JPH07114731A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH07114731A
JPH07114731A JP26081893A JP26081893A JPH07114731A JP H07114731 A JPH07114731 A JP H07114731A JP 26081893 A JP26081893 A JP 26081893A JP 26081893 A JP26081893 A JP 26081893A JP H07114731 A JPH07114731 A JP H07114731A
Authority
JP
Japan
Prior art keywords
film
recording medium
magnetic
magnetic fluid
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26081893A
Other languages
Japanese (ja)
Other versions
JP2833444B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26081893A priority Critical patent/JP2833444B2/en
Publication of JPH07114731A publication Critical patent/JPH07114731A/en
Application granted granted Critical
Publication of JP2833444B2 publication Critical patent/JP2833444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnetic recording medium which produces less bit errors in high-density digital recording by depositing a ferromagnetic metal by evaporation with an electron beam on a moving film, then disposing magnetic fluid in the part where the film is pulled apart by a rotary supporting body. CONSTITUTION:A high-molecular compound film 1 consisting of polyester, etc., is taken up on a film take-up shaft 4 from a film delivery shaft 3 via the rotary supporting body 2 controlled to be at a specified temp. A vapor deposition device is provided with an evaporating source vessel 5, a material 6 for vapor deposition, an accelerated electron beam 7, vapor flow 8, a mask 9, an oxygen introducing nozzle 10 and a glow discharge electrode 11. The ferromagnetic metal is deposited by evaporation with the electron beam on the moving film 1 and thereafter, the magnetic fluid 12 is arranged in the part where the film 1 is pulled apart by the rotary supporting body 2, thereby, the static electricity on the film 1 is discharged through the magnetic fluid 12 or compensated and is apparently neutralized. The film 1 is thus transported under uniform tension. The surface defects, such as wrinkles, are thereby eliminated and the recording medium which produces the less bit errors in high-density digital recording with a narrow track recording is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度磁気記録に適する
強磁性金属薄膜を磁性層とする耐久性と記録特性に優れ
た磁気記録媒体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic recording medium having a magnetic layer of a ferromagnetic metal thin film suitable for high density magnetic recording and having excellent durability and recording characteristics.

【0002】[0002]

【従来の技術】情報化社会の進展に伴い、記録すべき情
報量の増大は著しく、磁気記録についても可能な限り記
録密度を高める対応が要請され、短波長化、狭トラック
化に耐える高性能磁気記録媒体の開発が盛んになってき
ている。多くの提案がなされているが、現在実用に供さ
れているものは特開昭53−58206号公報に開示さ
れているような強磁性金属自身の酸化物で柱状微粒子の
表面が被覆された構造をもち記録特性と耐久性をバラン
ス良く改善したもので、構成元素はCo,Ni,Oから
なり(特開昭56−15014号公報)、これらの磁気
記録層を形成するのは、酸素ガスを介在させながらC
o,Co−Niを電子ビーム蒸着する方法が代表的で酸
素の導入については幾つかの提案があるが基材近傍で、
入射角規制を行う部分に近い位置が良く用いられている
(特開昭54−19199号公報、特開昭58−322
34号公報)。
2. Description of the Related Art With the progress of information society, the amount of information to be recorded is remarkably increasing, and it is required to increase the recording density of magnetic recording as much as possible. Development of magnetic recording media has been brisk. Although many proposals have been made, the one currently put to practical use is a structure in which the surface of columnar fine particles is coated with an oxide of a ferromagnetic metal itself as disclosed in JP-A-53-58206. It has a well-balanced improvement in recording characteristics and durability, and its constituent elements consist of Co, Ni, and O (JP-A-56-15014), and these magnetic recording layers are formed by oxygen gas. C while intervening
A typical method is electron beam evaporation of o, Co-Ni, and there are some proposals for introducing oxygen, but in the vicinity of the substrate,
A position close to the part for controlling the incident angle is often used (Japanese Patent Laid-Open No. 54-19199, Japanese Patent Laid-Open No. 58-322).
34 publication).

【0003】以下に従来の磁気記録媒体の製造方法につ
いて説明する。図3は従来の磁気記録媒体の製造に用い
られている蒸着装置の要部構成図である。
A conventional method of manufacturing a magnetic recording medium will be described below. FIG. 3 is a configuration diagram of a main part of a vapor deposition apparatus used for manufacturing a conventional magnetic recording medium.

【0004】図3で1はポリエステル等の高分子フィル
ムで、2は一定の温度に制御された回転支持体で、3は
フィルム送り出し軸、4はフィルム巻き取り軸、5は蒸
発源容器、6は蒸着材料、7は加速電子ビーム、8は蒸
気流、9はマスク、10は酸素導入ノズルで、11はグ
ロー放電電極である。図3の装置を用いて、磁気記録媒
体を製造する方法は以下の如くである。例えば粒状性の
表面をもったポリエチレンテレフタレート、ポリエチレ
ンナフタレート等を巻き取り系にセットし、真空排気
し、CoやCo−Ni等の蒸着材料を加速電子線により
加熱蒸発させて、接線方向から蒸着を進めマスクで遮断
する入射角(最小入射角と呼んでいる)で蒸着を完了
し、その際に最小入射角近くで酸素ガスを導入し、部分
酸化膜からなる磁気記録層の形成を回転支持体に沿った
状態で移動するフィルム上に行った後、回転支持体より
離されて静電気を見かけ上打ち消すようにグロー放電処
理されたあと巻取られることで製造される。
In FIG. 3, 1 is a polymer film such as polyester, 2 is a rotary support controlled to a constant temperature, 3 is a film feeding shaft, 4 is a film winding shaft, 5 is an evaporation source container, and 6 Is a vapor deposition material, 7 is an accelerated electron beam, 8 is a vapor flow, 9 is a mask, 10 is an oxygen introduction nozzle, and 11 is a glow discharge electrode. The method of manufacturing a magnetic recording medium using the apparatus of FIG. 3 is as follows. For example, set polyethylene terephthalate, polyethylene naphthalate, etc. having a grainy surface in a winding system, evacuate and evaporate the vapor deposition material such as Co and Co-Ni by accelerating electron beam to vapor deposit from the tangential direction. The vapor deposition is completed at an incident angle that is blocked by a mask (called the minimum incident angle), oxygen gas is introduced near the minimum incident angle at that time, and the formation of the magnetic recording layer consisting of a partial oxide film is rotatably supported. After being formed on a film that moves along the body, the film is manufactured by being separated from the rotary support, subjected to glow discharge treatment so as to apparently cancel static electricity, and then wound.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、フィルムが薄型化して、しわになりやす
くなり静電気の影響を小さくするためにグロー放電処理
を強化すると平滑面と微小部分で接着現象が起きて、高
密度ディジタル記録で、エラー発生率が不十分である媒
体しか製造できないといった問題点を有していた。
However, in the above conventional structure, when the glow discharge treatment is strengthened in order to reduce the influence of static electricity by making the film thin, it becomes easy to wrinkle, and the adhesion phenomenon occurs on the smooth surface and the minute portion. However, there is a problem that only high density digital recording can produce a medium having an insufficient error occurrence rate.

【0006】本発明は上記従来の問題点を解決するもの
で、狭トラック高密度ディジタル記録を可能にする、耐
久性と高出力特性を兼ね備えた薄型の磁気記録媒体の製
造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a method of manufacturing a thin magnetic recording medium having both durability and high output characteristics, which enables narrow track high density digital recording. To aim.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の磁気記録媒体の製造方法は、移動するフィル
ムに強磁性金属を電子ビーム蒸着した後、回転支持体よ
りフィルムを引き離す部分に、磁性流体を配するように
したものである。
In order to achieve this object, a method of manufacturing a magnetic recording medium according to the present invention is designed such that a ferromagnetic metal is electron-beam evaporated on a moving film and then the film is separated from a rotary support. , A magnetic fluid is arranged.

【0008】[0008]

【作用】この構成によって磁性層形成後において、回転
支持体から帯電したフィルムの表面電位が磁性流体を通
しての放電現象でさがることになり、且つその均一性も
良好にできるから薄型化した機械強度の弱いフィルムを
幅方向に均一な張力で巻取れるから、過剰なグロー放電
処理を行う必要がなく、微視的な接着現象をなくせるこ
とになり薄型の磁気記録媒体を再現よく製造できるよう
になる。
With this structure, after the magnetic layer is formed, the surface potential of the film charged from the rotary support is reduced by the phenomenon of discharge through the magnetic fluid, and its uniformity can be improved. Since a weak film can be wound with a uniform tension in the width direction, it is not necessary to perform excessive glow discharge treatment, microscopic adhesion phenomenon can be eliminated, and thin magnetic recording media can be manufactured with good reproducibility. .

【0009】[0009]

【実施例】【Example】

(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1において、図3と同一の構成で良い要
素は同一の番号を付与した。図1において12は磁性流
体で磁性微粒子は粒径が5〜30nmの合金粒子が好ま
しく、液体物質は真空内で用いられることから蒸気圧の
低いもので回転支持体が冷却して用いられる場合はその
温度での動粘度が5Cst(20℃)以下になる様に設
計することが好ましい。合金粒子の濃度は10〜60%
が良いが、合金粒子の代わりに酸化鉄を用いる場合は金
属イオンを吸着させる必要がある。13は磁性流体をフ
ィルムを回転支持体から処理が終わって引き離す部分に
局在化させるための隔壁でマグネット自体かマグネット
を内蔵した構造物からなるものである。14はフリーロ
ーラーである。
In FIG. 1, elements having the same configuration as in FIG. 3 are given the same numbers. In FIG. 1, reference numeral 12 denotes a magnetic fluid, and the magnetic fine particles are preferably alloy particles having a particle size of 5 to 30 nm. Since the liquid substance is used in a vacuum, the vapor pressure is low, and when the rotary support is used by cooling It is preferable to design the kinematic viscosity at that temperature to be 5 Cst (20 ° C.) or less. Alloy particle concentration is 10-60%
However, when iron oxide is used instead of alloy particles, it is necessary to adsorb metal ions. Reference numeral 13 is a partition wall for localizing the magnetic fluid to a portion where the film is separated from the rotary support after processing, and is a partition wall composed of the magnet itself or a structure incorporating the magnet. 14 is a free roller.

【0011】以下更に本実施例の効果について明確にす
るために具体的に磁気記録媒体を試作し、従来法で得ら
れたものと特性比較を行った結果について詳しく述べ
る。
In order to further clarify the effect of this embodiment, a magnetic recording medium will be concretely manufactured as a prototype, and the results of characteristics comparison with those obtained by the conventional method will be described in detail.

【0012】厚み4.1μmで、長手方向、幅方向夫々
740,890[Kg/mm2]のヤング率で、平均粗さ3
0Åのポリエチレンナフタレートフィルム(直径150
ÅのSiO2の超微粒子を平均密度20個/μm2を樹脂
固定した塗布層をあらかじめ配したものを用いた)を直
径1mの20℃に冷却した回転キャンに沿わせて巻き取
りながら酸素を導入してCoを電子ビーム蒸着して磁性
層を0.18μm形成した。蒸着後フィルムを引き離す
部分にマグネットで囲って磁性流体を配した。
The thickness is 4.1 μm, the Young's modulus is 740,890 [Kg / mm 2 ] in the longitudinal direction and the width direction, and the average roughness is 3
0Å polyethylene naphthalate film (diameter 150
Å SiO 2 ultrafine particles with an average density of 20 / μm 2 resin-fixed coating layer was used in advance) was used to wind oxygen along a rotary can of 1 m in diameter cooled to 20 ° C. Then, Co was electron-beam evaporated to form a magnetic layer of 0.18 μm. After vapor deposition, a magnetic fluid was placed in a portion where the film was separated, surrounded by a magnet.

【0013】磁性流体は磁気テープに用いられる鉄、コ
バルト・鉄等の合金微粒子を蒸気圧の低い天然油や、合
成油である高級アルキルベンゼン、高級アルキルナフタ
レン、ポリブテン等に分散したものを用いた。いずれの
材料も特に差は見られなかった。磁性流体に触れさせた
後に、弱いグロー放電をかけた場合とかけない場合につ
いて実施結果に差異は見られなかったので、後述する結
果のデータはない場合で統一し、従来例のみ強化グロー
処理と、通常グロー処理の2種類を確認した。夫々につ
いてプラズマCVD法により厚み15nmの硬質炭素膜
を形成し、更にパーフルオロステアリン酸を4nm塗布
し、反対面に厚み0.5μmのバックコート層を配し、
6.35mm幅の磁気テープにして評価した。評価は8mm
ビデオデッキを6.35mm幅の磁気テープ評価用に改造
してビット長0.24μm,トラックピッチ9μmでビ
ットエラーレートの相対比較で行った。磁気テープの長
さは100mとし、ランダムに5巻選び出して5巻の平
均値で表示した。本実施例による磁気記録媒体の特性と
比較例の磁気記録媒体の特性を(表1)に比較して示し
ている。
As the magnetic fluid, fine particles of alloys such as iron and cobalt / iron used for magnetic tape are dispersed in natural oil having a low vapor pressure, synthetic oils such as higher alkylbenzene, higher alkylnaphthalene, and polybutene. No particular difference was found in any of the materials. There was no difference in the execution results between the case where a weak glow discharge was applied and the case where it was not applied after contact with the magnetic fluid. Two types of normal glow treatment were confirmed. A hard carbon film having a thickness of 15 nm was formed on each of them, and perfluorostearic acid was applied to have a thickness of 4 nm, and a back coat layer having a thickness of 0.5 μm was provided on the opposite surface.
A magnetic tape having a width of 6.35 mm was evaluated. Evaluation is 8 mm
The video deck was modified for the evaluation of a 6.35 mm wide magnetic tape, and the bit error rate was relatively compared at a bit length of 0.24 μm and a track pitch of 9 μm. The length of the magnetic tape was 100 m, 5 rolls were randomly selected, and the average value of 5 rolls was displayed. The characteristics of the magnetic recording medium according to this example and the characteristics of the magnetic recording medium of the comparative example are shown in comparison with each other (Table 1).

【0014】[0014]

【表1】 [Table 1]

【0015】この(表1)から明らかなように、本実施
例によって製造された磁気記録媒体は、従来例がしわ
や、材料転写でビットエラーレートがばらつき、平均値
も大きいのに比し、狭トラック記録での高密度ディジタ
ル記録でビットエラーの少ないものを実現できるといっ
た優れた効果が得られる。
As is clear from this (Table 1), the magnetic recording medium manufactured according to the present example has wrinkles in the conventional example, the bit error rate varies due to material transfer, and the average value is large. The excellent effect that high-density digital recording with narrow track recording and little bit error can be realized is obtained.

【0016】以上の様に本実施例の製造方法によれば、
移動するフィルムに強磁性金属を電子ビーム蒸着した
後、回転支持体よりフィルムを引き離す部分に、磁性流
体を配することにより、フィルム上の静電気が磁性流体
を通して放電するか、補償されて見かけ上中和されて均
一な張力で搬送されることから薄くなっても皺などの表
面欠点がなくなって狭トラック記録での高密度ディジタ
ル記録でビットエラーの少ないものを実現できるといっ
た優れた効果が得られる。
As described above, according to the manufacturing method of this embodiment,
After electron beam evaporation of a ferromagnetic metal on a moving film, by placing a magnetic fluid in the part that separates the film from the rotating support, static electricity on the film is discharged through the magnetic fluid or compensated for apparent appearance. Since they are combined and transported with uniform tension, surface defects such as wrinkles are eliminated even if the thickness becomes thin, and excellent effects such as high density digital recording with narrow bit recording and few bit errors can be obtained.

【0017】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。図2は本発明の第
2の実施例の磁気記録媒体の製造方法を実施するための
磁気記録媒体の製造装置の要部構成図である。図2にお
いて図1と同一の構成要素で良い部分は同一の番号を付
与している。15は磁性流体で、16は磁性流体保持用
の磁界発生器で、17はプラズマ発生容器、18は放電
電極で、19は電源装置である。尚プラズマ発生容器内
はあらかじめ排気し、(必要に応じて連続的に排気する
こともできる)外部より放電ガスを導入できるように構
成される。上記した構成により放電状態が極めて安定に
なることから、得られる薄膜の物性も均一で良好にな
る。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a configuration diagram of essential parts of a magnetic recording medium manufacturing apparatus for carrying out the method of manufacturing a magnetic recording medium according to the second embodiment of the present invention. In FIG. 2, the same components as those in FIG. 1 are given the same numbers. Reference numeral 15 is a magnetic fluid, 16 is a magnetic field generator for holding the magnetic fluid, 17 is a plasma generating container, 18 is a discharge electrode, and 19 is a power supply device. The inside of the plasma generating container is evacuated in advance, and the discharge gas can be introduced from the outside (which can be continuously evacuated if necessary). Since the discharge state becomes extremely stable by the above-mentioned structure, the physical properties of the obtained thin film are uniform and good.

【0018】上記した構成の装置により本発明を実施し
た。実際に製造された磁気記録媒体の特性を従来例、比
較例と対比することで本発明について具体的に詳しく説
明する。
The present invention was implemented by the apparatus having the above-mentioned configuration. The present invention will be specifically described in detail by comparing the characteristics of an actually manufactured magnetic recording medium with those of a conventional example and a comparative example.

【0019】厚み6μmのポリイミドフィルム(平均粗
さ20Å、ヤング率長手600、幅650Kg/mm2)上
に平均粒子径200ÅのSiO2を平均密度50個/μ2
で塗布固定し、その上にメタンガスを用いプラズマ重合
膜を1nm(2A),3nm(2B)形成した。プラズ
マ発生容器(内容積;0.04m3)とキャン(直径5
0cm)の間を初期設定として2mmとし、磁性流体でシー
ルした実施例と、磁性流体を配さずに試作した比較例を
準備した。放電電極には20kHz、1.2〜2.1KW
を印加し、メタンガスを0.021/min,導入し排
気は実施例のみ51/secで行った。夫々に以下の条
件でCo−O垂直磁化膜を形成した。Coはマグネシア
容器内で加速電子ビームによって加熱蒸発させて、入射
角が44度から20度の範囲で入射角が44度側のマス
クの内側に酸素ガス導入ノズルを配し、0.71/mi
n導入し0.2μm蒸着した。それぞれ磁性膜の上にス
パッタリング法でダイヤモンド状硬質炭素膜を70Å形
成した後パーフルオロアラキン酸を30Å配し、0.5
μmのバックコート層を配して夫々6.35mm幅の磁気
テープに加工した。これらのテープを試験用のビデオに
よって6μトラック、ビット長0.2μのディジタル記
録を行いエラーレートを相対比較した。耐久性について
も45℃、85%RHで100パス履歴を加えた後のエ
ラーレートで評価した。本実施例による磁気記録媒体の
特性と従来磁気記録媒体の特性を(表2)に比較して示
している。
SiO 2 having an average particle diameter of 200 Å has an average density of 50 particles / μ 2 on a polyimide film having a thickness of 6 μm (average roughness 20 Å, Young's modulus length 600, width 650 kg / mm 2 ).
Was coated and fixed with, and methane gas was used to form a plasma polymerized film thereon with a thickness of 1 nm (2A) and 3 nm (2B). Plasma generating container (internal volume: 0.04m 3 ) and can (diameter 5
0 mm) was set to 2 mm as an initial setting, and an example was prepared in which the magnetic fluid was sealed and a comparative example was prepared without the magnetic fluid. 20 kHz, 1.2 to 2.1 kW for discharge electrode
Was applied, methane gas was introduced at 0.021 / min, and exhaust was performed at 51 / sec only in the example. Co-O perpendicular magnetization films were formed under the following conditions. Co is heated and evaporated by an accelerated electron beam in a magnesia container, and an oxygen gas introduction nozzle is arranged inside the mask having an incident angle in the range of 44 ° to 20 ° and an incident angle of 44 °.
n was introduced and 0.2 μm was vapor-deposited. A diamond-like hard carbon film was formed on the magnetic film by sputtering to 70 Å, and perfluoroarachidic acid was placed on 30 Å,
A magnetic coating tape having a width of 6.35 mm was prepared by providing a back coat layer having a thickness of μm. These tapes were digitally recorded with a 6 μ track and a bit length of 0.2 μ by a test video, and the error rates were compared with each other. The durability was also evaluated by the error rate after adding 100 passes history at 45 ° C. and 85% RH. The characteristics of the magnetic recording medium according to this example and the characteristics of the conventional magnetic recording medium are shown in comparison with each other (Table 2).

【0020】[0020]

【表2】 [Table 2]

【0021】この(表2)から明らかなように、本実施
例により製造された磁気記録媒体は、狭トラック条件で
の高密度ディジタル記録を良好なエラー率で行うことが
できるといった優れた効果がある。
As is clear from (Table 2), the magnetic recording medium manufactured according to this example has an excellent effect that high-density digital recording under a narrow track condition can be performed with a good error rate. is there.

【0022】実施例は磁性層を形成する前にプラズマ蒸
着する場合の効果について述べたが、磁性層の形成後に
プラズマ蒸着し、炭素膜、酸化膜、プラズマ重合膜を形
成する場合も同様に顕著な改善効果があるのは言うまで
もない。
Although the embodiment has described the effect of plasma deposition before forming the magnetic layer, the same is remarkable in the case of plasma depositing after forming the magnetic layer to form a carbon film, an oxide film and a plasma polymerized film. It goes without saying that there is a significant improvement effect.

【0023】以上のように本実施例によれば移動するフ
ィルム上にプラズマ蒸着する際プラズマ発生容器とフィ
ルムの隙間部分に磁性流体を配することで、製造された
磁気記録媒体は、狭トラック条件での高密度ディジタル
記録を良好なエラー率で行うことができるといった優れ
た効果がある。
As described above, according to the present embodiment, the magnetic recording medium manufactured by arranging the magnetic fluid in the gap between the plasma generating container and the film during plasma vapor deposition on the moving film has a narrow track condition. There is an excellent effect that high-density digital recording can be performed with a good error rate.

【0024】[0024]

【発明の効果】以上の様に本発明によれば、移動するフ
ィルムに強磁性金属を電子ビーム蒸着した後、回転支持
体よりフィルムを引き離す部分に、磁性流体を配するこ
とにより、フィルム上の静電気が磁性流体を通して放電
するか、補償されて見かけ上中和されて均一な張力で搬
送されることから薄くなってもしわなどの表面欠点がな
くなって狭トラック記録での高密度ディジタル記録でビ
ットエラーの少ないものを実現できるといった優れた効
果が得られる。
As described above, according to the present invention, after the ferromagnetic metal is electron beam evaporated on the moving film, the magnetic fluid is arranged at the portion where the film is separated from the rotary support, so that the film on the film is moved. Since static electricity is discharged through a magnetic fluid or is compensated and apparently neutralized and conveyed with uniform tension, surface defects such as wrinkles are eliminated even if it becomes thin, and bits are used for high density digital recording in narrow track recording. It is possible to obtain an excellent effect that a product with few errors can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における磁気記録媒体の
製造に用いた蒸着装置の要部拡大断面図
FIG. 1 is an enlarged cross-sectional view of a main part of a vapor deposition apparatus used for manufacturing a magnetic recording medium according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における磁気記録媒体の
製造に用いた装置の要部拡大断面図
FIG. 2 is an enlarged sectional view of an essential part of an apparatus used for manufacturing a magnetic recording medium according to a second embodiment of the present invention.

【図3】従来の磁気記録媒体の製造に用いた蒸着装置の
要部拡大断面図
FIG. 3 is an enlarged cross-sectional view of a main part of a vapor deposition apparatus used for manufacturing a conventional magnetic recording medium.

【符号の説明】[Explanation of symbols]

12 磁性流体 13 隔壁 15 磁性流体 16 保持用磁界発生器 12 magnetic fluid 13 partition wall 15 magnetic fluid 16 magnetic field generator for holding

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 移動するフィルムに強磁性金属を電子ビ
ーム蒸着した後、回転支持体よりフィルムを引き離す部
分に、磁性流体を配することを特徴とする磁気記録媒体
の製造方法。
1. A method of manufacturing a magnetic recording medium, which comprises subjecting a moving film to electron beam evaporation of a ferromagnetic metal, and then disposing a magnetic fluid in a portion where the film is separated from a rotary support.
【請求項2】 移動する磁性金属を配したフィルム上に
プラズマ蒸着する際プラズマ発生容器とフィルムの隙間
部分に磁性流体を配することを特徴とする磁気記録媒体
の製造方法。
2. A method of manufacturing a magnetic recording medium, wherein a magnetic fluid is arranged in a gap between a plasma generating container and the film when plasma-depositing on a film on which a moving magnetic metal is arranged.
JP26081893A 1993-10-19 1993-10-19 Manufacturing method of magnetic recording medium Expired - Fee Related JP2833444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26081893A JP2833444B2 (en) 1993-10-19 1993-10-19 Manufacturing method of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26081893A JP2833444B2 (en) 1993-10-19 1993-10-19 Manufacturing method of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH07114731A true JPH07114731A (en) 1995-05-02
JP2833444B2 JP2833444B2 (en) 1998-12-09

Family

ID=17353188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26081893A Expired - Fee Related JP2833444B2 (en) 1993-10-19 1993-10-19 Manufacturing method of magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2833444B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075164A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Coiling type vacuum vapor deposition method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075164A (en) * 2006-09-25 2008-04-03 Toppan Printing Co Ltd Coiling type vacuum vapor deposition method and system

Also Published As

Publication number Publication date
JP2833444B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
JPH1186275A (en) Magnetic recording medium
JPH07114731A (en) Production of magnetic recording medium
JPS6148128A (en) Manufacture of magnetic recording medium
JP3358352B2 (en) Film forming equipment
JPH0762536A (en) Film forming device
JPH10310869A (en) Production of magnetic recording medium and device for producing magnetic recording medium
JPH06231457A (en) Production of magnetic recording medium
JPH06116729A (en) Production of magnetic recording medium
JPH0817050A (en) Magnetic recording medium
JPH07192259A (en) Production of magnetic recording medium
JPH06101029A (en) Production of magnetic recording medium
JPH06333225A (en) Thin film magnetic recording medium
JPS6378336A (en) Production of magnetic recording medium
JPS63251929A (en) Production of magnetic recording medium
JPH0845052A (en) Magnetic recording medium
JPH103650A (en) Magnetic recording medium
JPH08306036A (en) Magnetic recording medium
JPH08129750A (en) Method of forming protective film and producing device for protective film
JPH09153215A (en) Production of magnetic recording medium and its producing device
JP2000049030A (en) Manufacture of magnetic recording medium
JP2004295996A (en) Method and device for manufacturing magnetic recording medium, and the magnetic recording medium
JPH06103571A (en) Production of magnetic recording medium
JPH09212857A (en) Production of magnetic recording medium
JPH08319572A (en) Plasma cvd device
JPH10255263A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees