JPH01189030A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH01189030A
JPH01189030A JP1296488A JP1296488A JPH01189030A JP H01189030 A JPH01189030 A JP H01189030A JP 1296488 A JP1296488 A JP 1296488A JP 1296488 A JP1296488 A JP 1296488A JP H01189030 A JPH01189030 A JP H01189030A
Authority
JP
Japan
Prior art keywords
plasma
film
magnetic recording
recording medium
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1296488A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1296488A priority Critical patent/JPH01189030A/en
Publication of JPH01189030A publication Critical patent/JPH01189030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To speed up production by forming a thin ferromagnetic film of a Co-N or Fe-N system by plasma decomposition of metal dialkyl amide. CONSTITUTION:Vapor of the metal dialkyl amide is introduced through a gas introducing hole 6 into a vessel and plasma is induced by the high frequency impressed to a coil 7 from the outside to form the thin ferromagnetic film of the Co-N or Fe-N system as the resulted product of the decomposition reaction. The saturation magnetic density is optimized by increasing the power of the plasma to adequately change the ratio of the Co and the N or the Fe and the N and the uniaxial anisotropy is increased by directing a plasma gun diagonally to the high-polymer film 1. An increase in coercive force is attained as the vapor flow is active and the crystallinity is good.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強磁性薄膜を磁気記録層とする磁気記録媒体の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium using a ferromagnetic thin film as a magnetic recording layer.

従来の技術 近年の磁気記録の高密度化の進歩は著しく、c。Conventional technology In recent years, there has been remarkable progress in increasing the density of magnetic recording.

−Ni−0斜め蒸着膜、Co−Cr垂直磁化膜等の強磁
性金属薄膜を磁気記録層とする磁気記録媒体の実用化が
強く望まれている。一方、イオンアシスト蒸着法により
形成された窒化鉄薄膜は、高保磁力をもち、かつ優れた
耐候性を有することから磁気記録層として期待され、製
膜条件的にも各方面で検討が進められている〔アイイー
イーイートランザクション オン マグネティクス(I
EEETRANSACTIONS  ON MAGNE
TIC3)vol。
There is a strong desire to put into practical use magnetic recording media in which a magnetic recording layer is a ferromagnetic metal thin film such as a -Ni-0 obliquely deposited film or a Co--Cr perpendicularly magnetized film. On the other hand, iron nitride thin films formed by ion-assisted vapor deposition have high coercive force and excellent weather resistance, and are therefore expected to be used as magnetic recording layers. [IEE Transaction on Magnetics (I
EEETRANS ACTIONS ON MAGNE
TIC3) vol.

MAG−22,591(1986)参照〕。See MAG-22, 591 (1986)].

発明が解決しようとする課題 しかしながら、窒化鉄薄膜の形成速度は、斜め蒸着法と
イオン照射を同時に行ういわゆるイオンアシスト蒸着法
では小さいため、垂直蒸着と斜めにイオンを照射する等
の検討も加えられているが保磁力が大きくできず、高速
で高保磁力を得るに至っていないことから改善が望まれ
ていた。
Problems to be Solved by the Invention However, the formation rate of iron nitride thin films is slow in the so-called ion-assisted deposition method, in which oblique evaporation and ion irradiation are performed simultaneously, so studies have also been conducted, such as vertical evaporation and oblique ion irradiation. However, it has not been possible to increase the coercive force, and it has not been possible to obtain a high coercive force at high speeds, so improvements have been desired.

本発明は上記した事情に鑑みなされたもので、Co−N
、又はFe−N系強磁性薄膜を高速で製造することの出
来る方法を提供するものである。
The present invention was made in view of the above circumstances, and
, or a method capable of manufacturing Fe--N based ferromagnetic thin films at high speed.

課題を解決するための手段 上記した問題点を解決するため、本発明の磁気記録媒体
の製造方法は、Co−N又はFe−N系の強磁性薄膜を
金属ジアルキルアミドのプラズマ分解により形成するよ
うにしたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a magnetic recording medium of the present invention includes forming a Co-N or Fe-N based ferromagnetic thin film by plasma decomposition of a metal dialkylamide. This is what I did.

作  用 本発明の磁気記録媒体の製造方法は上記した構戎により
、プラズマのパワーを増大させることで、COとN又は
FeとNの割合を適切に変化させて、飽和磁束密度を最
適化できるのと、斜めにプラズマガンを高分子フィルム
に向けることで、−軸異方性を増大させることもでき、
高保磁力化は、蒸気流が活性で結晶性が良好になること
で達成できるものである。
Effect: According to the above-described structure, the method for manufacturing a magnetic recording medium of the present invention can optimize the saturation magnetic flux density by appropriately changing the ratio of CO and N or Fe and N by increasing the plasma power. By pointing the plasma gun obliquely at the polymer film, it is also possible to increase the -axis anisotropy.
A high coercive force can be achieved by making the vapor flow active and having good crystallinity.

実施例 以下、図面を参照しながら本発明の一実施例について詳
しく説明する。図は本発明の製造方法を実施するのに用
いた磁気記録媒体の製造装置の要部構成図である。図で
1はポリエチレンテレフタレート、ホリフエニレンサル
コアイド、ホリエーテルイミド等の高分子フィルムで必
要に応じて、下塗り層を配したものでもよい。2は回転
支持体で、3は巻出し軸、4は巻取り軸、6は反応管で
、6はガス導入孔、7は外部高周波コイル、8は直流加
速電極、9はプラズマ流、1oは直空容器、11は真空
排気系である。斜めにプラズマ流を高分子フィルムに差
し向け、面内磁化膜を形成するか、垂直に差し向け、い
わゆる垂直磁化膜を形成するかは適宜選択できるもので
ある。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings. The figure is a block diagram of the main parts of a magnetic recording medium manufacturing apparatus used to carry out the manufacturing method of the present invention. In the figure, reference numeral 1 indicates a polymer film of polyethylene terephthalate, polyphenylene sarcoide, polyether imide, etc., which may be provided with an undercoat layer if necessary. 2 is a rotating support, 3 is an unwinding shaft, 4 is a winding shaft, 6 is a reaction tube, 6 is a gas introduction hole, 7 is an external high frequency coil, 8 is a DC acceleration electrode, 9 is a plasma flow, 1o is a The direct air container 11 is a vacuum evacuation system. It can be selected as appropriate whether to direct the plasma flow obliquely to the polymer film to form an in-plane magnetized film or to direct the plasma flow perpendicularly to the polymer film to form a so-called perpendicular magnetized film.

本発明は、ガス導入孔より、金属ジアルキルアミドの蒸
気を導入し、外部印加の高周波により、プラズマを誘起
し、分解反応生成物としてCo −N又はF e 、−
N系の強磁性薄膜を形成するものでCo (N He2
 ) 4. F e (N He2 ) 4 、 Co
 (N E t2)4゜Fe(N−nBu2)4 等の
金属ジアルキルアミドを出発物質とするもので、必要な
らAr 、 He 、 H2等を放電ガスとして追加し
てもよい。以下更に具体的に本発明の実施例について詳
しく説明する。
In the present invention, metal dialkylamide vapor is introduced through a gas introduction hole, plasma is induced by externally applied high frequency, and Co -N or Fe, - is produced as a decomposition reaction product.
Co (N He2
) 4. F e (N He2 ) 4 , Co
The starting material is a metal dialkylamide such as (N E t2)4°Fe(N-nBu2)4, and if necessary, Ar, He, H2, etc. may be added as a discharge gas. Examples of the present invention will be described in more detail below.

厚み10μmのポリエチレンテレフタレートフィルム上
に直径100人のEu2O3微粒子を15ケ/(μm 
) 2配した状態のロールを巻出し軸にセットし、あら
かじめ2 X 10−6(Torr)まで排気した後、
F e (N E t 2 ) 4  を0,9 l 
/min導入しながら、13.56 (MHz )、 
 1.3 (KW)の高周波を印加し、プラズマを発生
させ、直流加速電極に3sOcJ)を印加し、回転支持
体を接地電位として、プラズマを加速し、反応管の中心
軸が高分子フィルムに対して、46度の入射角となる状
態でFe−N膜を0.15μm形成した。この膜は飽和
磁束密度が5soo(G)、保磁力が890 (Oe 
)で、8ミリビデオにてC/Nを測定した結果市販のメ
タル塗布テープに対して、輝度C/Nで+2.7(dB
)i。
On a polyethylene terephthalate film with a thickness of 10 μm, 15 Eu2O3 particles with a diameter of 100 μm were added.
) Set the two rolls arranged on the unwinding shaft, and after evacuation to 2 x 10-6 (Torr) in advance,
F e (N E t 2 ) 4 to 0.9 l
/min while introducing 13.56 (MHz),
A high frequency of 1.3 (KW) was applied to generate plasma, and 3 sOcJ) was applied to the DC accelerating electrode, the rotating support was set at ground potential, the plasma was accelerated, and the central axis of the reaction tube was aligned with the polymer film. On the other hand, a 0.15 μm Fe-N film was formed at an incident angle of 46 degrees. This film has a saturation magnetic flux density of 5soo (G) and a coercive force of 890 (Oe
), the C/N was measured using 8mm video, and the brightness C/N was +2.7 (dB) compared to commercially available metal coated tape.
)i.

60”C85%RH2ケ月放置後のC/Nは初期に対し
、−〇、5〜−0.7(dB)でメタル塗布テープのC
/Nが−1,8〜−2,4(dB)と低くなっていたの
に比べ安定性も良好であった。
60"C85%RH After being left for 2 months, the C/N of the metal coated tape is -0, 5 to -0.7 (dB) compared to the initial stage.
/N was low at -1.8 to -2.4 (dB), but the stability was also good.

又13.56 (MHz ) 1.9 (KW )の高
周波印加条件で45o(V)直流加速下で製造した0、
15μmのFe−N膜は飽和磁束密度e e o o 
(G)保磁力1050 (Oe )で、8ミリビデオで
測定した輝度C/Nはメタル塗布テープに対し+s、9
(dB)で、60℃85チRHSケ月放置後のC/Nは
初期に対し、−〇、4〜−o、5(dB)であったのに
対し、メタル塗布テープはC/Nが初期に対し−3,3
〜−3,9(dB)低下していた。
In addition, 0, which was manufactured under 45 o (V) DC acceleration under high frequency application conditions of 13.56 (MHz) 1.9 (KW),
The 15 μm Fe-N film has a saturation magnetic flux density e e o o
(G) With a coercive force of 1050 (Oe), the brightness C/N measured with an 8 mm video is +s, 9 with respect to the metal coated tape.
(dB), and the C/N after being left at 60°C and 85° RHS for 85 months was -0, 4 to -o, 5 (dB) compared to the initial C/N, whereas the C/N of the metal coated tape was against -3,3
It had decreased by ~-3.9 (dB).

上記しだ製膜はフィルムの送り速度が13−1F5(m
 /min )で、イオンアシスト蒸着法がほぼ同じ装
置規模で2〜2.6 (m /mit+ )なのに比し
て高速である。
In the above-mentioned shida film formation, the film feeding speed is 13-1F5 (m
/min), which is faster than the ion-assisted vapor deposition method, which has a speed of 2 to 2.6 (m/mit+) with approximately the same equipment scale.

他にCo−N垂直磁化膜を製造し、電磁変換特性、耐候
保存性、高速性を高周波スパッタリング法でCo−0r
垂直磁化膜を形成した例と対比検討した結果、膜が硬く
耐久性が良好なことから保護膜がCo−0r膜に必要な
厚みの1/3以下で、スペーシング損失が改善され、C
/Nは結果的に0.5 (dB)程度低いだけで、耐候
保存性は同等、高速性はフィルム速度が7倍〜12倍と
すぐれていた。
In addition, a Co-N perpendicular magnetization film is manufactured, and the electromagnetic conversion characteristics, weather resistance, and high speed are improved using the high-frequency sputtering method.
As a result of a comparative study with an example in which a perpendicularly magnetized film was formed, it was found that since the film is hard and has good durability, the thickness of the protective film is less than 1/3 of that required for the Co-0r film, and the spacing loss is improved.
As a result, the /N was only about 0.5 (dB) lower, the weather resistance was the same, and the film speed was 7 to 12 times faster.

発明の効果 上記したように本発明によれば、優れた特性をもったF
e−N、又はCo−N系の強磁性薄膜を磁気記録層とす
る磁気記録媒体が高速で製造することができるといった
すぐれた効果がある。
Effects of the Invention As described above, according to the present invention, F
An excellent effect is that a magnetic recording medium having an e-N or Co-N based ferromagnetic thin film as a magnetic recording layer can be manufactured at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施するのに用いた磁気記録媒体の製造装
置の要部構成図である。 1・・・・・・高分子フィルム、5・・・・・・反応管
、7・・・・・・外部高周波コイル、9・・・・・・プ
ラズマ流。
The figure is a block diagram of the main parts of a magnetic recording medium manufacturing apparatus used to carry out the present invention. DESCRIPTION OF SYMBOLS 1... Polymer film, 5... Reaction tube, 7... External high frequency coil, 9... Plasma flow.

Claims (1)

【特許請求の範囲】[Claims] Co−N又はFe−N系の強磁性薄膜を、金属ジアルキ
ルアミドのプラズマ分解により形成することを特徴とす
る磁気記録媒体の製造方法。
A method for manufacturing a magnetic recording medium, characterized in that a Co--N or Fe--N based ferromagnetic thin film is formed by plasma decomposition of a metal dialkylamide.
JP1296488A 1988-01-22 1988-01-22 Production of magnetic recording medium Pending JPH01189030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1296488A JPH01189030A (en) 1988-01-22 1988-01-22 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1296488A JPH01189030A (en) 1988-01-22 1988-01-22 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01189030A true JPH01189030A (en) 1989-07-28

Family

ID=11819936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1296488A Pending JPH01189030A (en) 1988-01-22 1988-01-22 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01189030A (en)

Similar Documents

Publication Publication Date Title
US4511594A (en) System of manufacturing magnetic recording media
JP2761859B2 (en) Magnetic recording media
JPH01189030A (en) Production of magnetic recording medium
JP2894253B2 (en) Manufacturing method of highly functional thin film
JPH053052B2 (en)
JPS61242321A (en) Magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS5841442A (en) Manufacture of magnetic recording medium
JPS592232A (en) Production of magnetic recording medium
JPH04147433A (en) Production of magnetic recording medium
JPS6194238A (en) Preparation of magnetic recording medium
JPH11161952A (en) Production of magnetic recording medium
JPS6148126A (en) Manufacture of magnetic recording medium
JPH0341896B2 (en)
JPH0467433A (en) Production of magnetic recording medium
JPH05166183A (en) Production of magnetic recording medium
JPS6378336A (en) Production of magnetic recording medium
JPH07282431A (en) Magnetic recording medium and apparatus and process for producing magnetic recording medium
JPH01184725A (en) Production of magnetic recording medium
JPS60111344A (en) Production of magnetic recording medium
JPH01303623A (en) Magnetic recording medium
JPH0125144B2 (en)
JPH01204219A (en) Production of perpendicular magnetic recording medium
JPS6079532A (en) Manufacture of magnetic recording medium
JPH03116526A (en) Production of magnetic recording medium