている。酸素中
斜方蒸着法とは、酸素雰囲気下で斜方蒸着を行わせる方
法であり、この方法により保磁力を増大させることが可
能となり、従って、θminを小さくすることが可能と
なる。即ち、酸素中斜方蒸着法は、高保磁力化又は低入
射角化の点ですぐれた方法である。しかしながら、斜方
蒸着法或いは、酸素中斜方蒸着法で作成したCo又はC
o−Ni斜方蒸着型磁性層は耐錆性がまだまだ不十分で
あり、実用化への大きな障害となっていた。磁性層の耐
錆性な改善する試みとして、Crを添加する方法が提案
されている。しかしこの方法は所望の耐錆性を得るため
には、多量のCr添加、例えば10原子パーセント(以
下at%と記f)が必要となり磁束密度が急激に減少し
電磁変換特性が著しく低下する等の欠点を有している。
However, when θmln is deposited under conditions of 60 degrees or higher, the rate at which the vapor flow is obstructed by the mask increases rapidly, the amount of vapor flow adhering to the support material decreases significantly, and the vapor deposition efficiency becomes extremely low. In addition, there are disadvantages such as a decrease in the deposition speed. As a method for improving these drawbacks, an oblique evaporation method in oxygen has been disclosed. The oblique evaporation method in oxygen is a method of performing oblique evaporation in an oxygen atmosphere, and by this method, it is possible to increase the coercive force, and therefore, it is possible to reduce θmin. That is, the oblique evaporation method in oxygen is an excellent method in terms of increasing the coercive force or decreasing the angle of incidence. However, Co or C produced by oblique evaporation method or oblique evaporation method in oxygen
The o-Ni obliquely deposited magnetic layer still has insufficient rust resistance, which has been a major obstacle to its practical use. In an attempt to improve the rust resistance of the magnetic layer, a method of adding Cr has been proposed. However, in order to obtain the desired rust resistance, this method requires the addition of a large amount of Cr, for example, 10 atomic percent (hereinafter referred to as at%), which causes a rapid decrease in magnetic flux density and a significant deterioration of electromagnetic conversion characteristics. It has the following disadvantages.

本発明者等は耐錆性及び磁気特性に優れた磁気記録媒体
を開発すべ(Cr添加効果につき詳細に検討し実験をく
り返した。その結果Co。
The inventors of the present invention aimed to develop a magnetic recording medium with excellent rust resistance and magnetic properties (we investigated the effect of adding Cr in detail and repeated experiments. As a result, Co.

Ni、 Cr及び酸素を含むこと、且つCrと酸素をあ
る特定の範囲で組み合わせることにより耐錆性、磁気特
性共に優れた磁気記録媒体となり得ることを見出し特許
出願を行なった(昭和57年9月30日付特許願出願人
:富士写真フィルム株式会社、代理人:柳田征史ほか1
名)。
He discovered that a magnetic recording medium with excellent rust resistance and magnetic properties could be obtained by containing Ni, Cr, and oxygen, and by combining Cr and oxygen within a certain range, and filed a patent application (September 1982). Patent application dated 30th Applicant: Fuji Photo Film Co., Ltd., Agent: Masashi Yanagida and others 1
given name).

その後更に鋭意研究を行なったところ磁性層の膜厚方向
に沿ったCrに対する酸素の分布が電磁変換特性に極め
て重要であることを見出し本発明に至った。
After further intensive research, it was discovered that the distribution of oxygen relative to Cr along the thickness direction of the magnetic layer is extremely important for electromagnetic conversion characteristics, leading to the present invention.

本発明は非磁性高分子フィルム上に斜方蒸鬼法により作
成した少なくともCo、 Ni、 Cr及び酸素を含む
磁性層を有する磁気記録媒体において、Crの平均含有
率が2〜8at%、酸素の平均含有率が5〜25 at
%、Crに対する酸素の平均原子数比が2〜10、Cr
に対する酸素の平均原子数比の膜厚方向に対する分布が
非磁性高分子フィルム側に近づく程犬であることを特徴
とするものである。
The present invention provides a magnetic recording medium having a magnetic layer containing at least Co, Ni, Cr and oxygen on a non-magnetic polymer film by an oblique evaporation method, in which the average content of Cr is 2 to 8 at% and the content of oxygen is Average content is 5 to 25 at
%, average atomic ratio of oxygen to Cr is 2 to 10, Cr
The distribution in the film thickness direction of the average atomic ratio of oxygen to the non-magnetic polymer film is characterized in that the closer it is to the non-magnetic polymer film, the more uniform the distribution becomes.

本発明におけるCr、酸素の平均含有率とは、表面酸化
層の部分を除いた磁性層についての平均値であり、また
Crに対する酸素の原子数比も表面酸化層の部分以外の
磁性層に対するものである。
The average content of Cr and oxygen in the present invention is the average value for the magnetic layer excluding the surface oxidized layer, and the atomic ratio of oxygen to Cr is the average value for the magnetic layer excluding the surface oxidized layer. It is.

本発明の磁気記録媒体の磁性層はCo、 Ni。The magnetic layer of the magnetic recording medium of the present invention is made of Co and Ni.

Cr及び酸素以外の他の元素を所望の特性を損わない範
囲で含有していてもよい。また、磁性層としては単層、
2層以上の重層、あるいは中間層、下地層とを組合わせ
た多層構であってもよい。さらに、実用上の諸行性をさ
らに向上させるために、磁性層側、非磁性高分子フィル
ム側に各種処理を施してもよい。
Elements other than Cr and oxygen may be contained within a range that does not impair desired characteristics. In addition, the magnetic layer is a single layer,
It may be a multilayer structure of two or more layers or a combination of an intermediate layer and a base layer. Furthermore, in order to further improve practical performance, various treatments may be applied to the magnetic layer side and the non-magnetic polymer film side.

本発明の磁気記録媒体の磁性層は斜方蒸着法により作成
されるが、蒸着時の最小斜入射角度θminは実用上3
0度から70度が好ましくゝ。
The magnetic layer of the magnetic recording medium of the present invention is formed by an oblique evaporation method, and the minimum oblique incidence angle θmin during evaporation is practically 3.
Preferably it is between 0 degrees and 70 degrees.

以下、本発明を図面及び実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to drawings and examples.

第1図は、本発明の磁気記録媒体を製造するための好ま
しい蒸着装置の概略断面図である。
FIG. 1 is a schematic cross-sectional view of a preferred vapor deposition apparatus for manufacturing the magnetic recording medium of the present invention.

図に示された蒸着装置は真空ポンプ12によりその内部
が排気され所望の真空度に保たれる蒸着室11、この蒸
着室11内部に設けられたテープ送出ロール6かも送り
出されたテープ状の非磁性高分子フィルム13をテープ
巻取ロール7まで案内、支持するクーリングキャン8、
加熱蒸発することにより磁性層を非磁性高分子フィルム
13に形成する蒸発材ネ・1がチャージさJする3つの
蒸発源1,2゜3および余1方蒸着を行なう際の蒸気流
の最小胴入射角θ+1IInを規定するマスク9からな
っている。さらに、蒸着室11内へ酸素を供給する酸素
の吹き出し口4,5が蒸着室11内部へ開口しており、
この2つの酸素の吹き出し口・1,5かも酸素の導入量
を調節することで膜厚方向に対する酸素の分布を変える
ことができる。また、蒸着室11中央部付近には非磁性
高分子フィルム13の搬送系と蒸発部との分離を兼ねた
防着板10が設けられている。
The vapor deposition apparatus shown in the figure includes a vapor deposition chamber 11 whose interior is evacuated by a vacuum pump 12 and maintained at a desired degree of vacuum, and a tape-shaped non-woven fabric fed out from a tape delivery roll 6 provided inside the vapor deposition chamber 11. a cooling can 8 that guides and supports the magnetic polymer film 13 to the tape winding roll 7;
Three evaporation sources 1 and 2 are charged with the evaporator 1, which forms a magnetic layer on the non-magnetic polymer film 13 by heating and evaporating, and the minimum body of the vapor flow during vapor deposition. It consists of a mask 9 that defines an incident angle θ+1IIn. Further, oxygen outlets 4 and 5 for supplying oxygen into the vapor deposition chamber 11 are open to the inside of the vapor deposition chamber 11,
By adjusting the amount of oxygen introduced into these two oxygen outlets 1 and 5, the distribution of oxygen in the film thickness direction can be changed. Further, near the center of the deposition chamber 11, an adhesion prevention plate 10 is provided which also serves to separate the transport system for the non-magnetic polymer film 13 from the evaporation section.

以上のように構成された蒸着装置において、本発明の磁
気記録媒体は次の様にして製造される。
In the vapor deposition apparatus configured as described above, the magnetic recording medium of the present invention is manufactured as follows.

蒸着室11は、真空ポンプ12によりその内部が適度な
真空度に保たれる。蒸発源3には蒸発材料Co−Niが
チャージされる。また、蒸発源1,2のどちらか一方、
あるいは両方に蒸発材料Crがチャージされる。Crの
蒸発源として1,2のどちらか一方、あるいは両方同時
に使用することにより形成される磁性層における膜厚方
向へのCrの分布を変えることができる。蒸発源にチャ
ージされた蒸発材料は従来公知の加熱手段により加熱さ
れる。この加熱手段としては例えば、電子ビーム加熱、
誘導加熱、抵抗加熱等を用いることができる。
The interior of the deposition chamber 11 is maintained at an appropriate degree of vacuum by a vacuum pump 12. The evaporation source 3 is charged with evaporation material Co-Ni. In addition, either one of the evaporation sources 1 and 2,
Alternatively, both are charged with evaporation material Cr. By using either 1 or 2 or both at the same time as a Cr evaporation source, the distribution of Cr in the thickness direction of the formed magnetic layer can be changed. The evaporation material charged in the evaporation source is heated by a conventionally known heating means. Examples of this heating means include electron beam heating,
Induction heating, resistance heating, etc. can be used.

加熱された蒸発材料は融解気化し、蒸気流となって蒸着
室11内部上方へ上昇し、非磁性高分子フィルム13上
に蒸着する。この際酸素の吹き出し口4,5からは酸素
が蒸着室11内に導入され適度な酸素雰囲気中で蒸着が
行なわれるようになっており、従って、蒸着室11内へ
の酸素の導入量を調節することにより膜厚方向に対して
所望の分布で酸素が取り込ま」する。テープ送出ロール
6から送り出された非磁性高分子フィルム13はクーリ
ングキャン8に案内される際に斜入射角度θが高角度(
はぼ90度)から低角度へと変化しながら、いわゆる斜
方蒸着が行なわ′れ、最小斜入射角θminをすぎると
蒸着を終了し、テープ巻取ロール7に巻き取られる。
The heated evaporation material melts and vaporizes, rises upward inside the deposition chamber 11 as a vapor flow, and is deposited on the nonmagnetic polymer film 13. At this time, oxygen is introduced into the deposition chamber 11 from the oxygen outlets 4 and 5, and the deposition is performed in an appropriate oxygen atmosphere. Therefore, the amount of oxygen introduced into the deposition chamber 11 is adjusted. By doing so, oxygen is taken in with a desired distribution in the film thickness direction. When the non-magnetic polymer film 13 sent out from the tape delivery roll 6 is guided to the cooling can 8, the oblique incidence angle θ becomes a high angle (
So-called oblique deposition is performed while changing the angle from approximately 90 degrees to a lower angle, and when the minimum oblique incidence angle θmin is exceeded, the deposition ends and the tape is wound onto a tape take-up roll 7.

次に、本発明を実、施例により説明する。Next, the present invention will be explained with reference to practical examples.

実施例 非磁性高分子フィルムとして10μm厚のポリエチレン
テレフタ−)(PET)、蒸発材料としてCo9oNi
1o及びCrを用い最小斜入射角θminを42度に設
定して、蒸発源の加熱手段として161偕の電子ビーム
加熱を用い第1図に示される蒸着装置により斜方蒸着を
行なった。非磁性高分子フィルムの搬送速度は10m/
 mi n 、真空度は10  Torr台であった。
Examples: 10 μm thick polyethylene terephthalate (PET) as a non-magnetic polymer film, Co9oNi as an evaporation material.
Oblique evaporation was carried out using the vapor deposition apparatus shown in FIG. 1 using 1° and Cr and setting the minimum oblique incidence angle θmin to 42°, and using 161° electron beam heating as the heating means for the evaporation source. The conveyance speed of the non-magnetic polymer film is 10 m/
min and the degree of vacuum was on the order of 10 Torr.

酸素の吹き出し口として4のみを用いた場合、5のみを
用いた場合、4および5をともに用いた場合の3通りの
方法で蒸着を行なった。このようにして得た磁気記録媒
体をそれぞれタイプA、タイプBおよびタイプCとした
。また、それぞれの場合において、磁性層中のCrと酸
素の含有率を変化させるために、Crの加熱パスと酸素
の吹き出し量の調節を行なった。さらに、Cr用蒸発源
として1のみを用いた場合、2のみを用いた場合、1お
よび2をともに用いた場合の3通りの方法で蒸着を行な
い、膜厚方向に沿ってCr名名車率異なる磁性層を有す
る磁気記録媒体の作成も行なった。作成した磁性層の組
成及び膜厚方向の組成分布はオージェ分析で求めた。得
られた磁性層の平均的組成は(Co9oNi1o )s
ocr401sであった。なお、磁性層の膜厚は触針型
膜厚計で測定を行なった。本実施例により得られた磁性
層の膜厚はすべて約1500λであった。
Vapor deposition was carried out in three ways: when only No. 4 was used as the oxygen outlet, when only No. 5 was used, and when No. 4 and No. 5 were used together. The magnetic recording media thus obtained were designated as type A, type B, and type C, respectively. Furthermore, in each case, in order to change the content of Cr and oxygen in the magnetic layer, the heating path for Cr and the amount of oxygen blown out were adjusted. Furthermore, evaporation was carried out in three ways: when only 1 was used as an evaporation source for Cr, when only 2 was used, and when 1 and 2 were used together, and the Cr ratio was varied along the film thickness direction. A magnetic recording medium with a magnetic layer was also created. The composition of the produced magnetic layer and the composition distribution in the film thickness direction were determined by Auger analysis. The average composition of the obtained magnetic layer is (Co9oNi1o)s
It was ocr401s. The thickness of the magnetic layer was measured using a stylus-type thickness meter. The thickness of all the magnetic layers obtained in this example was about 1500λ.

第2A図、第2B図および第2C図は上述のようにして
作成された磁性層の膜厚方向のCrに対する酸素の原子
数比を示すグラフである。
FIGS. 2A, 2B, and 2C are graphs showing the atomic ratio of oxygen to Cr in the thickness direction of the magnetic layer produced as described above.

第2A図は酸素吹き出し口として4を用いた場合(タイ
プA)のもので、非磁性高分子フィルム面に近づく程C
rに対する酸素の原子数比か犬となっている。第2B図
は酸素吹き出し口として5を用いた場合(タイプB)の
もので、Crに対する酸素の原子数比はほぼ一定である
。第2C図は酸素吹き出し口として4および5を用いた
場合(タイプC)のもので、非磁性高分子フィルム面に
近づく程Crに対する酸素の原子数比が小となっている
。なお、いずれの場合においても極めて表面に近い部分
の磁性層に酸素の多い領域があるが、これは蒸着終了後
吸着した酸素等により表面酸化したためであると考えら
れ、この酸素の多い領域は測定によると通常200に以
内であり、本発明において規定するCrに対する酸素の
原子数比は、この表面酸化層の部分を除いたものであり
、磁性層の組成もこの部分を除いた磁性層について平均
した値とした。
Figure 2A shows the case where 4 is used as the oxygen outlet (type A), and the closer to the surface of the non-magnetic polymer film the C
The atomic ratio of oxygen to r is a dog. FIG. 2B shows the case (type B) in which No. 5 is used as the oxygen outlet, and the atomic ratio of oxygen to Cr is almost constant. FIG. 2C shows the case (type C) when oxygen outlets 4 and 5 are used, and the atomic ratio of oxygen to Cr decreases as it approaches the surface of the nonmagnetic polymer film. In both cases, there is a region with a lot of oxygen in the magnetic layer very close to the surface, but this is thought to be due to surface oxidation due to oxygen adsorbed after the completion of vapor deposition, and this region with a lot of oxygen is not measured. According to The value was taken as

」二連のようにして作成した磁気記録媒体を1/2イン
チ幅にスリットし、VH8方式の小型ビデオカセットに
組み込んだ。次に、ビデオデツキ等を用いることにより
5’MHzのキャリヤ波を記録し、6MHzの再生出力
(シグナルSとする)及び5MHzでの変調ノイズ成分
(レイズNとする)を測定し、S/N値を求めた。この
ようにして求めたS/N値をタイ7’BのS/N値を基
準にとり相対値として第3図に示す。
The magnetic recording medium prepared in two series was slit into 1/2 inch width and assembled into a small VH8 video cassette. Next, a 5'MHz carrier wave is recorded using a video deck, etc., and the 6MHz playback output (signal S) and the modulation noise component at 5MHz (raise N) are measured, and the S/N value is determined. I asked for The S/N value thus obtained is shown in FIG. 3 as a relative value based on the S/N value of tie 7'B.

第3図からタイプCのS/NはタイプBよりやや低いが
、タイプAのS/NはタイプBに比べ約3dB高い結果
が得られた。ここでタイプAとしては、Crの含有率が
膜厚方向に沿ってほぼ一定なもの、Crの含有率が非磁
性高分子フィルム面に近づくにつれて徐々に変化して小
さくなっているもの(第4図)およびCrの含有率が非
磁性高分子フィルム面に近づ(につれて徐々に変化して
大きくなっているもの(第5図)が含まれているが、こ
のようなCr含有率の膜厚方向に沿った変化に対して、
S/Nはほとんど有意差を示さなかった。即ち、厚み方
向に沿ったCrに対する酸素の原子数比が重要であるこ
とが判明した。
From FIG. 3, the S/N of type C is slightly lower than that of type B, but the S/N of type A is about 3 dB higher than that of type B. Here, type A includes one in which the Cr content is almost constant along the film thickness direction, and one in which the Cr content gradually changes and becomes smaller as it approaches the non-magnetic polymer film surface (the fourth type). Figure 5) and Cr content that gradually changes and increases as it approaches the surface of the non-magnetic polymer film (Figure 5). For changes along the direction,
S/N showed almost no significant difference. That is, it has been found that the atomic ratio of oxygen to Cr along the thickness direction is important.

上記結果は(Co9oNi 1o )soczQxeに
タイての結果であるが、CoとN1の比として原子数で
95:5,80:20,78:22のものについても、
またCrの平均含有率が2〜3at%であり、酸素の平
均含有率5〜25 a’t%であり、且つCrに対する
酸素の平均原子数比が2〜10である磁性層についても
同様な結果が得られた。
The above results are tied to (Co9oNi1o)soczQxe, but also for Co and N1 ratios of 95:5, 80:20, and 78:22 in terms of number of atoms.
The same applies to a magnetic layer in which the average Cr content is 2 to 3 at%, the average oxygen content is 5 to 25 at%, and the average atomic ratio of oxygen to Cr is 2 to 10. The results were obtained.

なお、上記実施例においては磁性層が単層の場合につい
て述べたが、非磁性高分子フィルム上に上述のような磁
性層を数層積層した場合においても、上記本発明の実施
例と同等の高いS/Nが得られた。
In addition, although the case where the magnetic layer is a single layer is described in the above example, even when several magnetic layers as described above are laminated on a non-magnetic polymer film, the same result as in the example of the present invention described above can be obtained. A high S/N ratio was obtained.

以」二詳細に述べたように本発明の磁気記録媒体は優れ
た電磁変換特性を有し、実用上の利用価値は極めて高い
As described in detail above, the magnetic recording medium of the present invention has excellent electromagnetic conversion characteristics and has extremely high practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の磁気記録媒体を製造するために使用
される好ましい蒸着装置の概略断面図、 第2図は、磁性層におけるCrに対する酸素の原子数比
の厚さ方向に沿った分布を示すグラフ、 第3図は、Crに対する酸素の原子数比(0/Cr)の
膜厚方向に沿った分布が異なる磁性層を有する磁気記録
媒体のS/Nを0 / Crが膜厚方向に沿ってほぼ一
定である磁性層を有する磁気記録媒体のS / N (
B)のS/Nを基準にとって相対値として表示したグラ
フ、 第4図と第5図はO/ Crが非磁性高分子フィルム面
に近づ(程大きい磁性層におけるCr含有率の膜厚方向
の分布を示すグラフである。 1、2.3・・・蒸  発  源 4,5・・・酸素の
吹き出し口6・・・・・−・・・・・・テープ送出ロー
ル 7・・団・・・・テープ巻取ロール8・・・・・・
・・用クーリングキャン 9・・・・・団・マ   ス
   りlO・・・・・・・・・防  着  板 11
・・・・・・・・・蒸  着  室12・・・・・・・
・・真空ホ ン プ 13・・・非磁性高分子フィルム
第2A図 1を 面 第2C図 第2B図
FIG. 1 is a schematic cross-sectional view of a preferred vapor deposition apparatus used for manufacturing the magnetic recording medium of the present invention. FIG. 2 is a distribution of the atomic ratio of oxygen to Cr in the magnetic layer along the thickness direction. Figure 3 shows the S/N of a magnetic recording medium having a magnetic layer with a different distribution of the atomic ratio of oxygen to Cr (0/Cr) along the thickness direction. The S/N of a magnetic recording medium with a magnetic layer that is approximately constant along
Figures 4 and 5 are graphs showing relative values based on the S/N of B). 1, 2.3... Evaporation source 4, 5... Oxygen outlet 6... Tape delivery roll 7... Group... ...Tape winding roll 8...
Cooling can for...9...Group/mass lO......Anti-wear board 11
...... Vapor deposition chamber 12...
...Vacuum pump 13...Non-magnetic polymer film Figure 2A, Figure 1, Figure 2C, Figure 2B

Claims (1)

【特許請求の範囲】 非磁性高分子フィルム上に斜方蒸着法により作成され、
少なくともCo、 Ni、 Cr及び酸素からなる磁性
層を有する磁気記録媒体において、 前記Crの平均含有率が2〜8原子パーセント、前記酸
素の平均含有率が5〜25原子パーセント、前記Crに
対する前記酸素の平均原子数比が2〜10であり、且つ
前記Crに対する前記酸素の原子数比の膜厚方向に対す
る分布が前記非磁性高分子フィルム側に近づく程大であ
ることを特徴とする磁気記録媒体。
[Claims] Created by an oblique evaporation method on a non-magnetic polymer film,
In a magnetic recording medium having a magnetic layer consisting of at least Co, Ni, Cr, and oxygen, the average content of Cr is 2 to 8 atomic percent, the average content of oxygen is 5 to 25 atomic percent, and the oxygen relative to the Cr is an average atomic ratio of from 2 to 10, and a distribution of the atomic ratio of the oxygen to the Cr in the film thickness direction increases as it approaches the non-magnetic polymer film side. .
JP57177797A 1982-10-08 1982-10-08 Magnetic recording medium Pending JPS5966106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57177797A JPS5966106A (en) 1982-10-08 1982-10-08 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57177797A JPS5966106A (en) 1982-10-08 1982-10-08 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5966106A true JPS5966106A (en) 1984-04-14

Family

ID=16037252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57177797A Pending JPS5966106A (en) 1982-10-08 1982-10-08 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5966106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766034A (en) * 1984-02-16 1988-08-23 Konishiroku Photo Industry Co., Ltd. Magnetic recording medium
JPH0376018A (en) * 1989-08-16 1991-04-02 Internatl Business Mach Corp <Ibm> Magnetic recording disc for horizontal recording

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766034A (en) * 1984-02-16 1988-08-23 Konishiroku Photo Industry Co., Ltd. Magnetic recording medium
JPH0376018A (en) * 1989-08-16 1991-04-02 Internatl Business Mach Corp <Ibm> Magnetic recording disc for horizontal recording

Similar Documents

Publication Publication Date Title
JPS5961105A (en) Magnetic recording medium
KR0133353B1 (en) Magnetic recording medium and its manufacturing method
US5370928A (en) Magnetic recording medium
KR0185237B1 (en) Method for producing a magnetic recording medium
JPS5966106A (en) Magnetic recording medium
JPS5961013A (en) Magnetic recording medium
JPH0721560A (en) Production of magnetic recording medium
JPH0546013B2 (en)
US5914180A (en) Magnetic recording medium
JPS5841443A (en) Manufacture of magnetic recording medium
JPS60154323A (en) Magnetic recording medium
JPH026130B2 (en)
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JP3139181B2 (en) Manufacturing method of magnetic recording medium
JP2605803B2 (en) Magnetic recording media
JPH0479043B2 (en)
JPH0559570B2 (en)
JP2729544B2 (en) Magnetic recording medium and method of manufacturing the same
JPS60201521A (en) Magnetic recording medium
JPS5974607A (en) Magnetic recording medium
JPH044648B2 (en)
JPH08315347A (en) Thin film perpendicular magnetic recording medium
JPH0341898B2 (en)
JPH04370518A (en) Magnetic recording medium and production thereof
JPH103639A (en) Magnetic recording medium