JPH06111299A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPH06111299A
JPH06111299A JP25956692A JP25956692A JPH06111299A JP H06111299 A JPH06111299 A JP H06111299A JP 25956692 A JP25956692 A JP 25956692A JP 25956692 A JP25956692 A JP 25956692A JP H06111299 A JPH06111299 A JP H06111299A
Authority
JP
Japan
Prior art keywords
film
magnetic
recording medium
magnetic recording
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25956692A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25956692A priority Critical patent/JPH06111299A/en
Publication of JPH06111299A publication Critical patent/JPH06111299A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a recording medium which can be repeatedly recorded at high density on a narrowed track with excellent S/N ratio by irradiating a magnetic film with carbon atoms to form a diamondlike hard carbon film adhering rigidly to a magnetic recording layer. CONSTITUTION:A raw fabric 6 having a magnetic thin film is generated on a polyester film by an electron beam depositing method. The magnetic film is irradiated with active carbon atoms from a carbon atom irradiating nozzle 10 while winding fabric 6 with a cooled rotary support 9. Thus, a diamondlike hard carbon film with carbon atoms is formed on the magnetic layer. Thus, the carbon film adhering rigidly to a magnetic recording layer is provided to obtain in a large quantity recording media which can be repeatedly recorded and reproduced at high density while holding the sliding surface of a head in an excellent state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度磁気記録に適する
強磁性金属薄膜を磁性層とする耐久性に優れた磁気記録
媒体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic recording medium having a magnetic layer of a ferromagnetic metal thin film suitable for high density magnetic recording and having excellent durability.

【0002】[0002]

【従来の技術】情報化社会の進展に伴い、記録すべき情
報量の増大は著しく、磁気記録についても可能な限り記
録密度を高める対応が要請され、短波長化,狭トラック
化に耐える高性能磁気記録媒体の開発が盛んになってき
ている。多くの提案がなされているが、Co−Ni−O
斜め蒸着膜、Co−O垂直磁化膜に代表される強磁性金
属薄膜を磁性層とする磁気記録媒体が有望である。
2. Description of the Related Art With the progress of information society, the amount of information to be recorded has remarkably increased, and it is required to increase the recording density of magnetic recording as much as possible. Development of magnetic recording media has been brisk. Although many proposals have been made, Co-Ni-O
A magnetic recording medium having a ferromagnetic metal thin film represented by an obliquely evaporated film or a Co—O perpendicular magnetization film as a magnetic layer is promising.

【0003】以下に従来の磁気記録媒体について説明す
る。図3は従来の磁気記録媒体の拡大断面を示すもので
ある。図3において1はポリエチレンテレフタレート、
ポリエチレンナフタレート等の高分子フィルムでSiO
2,ZnO等の無機超微粒子やイミド等の有機超微粒子
等を分散塗布したいわゆる微粒子塗布層を配したものが
用いられることが多い。2は連続的に変化する入射角で
の斜め蒸着で形成されるCo−Ni−Oの単層または多
層構成の強磁性金属薄膜、Co−Cr,Co−Oの傾斜
蒸着による垂直磁化膜等の磁性層で、3はダイヤモンド
状硬質炭素膜等の保護膜、4は脂肪酸、フッ素オイル等
の潤滑層で、5は平滑性の良好な、特に薄い磁気テープ
に良くみられるバックコート層である。以上のような構
成の磁気記録媒体において磁性層の形成は、回転キャン
や回転ベルトに沿って移動する、別工程にて溶液塗布法
で微粒子塗布層を形成された高分子フィルム上に酸素雰
囲気でCo,Co−Ni等をある範囲の入射角で電子ビ
ーム蒸着することによる場合が多い。硬質炭素膜は主に
ディスク状媒体において活発に利用されていて、まだ磁
気テープへの具体的な応用事例は少ないが、製造に当た
っては磁気テープに於いても磁気ディスクに於いて開示
されている技術を、そのままか若干の修正を加える程度
で当てはめることが可能である。プラズマCVD法によ
る製膜(例えば特開昭61−54036号公報)電子ビ
ーム蒸着法(例えば特開昭61−224140号公
報)、スパッタリング法(例えば特開昭62−2644
32号公報)クラスターイオン蒸着法(例えば特開昭6
4−33722号公報)等による製膜が検討されてきて
いる。これらに共通しているのは炭素イオンや電子のエ
ネルギーをある程度高めている点であろう。
A conventional magnetic recording medium will be described below. FIG. 3 shows an enlarged cross section of a conventional magnetic recording medium. In FIG. 3, 1 is polyethylene terephthalate,
Polymer film such as polyethylene naphthalate
2. In many cases, a so-called fine particle coating layer in which inorganic ultrafine particles such as ZnO or organic ultrafine particles such as imide are dispersed and applied is used. 2 is a ferromagnetic metal thin film of a single layer or a multilayer structure of Co—Ni—O formed by oblique vapor deposition with a continuously changing incident angle, a perpendicular magnetization film by gradient vapor deposition of Co—Cr, Co—O, etc. A magnetic layer, 3 is a protective film such as a diamond-like hard carbon film, 4 is a lubricating layer such as fatty acid and fluorine oil, and 5 is a back coat layer having good smoothness, which is often seen in thin magnetic tapes. In the magnetic recording medium having the above-described structure, the magnetic layer is formed by moving along a rotating can or a rotating belt in a separate process in a solution coating method to form a fine particle coating layer on a polymer film in an oxygen atmosphere. In many cases, Co, Co-Ni, etc. are deposited by electron beam evaporation at a certain incident angle. The hard carbon film is mainly used actively in the disk-shaped medium, and there are few concrete application examples to the magnetic tape, but in manufacturing, the technology disclosed in the magnetic tape and the magnetic disk is disclosed. Can be applied as is or with a slight modification. Film formation by plasma CVD method (for example, JP-A-61-54036), electron beam evaporation method (for example, JP-A-61-224140), sputtering method (for example, JP-A-62-2644)
No. 32) Cluster Ion Vapor Deposition Method (for example, Japanese Patent Laid-Open Publication No.
Film formation according to JP-A-4-33722) has been studied. What they have in common is that they raise the energy of carbon ions and electrons to some extent.

【0004】以上のように構成された磁気記録媒体は、
ダイヤモンド状硬質炭素膜の硬さと相手との摩擦特性に
より、磁気ヘッド、テープ間の高速相対速度下での繰り
返し摺動にかなり耐えることができる。それでも不十分
な場合は更に、強磁性金属薄膜との接着性向上を図り、
ビデオテープとしてのスチル耐久性を改善するためにS
iO2膜を介してアモルファスカーボン膜を配したもの
(特開昭61−242323号公報)有機プラズマ重合
膜を介してアモルファスカーボン膜を配したもの(特開
昭62−167616号公報)炭化ホー素膜を介して炭
素膜を配したもの(特開昭64−79932号公報)等
が提案されている。
The magnetic recording medium having the above structure is
Due to the hardness of the diamond-like hard carbon film and the frictional characteristics with its counterpart, it is possible to withstand repeated sliding between the magnetic head and the tape at a high relative speed. If it is still insufficient, further improve the adhesiveness with the ferromagnetic metal thin film,
S to improve still durability as a video tape
Amorphous carbon film disposed through an iO 2 film (JP-A-61-242323) Amorphous carbon film disposed through an organic plasma polymerized film (JP-A-62-167616) One in which a carbon film is arranged through a film (Japanese Patent Laid-Open No. 64-79932) is proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、炭素膜が薄くなると耐久性が十分ではな
くなり、その現象は磁気記録媒体の厚みが薄くなるほど
顕著になる。特に狭トラック化による記録密度向上の為
には高出力で耐久性の良好な磁気記録媒体が必要であ
り、炭素膜の膜厚を厚くして耐久性を向上させてもS/
N比が低下することから高密度化が不十分となるといっ
た問題点を有していた。
However, in the above conventional structure, the durability becomes insufficient as the carbon film becomes thinner, and the phenomenon becomes more remarkable as the thickness of the magnetic recording medium becomes thinner. In particular, in order to improve the recording density by narrowing the track, a magnetic recording medium with high output and good durability is required. Even if the carbon film is thickened to improve the durability, S /
There is a problem that the density is insufficient because the N ratio is lowered.

【0006】本発明は上記従来の問題点を解決するもの
で、狭トラック高密度記録を可能にする、耐久性と高出
力特性を兼ね備えた薄型の磁気記録媒体の製造方法を提
供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a method of manufacturing a thin magnetic recording medium having both durability and high output characteristics, which enables narrow track high density recording. And

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の磁気記録媒体の製造方法は、磁性薄膜上に炭
素原子によりダイヤモンド状硬質炭素膜を形成するもの
である。
In order to achieve this object, a method of manufacturing a magnetic recording medium according to the present invention is to form a diamond-like hard carbon film on a magnetic thin film with carbon atoms.

【0008】[0008]

【作用】この構成によって磁性層と炭素が強固に付着す
ると共に炭素膜自体の機械特性が硬さだけでなく、微視
的に均一性が優れることから炭素膜の厚みを薄くしても
十分な耐久性と高S/N比を兼ね備えた薄型の磁気記録
媒体を再現よく製造できる。
With this structure, the magnetic layer is firmly adhered to the carbon, and the mechanical properties of the carbon film itself are not only hard but also microscopically excellent in uniformity. A thin magnetic recording medium having both durability and a high S / N ratio can be reproducibly manufactured.

【0009】[0009]

【実施例】【Example】

(実施例1)以上の本発明の一実施例について、図面を
参照しながら説明する。
(Embodiment 1) One embodiment of the present invention will be described with reference to the drawings.

【0010】図1において、6は保護膜形成用の原反で
ポリエステルフィルム(表面処理して微細凹凸形状を付
与したものを含む)上に電子ビーム蒸着法で磁性薄膜を
記録層として構成したもので、記録層は斜め磁化,垂直
磁化、両者の積層体等いずれでもよい。7は原反の送り
出し軸で8は保護膜を形成した状態の原反の巻取り軸で
ある。この図は保護膜形成のみを行うことを目的とした
装置の要部構成を示すものであるが、潤滑層の形成を真
空中で保護膜形成直後に行っても良いのは勿論である。
9は回転支持体で、冷却可能な構成とするのが好まし
い。10は炭素原子の照射ノズルで、炭化水素のプラズ
マや炭素電極間のアーク放電から炭素イオンを引き出し
て電子シャワーで中性化して荷電粒子と磁場で分離して
活性な炭素原子を磁性薄膜表面に差し向けるように構成
すれば良いがこれに限るものでないことは勿論である。
In FIG. 1, reference numeral 6 is a raw material for forming a protective film, in which a magnetic thin film is formed as a recording layer by an electron beam evaporation method on a polyester film (including one having a surface treatment to give fine irregularities). The recording layer may be any of oblique magnetization, perpendicular magnetization, a laminated body of both. Reference numeral 7 is a feed-out shaft for the original fabric, and 8 is a take-up shaft for the original fabric with a protective film formed thereon. Although this figure shows the main configuration of the apparatus for the purpose of forming only the protective film, it goes without saying that the lubricating layer may be formed in vacuum immediately after forming the protective film.
Reference numeral 9 denotes a rotary support, which preferably has a structure capable of cooling. Reference numeral 10 is a carbon atom irradiation nozzle, which extracts carbon ions from hydrocarbon plasma or arc discharge between carbon electrodes, neutralizes them with an electron shower, separates them with charged particles and a magnetic field, and activates active carbon atoms on the magnetic thin film surface. It may be configured to be directed, but it goes without saying that it is not limited to this.

【0011】以下更に本実施例の効果について明確にす
るために具体的に磁気記録媒体を試作し、従来法で得ら
れたものと特性比較を行った結果について詳しく述べ
る。
In order to further clarify the effect of this embodiment, a magnetic recording medium will be concretely manufactured as a prototype, and the results of characteristics comparison with those obtained by the conventional method will be described in detail.

【0012】厚み6.8μmで、長手方向,幅方向夫々
540、590[Kg/mm2]のヤング率で、平均粗さ3
0Åのポリエチレンテレフタレートフィルム(直径15
0ÅのSiO2の超微粒子を平均密度20個/μm2を樹
脂固定した塗布層をあらかじめ配したものを用いた)を
直径1mの20℃に冷却した回転キャンに沿わせて巻き
取りながら酸素を導入してCoを電子ビーム蒸着して磁
性層を0.18μ形成した。磁性層のタイプとして入射
角40〜12度の成分で得たいわゆる垂直磁化膜(タイ
プa)、入射角90〜35度の成分で得たいわゆる斜め
蒸着膜(タイプb)の2種類を準備した。磁性層の上
に、炭素原子によって15Å/secでダイヤモンド状
硬質炭素膜を70Å形成したものと、同じくダイヤモン
ド状硬質炭素膜を120Å形成したものを準備した。従
来例としてメタンガスを高周波放電でイオン化して炭素
膜を形成するプラズマCDV法でダイヤモンド状炭素膜
を120Å配したものと220Å配したものを準備し
た。それぞれ炭素膜の上に更に潤滑剤としてパーフルオ
ロポリエーテルを40Å溶液塗布法で配し、バックコー
ト層を0.45μm形成し8mm幅の磁気テープを試作し
て特性比較した。夫々の磁気テープの特性比較は、ハイ
バンド8ミリビデオデッキを改造して記録波長0.47
μm,トラックピッチ9μmでS/N比の相対比較で行
った。磁気テープの長さは100mとし、ランダムに5
巻選び出して5巻の平均値で表示した。スチル特性はテ
ンションを25gに増加させて40℃、5%RHで比較
した。本実施例による磁気記録媒体の特性と比較例の磁
気記録媒体の特性を(表1)に比較して示している。
The thickness is 6.8 μm, the Young's modulus is 540 and 590 [Kg / mm 2 ] in the longitudinal and width directions, respectively, and the average roughness is 3
0Å polyethylene terephthalate film (diameter 15
Using 0 Å ultrafine particles of SiO 2 with an average density of 20 particles / μm 2 resin-fixed coating layer was placed in advance), the oxygen was wound up along a rotary can cooled to 20 ° C. with a diameter of 1 m. Then, Co was electron beam evaporated to form a magnetic layer of 0.18 μm. Two types of magnetic layers were prepared: a so-called perpendicular magnetization film (type a) obtained with a component having an incident angle of 40 to 12 degrees and a so-called oblique vapor deposition film (type b) obtained with a component having an incident angle of 90 to 35 degrees. . On the magnetic layer, a diamond-like hard carbon film was formed with carbon atoms at a rate of 15 Å / sec to 70 Å and a diamond-like hard carbon film was formed on the magnetic layer to be 120 Å. As a conventional example, 120 Å and 120 Å diamond-like carbon films were prepared by a plasma CDV method in which methane gas was ionized by high frequency discharge to form a carbon film. Perfluoropolyether as a lubricant was further placed on each carbon film by a 40 Å solution coating method to form a back coat layer of 0.45 μm, and an 8 mm wide magnetic tape was experimentally manufactured to compare the characteristics. To compare the characteristics of each magnetic tape, a recording wavelength of 0.47 was obtained by modifying a high-band 8 mm video deck.
.mu.m and track pitch 9 .mu.m were used for relative comparison of S / N ratio. The length of the magnetic tape is 100m, and it is 5 randomly.
A roll was selected and displayed as an average value of 5 rolls. The still characteristics were compared at 40 ° C. and 5% RH by increasing the tension to 25 g. The characteristics of the magnetic recording medium according to this example and the characteristics of the magnetic recording medium of the comparative example are shown in comparison with each other (Table 1).

【0013】[0013]

【表1】 [Table 1]

【0014】この(表1)から明らかなように、本実施
例によって製造された磁気記録媒体は、狭トラック記録
での高密度記録で耐久性と高いS/N比を実現できると
いった優れた効果が得られる。
As is clear from (Table 1), the magnetic recording medium manufactured according to the present example has an excellent effect of achieving durability and high S / N ratio in high density recording in narrow track recording. Is obtained.

【0015】以上の様に本実施例の製造方法によれば、
磁性薄膜上に炭素原子によりダイヤモンド状硬質炭素膜
を形成することで狭トラック化した高密度記録で優れた
S/N比を繰り返し使用においても安定に保持しうる磁
気記録媒体を再現良く大量に得ることができる。
As described above, according to the manufacturing method of this embodiment,
By forming a diamond-like hard carbon film with carbon atoms on a magnetic thin film, it is possible to obtain a large number of magnetic recording media that can stably maintain excellent S / N ratio even in repeated use in a narrow track and high density recording with good reproducibility. be able to.

【0016】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。図2は本発明の第
2の実施例の磁気記録媒体の製造方法を実施するための
磁気記録媒体の製造装置の要部構成図である。図2にお
いて図1と同一の構成要素で良い部分は同一の番号を付
与している。炭素原子照射ノズルと同様な構成の水素原
子照射ノズルを隣接配設した装置を用いれば良い。図2
において11は炭素原子照射ノズルで12は水素原子照
射ノズルである。照射領域は基本的に水素原子の照射領
域が炭素原子照射領域と同じか広くなる様に構成するの
が好ましい。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a configuration diagram of essential parts of a magnetic recording medium manufacturing apparatus for carrying out the method of manufacturing a magnetic recording medium according to the second embodiment of the present invention. In FIG. 2, the same components as those in FIG. 1 are given the same numbers. An apparatus in which hydrogen atom irradiation nozzles having the same structure as the carbon atom irradiation nozzles are arranged adjacent to each other may be used. Figure 2
11 is a carbon atom irradiation nozzle and 12 is a hydrogen atom irradiation nozzle. It is preferable that the irradiation area is basically configured such that the irradiation area of hydrogen atoms is the same as or wider than the irradiation area of carbon atoms.

【0017】以下更に本実施例の効果について明確にす
るために具体的に磁気記録媒体を試作し、従来法で得ら
れたものと特性比較を行った結果について詳しく述べ
る。
In order to further clarify the effect of this embodiment, a magnetic recording medium will be concretely manufactured as a prototype, and the results of characteristics comparison with those obtained by the conventional method will be described in detail.

【0018】厚み6.8μmで、長手方向,幅方向夫々
540、590[Kg/mm2]のヤング率で、平均粗さ3
0Åのポリエチレンテレフタレートフィルム(直径15
0ÅのSiO2の超微粒子を平均密度20個/μm2を樹
脂固定した塗布層をあらかじめ配したものを用いた)を
直径1mの20℃に冷却した回転キャンに沿わせて巻き
取りながら酸素を導入してCoを電子ビーム蒸着して磁
性層を0.18μ形成した。磁性層のタイプとして入射
角40〜12度の成分で得たいわゆる垂直磁化膜で実施
した。磁性層の上に、炭素原子と水素原子によってダイ
ヤモンド状硬質炭素膜を70Å形成した。
With a thickness of 6.8 μm, Young's modulus of 540 and 590 [Kg / mm 2 ] in the longitudinal and width directions, respectively, and an average roughness of 3
0Å polyethylene terephthalate film (diameter 15
O 2 ultrafine particles of SiO 2 with an average density of 20 particles / μm 2 were fixed on the resin was used in advance.) Was wound up along a rotary can cooled to 20 ° C. with a diameter of 1 m to collect oxygen. Then, Co was electron beam evaporated to form a magnetic layer of 0.18 μm. As the type of the magnetic layer, a so-called perpendicular magnetization film obtained with a component having an incident angle of 40 to 12 degrees was used. A diamond-like hard carbon film of 70Å was formed on the magnetic layer by carbon atoms and hydrogen atoms.

【0019】炭素原子を2×1018原子/cm2,水素原
子を7×1016原子/cm2、照射して形成した(テープ
2a),炭素原子を6×1018原子/cm2,水素原子を
4×1016原子/cm2、照射して形成した(テープ2
b),炭素原子を6×1017原子/cm2,水素原子を4
×1016原子/cm2、照射して形成した(テープ2c)
の3条件で実施した。
Carbon atoms were formed by irradiation at 2 × 10 18 atoms / cm 2 and hydrogen atoms at 7 × 10 16 atoms / cm 2 (tape 2a), carbon atoms at 6 × 10 18 atoms / cm 2 , hydrogen. Atoms were formed by irradiation with 4 × 10 16 atoms / cm 2 (Tape 2
b), carbon atoms 6 × 10 17 atoms / cm 2 , hydrogen atoms 4
× 10 16 atoms / cm 2 , formed by irradiation (Tape 2c)
It carried out on 3 conditions of.

【0020】従来例としてメタンガスを高周波放電でイ
オン化して炭素膜を形成するプラズマCVD法でダイヤ
モンド状炭素膜を120Å配したものと220Å配した
ものを準備した。それぞれ炭素膜の上に更に潤滑剤とし
てパーフルオロポリエーテルを40Å溶液塗布法で配
し、バックコート層を0.45μm形成し8mm幅の磁気
テープを試作して特性比較した。夫々の磁気テープの特
性比較は、ハイバンド8ミリビデオデッキを改造して5
μトラック、ビット長0.2μのディジタル記録を行い
エラーレートを相対比較した。耐久性についても5℃,
80%RHで200パス履歴を加えた後のエラーレート
で評価した。
As a conventional example, 120 Å and 220 Å of diamond-like carbon film were prepared by plasma CVD method in which methane gas was ionized by high frequency discharge to form a carbon film. Perfluoropolyether as a lubricant was further placed on each of the carbon films by a 40 Å solution coating method to form a back coat layer of 0.45 μm, and an 8 mm wide magnetic tape was manufactured as a prototype and the characteristics were compared. To compare the characteristics of each magnetic tape, modify the high-band 8mm VCR
Digital recording was performed with a μ track and a bit length of 0.2 μ, and relative error rates were compared. Durability is 5 ℃,
The error rate was evaluated after adding a 200-pass history at 80% RH.

【0021】本実施例による磁気記録媒体の特性と従来
磁気記録媒体の特性を(表2)に比較して示している。
The characteristics of the magnetic recording medium according to this embodiment and the characteristics of the conventional magnetic recording medium are shown in comparison with each other (Table 2).

【0022】[0022]

【表2】 [Table 2]

【0023】この(表2)から明らかなように、本実施
例による磁気記録媒体は、狭トラック条件での高密度デ
ィジタル記録を良好なエラー率で行うことができるとい
った優れた効果がある。
As is clear from (Table 2), the magnetic recording medium according to the present example has an excellent effect that high-density digital recording can be performed with a good error rate under a narrow track condition.

【0024】以上のように本実施例によれば磁性膜上に
炭素原子と水素原子によりダイヤモンド状硬質炭素膜を
形成することで炭素膜と磁性膜の付着強度が水素結合に
よって更に強固になり、微小部分でも均一で、ダイヤモ
ンド構造をとる結晶が多く占めるようになり薄く構成し
ても優れた保護効果を持ち、安定なS/N比を保ち、狭
トラックでのディジタル記録で良好なエラー率をくり返
し使用でも得ることができる磁気記録媒体が製造可能に
なる。
As described above, according to this embodiment, by forming a diamond-like hard carbon film on the magnetic film by carbon atoms and hydrogen atoms, the bond strength between the carbon film and the magnetic film is further strengthened by hydrogen bonding. Even in a small area, crystals with a diamond structure occupy a lot, and even if it is made thin, it has an excellent protective effect, maintains a stable S / N ratio, and has a good error rate in digital recording in narrow tracks. A magnetic recording medium which can be obtained by repeated use can be manufactured.

【0025】(実施例3)以下本発明の第3の実施例に
ついて説明する。本発明の第3の実施例の磁気記録媒体
の製造方法を実施するために用いた磁気記録媒体の製造
装置は基本的に図2に示した物であって、炭素原子照射
ノズルと同様な構成の窒素原子照射ノズルを隣接配設し
た装置を用いれば良い。
(Third Embodiment) A third embodiment of the present invention will be described below. The apparatus for manufacturing a magnetic recording medium used to carry out the method for manufacturing a magnetic recording medium of the third embodiment of the present invention is basically the one shown in FIG. 2, and has the same structure as the carbon atom irradiation nozzle. A device in which the nitrogen atom irradiation nozzles are arranged adjacent to each other may be used.

【0026】照射領域は基本的に窒素原子の照射領域が
炭素原子照射領域と同じか広くなる様に構成するのが好
ましい。
It is preferable that the irradiation area of the nitrogen atom is basically the same as or wider than the irradiation area of the carbon atom.

【0027】炭素と窒素の原子比率は窒素が炭素の0.
5〜4%の範囲が好ましいことからその範囲で実施する
のが望ましい。0.5%以下では後述する改善効果が少
なく、4%以上では膜がもろくなるためと推定されるヘ
ッドへの異物付着が見られる様になるからである。
The atomic ratio of carbon to nitrogen is such that nitrogen is 0.
Since the range of 5 to 4% is preferable, it is desirable to carry out in that range. This is because if it is 0.5% or less, the improvement effect described later is small, and if it is 4% or more, foreign matter adheres to the head, which is presumed to be due to the film becoming brittle.

【0028】以下更に本実施例の効果について明確にす
るために具体的に磁気記録媒体を試作し、従来法で得ら
れたものと特性比較を行った結果について詳しく述べ
る。
In order to further clarify the effect of this embodiment, a magnetic recording medium will be concretely produced as a prototype and the results of characteristics comparison with those obtained by the conventional method will be described in detail.

【0029】厚み5.5μmで、長手方向,幅方向夫々
940、990[Kg/mm2]のヤング率で、平均粗さ3
0Åのアラミドフィルム(直径150ÅのSiO2の超
微粒子を平均密度20個/μm2を樹脂固定した塗布層
をあらかじめ配したものを用いた)を直径1mの20℃
に冷却した回転キャンに沿わせて巻き取りながら酸素を
導入してCoを電子ビーム蒸着して磁性層を0.18μ
形成した。磁性層のタイプとして入射角40〜12度の
成分で得たいわゆる垂直磁化膜で実施した。磁性層の上
に、炭素原子と窒素原子によってダイヤモンド状硬質炭
素膜を70Å形成した。
With a thickness of 5.5 μm, Young's moduli of 940 and 990 [Kg / mm 2 ] in the longitudinal and width directions, respectively, and an average roughness of 3
A 0 Å aramid film (using a coating layer of 150 Å diameter SiO 2 ultrafine particles having an average density of 20 particles / μm 2 fixed on the resin in advance) at 20 ° C.
Oxygen was introduced while winding along the cooled rotating can, and Co was electron beam evaporated to form a magnetic layer of 0.18 μm.
Formed. As the type of the magnetic layer, a so-called perpendicular magnetization film obtained with a component having an incident angle of 40 to 12 degrees was used. A diamond-like hard carbon film of 70Å was formed on the magnetic layer by carbon atoms and nitrogen atoms.

【0030】炭素原子を2×1019原子/cm2,水素原
子を1.6×1017原子/cm2、照射して形成した(テ
ープ3a),炭素原子を6×1018原子/cm2,窒素原
子を9×1016原子/cm2、照射して形成した(テープ
3b),炭素原子を6×1017原子/cm2,水素原子を
2×1016原子/cm2、照射して形成した(テープ3
c)の3条件で実施した。
It was formed by irradiating carbon atoms at 2 × 10 19 atoms / cm 2 and hydrogen atoms at 1.6 × 10 17 atoms / cm 2 (tape 3a), and carbon atoms at 6 × 10 18 atoms / cm 2. Formed by irradiating nitrogen atoms at 9 × 10 16 atoms / cm 2 (tape 3b), irradiating carbon atoms at 6 × 10 17 atoms / cm 2 , and hydrogen atoms at 2 × 10 16 atoms / cm 2 . Formed (tape 3
It carried out on 3 conditions of c).

【0031】従来例としてメタンガスを高周波放電でイ
オン化して炭素膜を形成するプラズマCVD法でダイヤ
モンド状炭素膜を120Å配したものと220Å配した
ものを準備した。それぞれ炭素膜の上に更に潤滑剤とし
てパーフルオロポリエーテルを40Å溶液塗布法で配
し、バックコート層を0.45μm形成し8mm幅の磁気
テープを試作して特性比較した。夫々の磁気テープの特
性比較は、ハイバンド8ミリビデオデッキを改造して5
μトラック、ビット長0.2μのディジタル記録を行い
エラーレートを相対比較した。耐久性についても45
℃,10%RHで130パス履歴を加えた後のエラーレ
ートで評価した。
As a conventional example, 120 Å and 220 Å diamond-like carbon films were prepared by a plasma CVD method in which methane gas was ionized by high frequency discharge to form a carbon film. Perfluoropolyether as a lubricant was further placed on each of the carbon films by a 40 Å solution coating method to form a back coat layer of 0.45 μm, and an 8 mm wide magnetic tape was manufactured as a prototype and the characteristics were compared. To compare the characteristics of each magnetic tape, modify the high-band 8mm VCR
Digital recording was performed with a μ track and a bit length of 0.2 μ, and relative error rates were compared. Durability is also 45
The error rate was evaluated after adding 130 pass histories at 10 ° C and 10% RH.

【0032】本実施例による磁気記録媒体の特性と従来
磁気記録媒体の特性を(表3)に比較して示している。
The characteristics of the magnetic recording medium according to this embodiment and the characteristics of the conventional magnetic recording medium are shown in comparison with each other (Table 3).

【0033】[0033]

【表3】 [Table 3]

【0034】この(表3)から明らかなように、本実施
例による磁気記録媒体は、狭トラック条件での高密度デ
ィジタル記録を良好なエラー率で行うことができるとい
った優れた効果がある。
As is clear from (Table 3), the magnetic recording medium according to the present example has an excellent effect that high-density digital recording under a narrow track condition can be performed with a good error rate.

【0035】以上のように本実施例によれば磁性膜上に
炭素原子と窒素原子によりダイヤモンド状硬質炭素膜を
形成することで炭素膜と磁性膜の付着強度が強固にな
り、微小部分でも均一で、ダイヤモンド構造をとる結晶
が少なくても硬さがでるようになり薄く構成しても優れ
た保護効果を持ち、安定なS/N比を保ち、狭トラック
でのディジタル記録で良好なエラー率を繰り返し使用で
も得ることができる磁気記録媒体が製造可能になる。
As described above, according to this embodiment, the diamond-like hard carbon film is formed on the magnetic film by the carbon atoms and the nitrogen atoms, so that the adhesion strength between the carbon film and the magnetic film is strengthened, and even the minute portion is uniform. Thus, even if there are few crystals having a diamond structure, the hardness can be obtained, and even if it is made thin, it has an excellent protective effect, maintains a stable S / N ratio, and has a good error rate in digital recording in a narrow track. It becomes possible to manufacture a magnetic recording medium which can be obtained by repeatedly using.

【0036】以上のように第1〜第3の実施例では磁気
テープで実施した例について詳しく説明したが、保護膜
を必要とする磁気ディスクや光ディスク等についても同
様な効果を得られるものである。又、磁性薄膜上に直接
ダイヤモンド状硬質炭素膜を形成したが、公知のプラズ
マ重合処理等の前処理と組み合わせてもよい。
As described above, in the first to third embodiments, the examples using the magnetic tape have been described in detail. However, the same effect can be obtained for a magnetic disk or an optical disk requiring a protective film. . Although the diamond-like hard carbon film was formed directly on the magnetic thin film, it may be combined with a known pretreatment such as plasma polymerization.

【0037】[0037]

【発明の効果】以上の様に本発明によれば、磁性膜上に
炭素原子によりダイヤモンド状硬質炭素膜を形成するこ
とで狭トラック化した高密度記録で優れたS/N比を繰
り返し使用においても安定に保持しうる磁気記録媒体を
再現良く大量に得ることができる。
As described above, according to the present invention, by forming a diamond-like hard carbon film with carbon atoms on a magnetic film, an excellent S / N ratio can be repeatedly used in high density recording with a narrow track. It is possible to obtain a large number of magnetic recording media which can be stably held with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に用いた磁気記録媒体製
造装置の要部拡大断面図
FIG. 1 is an enlarged sectional view of an essential part of a magnetic recording medium manufacturing apparatus used in a first embodiment of the present invention.

【図2】本発明の第2の実施例に用いた磁気記録媒体製
造装置の要部拡大断面図
FIG. 2 is an enlarged cross-sectional view of an essential part of a magnetic recording medium manufacturing apparatus used in a second embodiment of the present invention.

【図3】従来の磁気記録媒体の拡大断面図FIG. 3 is an enlarged sectional view of a conventional magnetic recording medium.

【符号の説明】[Explanation of symbols]

6 原反 10,11 炭素原子照射ノズル 12 水素原子照射ノズル 6 Raw fabric 10, 11 Carbon atom irradiation nozzle 12 Hydrogen atom irradiation nozzle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁性薄膜上に炭素原子によりダイヤモン
ド状硬質炭素膜を形成する磁気記録媒体の製造方法。
1. A method of manufacturing a magnetic recording medium, comprising forming a diamond-like hard carbon film with carbon atoms on a magnetic thin film.
【請求項2】 磁性薄膜上に炭素原子と水素原子により
ダイヤモンド状硬質炭素膜を形成する磁気記録媒体の製
造方法。
2. A method of manufacturing a magnetic recording medium, wherein a diamond-like hard carbon film is formed on a magnetic thin film by carbon atoms and hydrogen atoms.
【請求項3】 磁性薄膜上に炭素原子と窒素原子により
ダイヤモンド状硬質炭素膜を形成する磁気記録媒体の製
造方法。
3. A method of manufacturing a magnetic recording medium, wherein a diamond-like hard carbon film is formed on a magnetic thin film by carbon atoms and nitrogen atoms.
JP25956692A 1992-09-29 1992-09-29 Manufacture of magnetic recording medium Pending JPH06111299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25956692A JPH06111299A (en) 1992-09-29 1992-09-29 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25956692A JPH06111299A (en) 1992-09-29 1992-09-29 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH06111299A true JPH06111299A (en) 1994-04-22

Family

ID=17335909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25956692A Pending JPH06111299A (en) 1992-09-29 1992-09-29 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH06111299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096918B2 (en) 2004-11-19 2015-08-04 Nippon Steel & Sumitomo Metal Corporation Facility for production of high strength steel sheet or hot dip zinc coated high strength steel sheet excellent in elongation and hole expandability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096918B2 (en) 2004-11-19 2015-08-04 Nippon Steel & Sumitomo Metal Corporation Facility for production of high strength steel sheet or hot dip zinc coated high strength steel sheet excellent in elongation and hole expandability

Similar Documents

Publication Publication Date Title
US5798135A (en) Method for producing a magnetic recording medium having a carbon protective layer
JP2563425B2 (en) Method of manufacturing magnetic recording medium
JPH06111299A (en) Manufacture of magnetic recording medium
JP3208972B2 (en) Magnetic recording media
JP2951892B2 (en) Magnetic recording media
JP3687117B2 (en) Magnetic recording medium and method for manufacturing the same
JP2703359B2 (en) Magnetic recording medium and method of manufacturing the same
JPH06231457A (en) Production of magnetic recording medium
JP2583957B2 (en) Magnetic recording media
JP2594380B2 (en) Magnetic recording media
JP3317054B2 (en) Manufacturing method of magnetic recording medium
JP2001344736A (en) Magnetic recording medium and magnetic recording method
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH0757254A (en) Production of magnetic recording medium
JPH06111271A (en) Magnetic recording medium and its manufacture
JPH01211235A (en) Manufacture of magnetic recording medium
JP2568643B2 (en) Manufacturing method of magnetic recording medium
JPH06251363A (en) Production of magnetic recording medium
JPH06333225A (en) Thin film magnetic recording medium
JPH06195671A (en) Magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JP2006048840A (en) Magnetic recording medium, its manufacturing method and recording and reproducing method of magnetic recording medium
JPH02282916A (en) Magnetic recording medium
JP2004039078A (en) Magnetic recording medium
JPH07114731A (en) Production of magnetic recording medium