JPH0467433A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0467433A
JPH0467433A JP17929890A JP17929890A JPH0467433A JP H0467433 A JPH0467433 A JP H0467433A JP 17929890 A JP17929890 A JP 17929890A JP 17929890 A JP17929890 A JP 17929890A JP H0467433 A JPH0467433 A JP H0467433A
Authority
JP
Japan
Prior art keywords
oxygen
magnetic
vapor deposition
per unit
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17929890A
Other languages
Japanese (ja)
Inventor
Tetsuo Mizumura
哲夫 水村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP17929890A priority Critical patent/JPH0467433A/en
Publication of JPH0467433A publication Critical patent/JPH0467433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To optimize vapor deposition conditions and to obtain excellent magnetic characteristics by specifying the value of B.C/A.D within a 0.04 to 0.1 range when the pitch of the fine pores of notches is designated as A, the shortest distance between the pores, a vapor deposition drum as B and the oxygen blowing rate per unit hour per unit width as C, and a substrate feed speed as D. CONSTITUTION:Cobalt is used as an essential component and while oxygen is blown, a ferromagnetic metallic thin film is continuously formed with a rotating drum by a diagonal incident vapor deposition method. The value of B.C/A.D is specified within the 0.04 to 0.1 range when the pitch of the fine pores for blowing oxygen is designated as Acm, the distance between the fine pores and the vapor deposition drum as Bcm, the oxygen blowing rate per unit hour per unit width as C(cc/sec cm), and the substrate feed speed as D(cm/sec). The electromagnetic conversion characteristics of the Co magnetic film are improved in this way and the magnetic characteristics are uniformized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気記録媒体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a magnetic recording medium.

[従来の技術] 従来から一般に普及している磁気記録媒体は、針状の磁
性粉と高分子結合剤とを主体とする磁性塗料を非磁性基
体上に塗布して磁性層を形成した塗布型の磁気記録媒体
である。
[Prior Art] Magnetic recording media that have been widely used in the past are coating-type media in which a magnetic layer is formed by coating a magnetic coating mainly consisting of acicular magnetic powder and a polymeric binder on a non-magnetic substrate. This is a magnetic recording medium.

現在、磁気記録tlt生装置はますます高密度化の傾向
にあり、短波長記録特性に優れた磁気記録媒体か要望さ
れている。
Currently, there is a trend toward higher density magnetic recording TLT generation devices, and there is a demand for magnetic recording media with excellent short wavelength recording characteristics.

しかし、塗布型磁気記録媒体における短波長記録特性の
改善には限界がある。これに対して、Co、CoNi、
CoN1P、CoCrなどのCoを主成分とする強磁性
体を真空蒸着法によって非磁性基体−Lに形成する金属
薄膜型の磁気記録媒体は、その磁性層中に非磁性の結合
剤が混入されていないので著しく高い残留磁束密度を得
ることができ、かつ、磁性層を極めて薄く形成するこ七
ができるために、高出力で短波長応答性に優れていると
いう利点を有する。この特徴により、最近は薄膜型磁気
記録媒体が磁気媒体の主流となりつつある。
However, there are limits to the improvement of short wavelength recording characteristics in coated magnetic recording media. On the other hand, Co, CoNi,
Metal thin film type magnetic recording media, in which a ferromagnetic material mainly composed of Co, such as CoN1P or CoCr, is formed on a nonmagnetic substrate -L by vacuum evaporation, have a nonmagnetic binder mixed in the magnetic layer. Since there is no magnetic flux, a significantly high residual magnetic flux density can be obtained, and since the magnetic layer can be formed extremely thin, it has the advantage of high output and excellent short wavelength response. Due to this feature, thin film magnetic recording media have recently become the mainstream of magnetic media.

薄膜型磁気記録媒体は磁気記録密度が大きく、優れた短
波長記録特性を有する反面、coが比較的腐食され易く
、しかも、磁性層が露出しているために−・1食性か悪
く、磁気的に劣化しやすいという欠【への他、走行性か
劣るという欠点を自しており、これか天川1・1人きな
問題点となっている。
Thin-film magnetic recording media have a high magnetic recording density and excellent short-wavelength recording properties, but on the other hand, the cobalt is relatively easy to corrode, and because the magnetic layer is exposed, it is not monolithic and has poor magnetic properties. In addition to the disadvantage of being susceptible to deterioration, it also has the disadvantage of poor running performance, which is a problem unique to Amakawa.

この問題点を解決するために例えば、COを蒸ifする
際、Co蒸気に酸素カスを吹付け、CO柱状粒子粒子面
にCoの酸化物の被膜を形成することか提案されている
。このCo酸化物被膜の存在により、Co@性薄膜の耐
食性および耐摩耗性か向上される。
In order to solve this problem, it has been proposed that, for example, when CO is vaporized, oxygen scum is sprayed onto the Co vapor to form a coating of Co oxide on the surface of the CO columnar particles. The presence of this Co oxide film improves the corrosion resistance and wear resistance of the Co@-based thin film.

口発明が解決しようとする課題] 場産ペースで優れた蒸着原反を得るためには、酸素の濃
度と分布の適正比、および特性のバラツキをなくすこと
(すなわち、酸素濃度分布の均化)か必要条件である。
[Problems to be solved by the invention] In order to obtain an excellent vapor-deposited raw fabric at a production pace, it is necessary to obtain an appropriate ratio of oxygen concentration and distribution, and to eliminate variations in properties (i.e., equalization of the oxygen concentration distribution). or is a necessary condition.

ところで通常酸素ガスの導入は[[]方向に並んた微小
孔(ノズル)から02カスを蒸着面に吹き当てることで
行っており、濃度分布の均一化の観点からは、−1−記
微小孔ビ、チは小さいはとよい。一方、特性向上のため
に酸素メコ度と分布のJ iJ−化を図るという観点か
らは、その他の蒸着条件の適正化か7堺となる。
By the way, the introduction of oxygen gas is usually carried out by spraying 02 scum onto the evaporation surface from micro holes (nozzles) arranged in the [[] direction. B and C are small. On the other hand, from the point of view of increasing the oxygen degree and distribution in order to improve the characteristics, it is important to optimize other vapor deposition conditions.

この、その他の蒸着条件の中には例えば02吹1)シ孔
と蒸着ドラムとの最短距離(c−)かあるか、孔ヒノ壬
を変える場合、この最短距離も変えない上、1特性の均
一膜か1すられない。
Among these other deposition conditions, for example, 02 blowing 1) Is there a minimum distance (c-) between the holes and the deposition drum?When changing the holes, this shortest distance also does not change, and one characteristic It's not even a uniform film.

これらの蒸?を条件を全て適正化するためには何らかの
指針か必要であるか、これ迄は見当たらなかった。
These steamers? I haven't been able to find any guidelines so far to make sure all the conditions are appropriate.

従って、本発明の目的は、蒸着条件を適性化し、優れた
磁気特性を自する磁気記録媒体の製造方法を提供するこ
とである。
Therefore, an object of the present invention is to provide a method for manufacturing a magnetic recording medium that has excellent magnetic properties by optimizing the deposition conditions.

口課題を解決するための手段] 前記目的を達成するために、本発明では、コバルトを主
成分として酸素を吹きこみながら、斜め入射蒸着法によ
り強磁性金属薄膜を回転するドラムにて連続的に形成す
ることからなる磁気記録媒体の製造方法において、酸素
吹き込み微細孔ビ。
[Means for Solving the Problems] In order to achieve the above object, the present invention continuously deposits a ferromagnetic metal thin film on a rotating drum by an oblique incidence evaporation method while using cobalt as a main component and blowing oxygen into it. A method of manufacturing a magnetic recording medium comprising forming an oxygen-blown microporous hole.

千をA cm、微細孔と蒸着ドラムとの距離をB。□、
中位時間中位中あたりの酸素吹き込み団をC(cc/s
ec−cm) 、1に板送り速さをD (c−/5ec
)としたときに、B−C/A@I)(7)値か0.04
−0.1の範囲内であることを特徴とする磁気記録媒体
の製造ノコ法を提供する。
1,000 is A cm, and the distance between the micropore and the deposition drum is B. □,
Oxygen blowing group in the middle of the middle time is C (cc/s
ec-cm), 1 and board feeding speed D (c-/5ec
), then B-C/A@I) (7) value is 0.04
Provided is a method for manufacturing a magnetic recording medium characterized in that the magnetic recording medium is within the range of -0.1.

[作用コ 電磁変換特性の向トおよび特性の均一化を実現するため
には、酸素導入にの「1]力向での均一化の他に、機械
的な対摺動強度を確保し、必要な磁気特性を得るために
、磁性粒rの最表面はCO0とし、内部は、Coメタル
L体とする分布を形成する必要かある。第1図に示すよ
うに、酸素富化表面層からの延長線と横軸との交点をP
1磁性膜厚をOE、表面酸素774度をM(at%)と
すると、0P10E=0.08〜0.13であり、50
≦Mの条件を満たす時か特に好ましい分布状態である。
In order to achieve uniformity in the direction and properties of the electromagnetic conversion characteristics, in addition to uniformity in the direction of force for oxygen introduction, it is necessary to ensure mechanical strength against sliding and to In order to obtain good magnetic properties, it is necessary to form a distribution in which the outermost surface of the magnetic grain R is CO0 and the inside is Co metal L.As shown in Figure 1, the distribution from the oxygen-enriched surface layer The intersection of the extension line and the horizontal axis is P
1 If the magnetic film thickness is OE and the surface oxygen 774 degrees is M (at%), 0P10E=0.08 to 0.13, and 50
A particularly preferable distribution state is when the condition of ≦M is satisfied.

これを実現する為の具体的な蒸着条件としては、ノズル
微細孔ピッチをA1孔と蒸着ドラムとの最短距離をB1
弔位時間単位巾あたりの酸素吹き込み量を01基板送り
速さをDとしたときに、B・C/A@Dの値か0.04
〜0.1の範囲内にあればよいことか発見された。
The specific evaporation conditions to achieve this are as follows: the nozzle fine hole pitch is set to A1, and the shortest distance between the holes and the evaporation drum is set to B1.
When the amount of oxygen blown per unit width of burial time is 01 and the board feeding speed is D, the value of B・C/A@D is 0.04
It was discovered that it is sufficient if the value is within the range of ~0.1.

B−C/A・■〕の値か前記範囲外である場合、記の酸
素分布に適合しないために特性か悪いか、酸素メコ度の
不均一性により特性のムラを生ずるという不都合か出て
くる。
If the value of [B-C/A・■] is outside the above range, the characteristics may be poor because it does not conform to the oxygen distribution described above, or there may be problems such as unevenness in the characteristics due to non-uniformity of the oxygen degree. come.

本発明の製造方法は、Co単体またはCoを−1:。In the production method of the present invention, Co alone or Co is -1:.

体とする合金類、例えば、CoNi、CoCrおよびC
oFeなとの磁性体について実施できる。
alloys such as CoNi, CoCr and C
This method can be applied to magnetic materials such as oFe.

“Coを1:、体とする”七いう用、Qは、COが50
at%超であることを意味する。
“Let Co be 1:, the body” 7, Q is CO is 50
It means more than at%.

本発明の製造方法は、前記磁性体を非磁性基体に対して
斜め蒸着する場合に実施できる。蒸着は真空蒸着法によ
ることか好ましい。真空蒸着法とは真空中で強磁性金属
を加熱して蒸発あるいは昇倍させ、その蒸気を非磁性基
体上に付着凝縮させて薄膜を形成させる方法である。
The manufacturing method of the present invention can be carried out when the magnetic material is obliquely deposited on a non-magnetic substrate. Vapor deposition is preferably performed by a vacuum evaporation method. The vacuum evaporation method is a method in which a ferromagnetic metal is heated in a vacuum to evaporate or multiply, and the vapor is deposited and condensed on a non-magnetic substrate to form a thin film.

[実施例] 以下、実施例により本発明を史に詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

失透1 第2図に示した電子線加熱蒸着装置1により、強磁性金
属材料3として、Co−20wt%N I N基板5と
してPETフィルム(10μm厚)を用い、CoNi膜
を形成した。この際、酸素ガスを第3図に示すような、
所定のピッチAで微小な酸素吹き出し用開孔9を何する
クズルアより導入したが、この時の蒸着条件は、A=0
.5cm、B=l c+w、C:4 Qcc/n+in
、cm、 D= 20 m/minてB−C/A−D=
0.04であった。第2図において、符号11は防着板
、13はキャン、15ま巻出ロール、17は巻取ロール
、19は排気ダクトをそれぞれボす。
Devitrification 1 Using the electron beam heating evaporation apparatus 1 shown in FIG. 2, a CoNi film was formed using a PET film (10 μm thick) as the ferromagnetic metal material 3 and the Co-20wt%N I N substrate 5. At this time, the oxygen gas is
Microscopic oxygen blowing holes 9 were introduced at a predetermined pitch A using a certain type of screwdriver, but the deposition conditions at this time were A=0.
.. 5cm, B=l c+w, C:4 Qcc/n+in
, cm, D= 20 m/min B-C/A-D=
It was 0.04. In FIG. 2, reference numeral 11 represents an adhesion prevention plate, 13 represents a can, 15 represents an unwinding roll, 17 represents a take-up roll, and 19 represents an exhaust duct.

K丘九二 蒸着条件を、A”0.5cm1B=0.7cm1C” 
40 cc/ m:n、cm、I)= 16m/min
 、B * C/A−D=0.035とした以外は実施
例1と同一・条件で作成した。
K hill 92 deposition conditions are A"0.5cm1B=0.7cm1C"
40 cc/m:n, cm, I) = 16m/min
, B*C/A-D=0.035, but under the same conditions as Example 1.

災胤桝1 蒸着条件を、A=0.7cm、B=1.0c−1C= 
40cc/min、cm、 l)= 18 m/min
 X B IIC/A−D=0.031とした以外は実
施例1と同一条件で作成した。
Disaster box 1 Vapor deposition conditions are A=0.7cm, B=1.0c-1C=
40cc/min, cm, l) = 18 m/min
It was produced under the same conditions as in Example 1 except that X B IIC/A-D = 0.031.

止木LLL 蒸着条件を、A”0.5cm、B=2.5cm、C= 
40 cc/ min、cm、[)= 18m/min
 、 B @C/A−D=0.111とした以外は実施
例1と同条件で作成した。
Stop tree LLL Vapor deposition conditions are A”0.5cm, B=2.5cm, C=
40 cc/min, cm, [) = 18m/min
, B was prepared under the same conditions as Example 1 except that C/A-D=0.111.

止木d外2− 蒸着条件を、A=l 00m1B=1cm、C=30c
c/mln、cml D= 18 m/min  1 
B  e C/ A *D=0.017とした以外は実
施例1と同一・条件で作成した。
Stop tree d outside 2- Vapor deposition conditions are A=l 00m1B=1cm, C=30c
c/mln, cml D= 18 m/min 1
It was produced under the same conditions as in Example 1 except that B e C/ A *D = 0.017.

前記実施例および比較例で得られた巾20インチの蒸着
原反を81巾にスリ、トシ、磁気テープを作製した。こ
れら磁気テープサンプルの巾方向の保磁力分布および電
磁変換特性を常法により測定した。結果を下記の表1に
要約して示す。下記の表1において、ΔHc maxは
各サンプルのHcmax−He慣1nの値を示す。また
、C/N比は中波長記録時の信η電圧/ノイス電圧を対
MP(メタルテープ)比で示した。
The 20-inch wide vapor-deposited original fabrics obtained in the Examples and Comparative Examples were used to prepare magnetic tapes with a width of 81 mm. The coercive force distribution in the width direction and electromagnetic conversion characteristics of these magnetic tape samples were measured using conventional methods. The results are summarized in Table 1 below. In Table 1 below, ΔHc max indicates the value of Hcmax-He ratio 1n for each sample. Further, the C/N ratio is expressed as the ratio of signal η voltage/noise voltage to MP (metal tape) during medium wavelength recording.

前記の表1に示された結果から明らかなように、本発明
の実施例により作製された磁気テープサンプルは優れた
保磁力分布均一・性と優れた電磁変換特性を小す。
As is clear from the results shown in Table 1 above, the magnetic tape samples prepared according to the embodiments of the present invention have excellent coercive force distribution uniformity and excellent electromagnetic conversion characteristics.

[発明の効果] 以り説明したように、本発明の製造方法によれば、Co
系磁性膜の電磁変換特性をli+]トすると共に、磁気
特性の均一化を図ることかてきる。
[Effect of the invention] As explained above, according to the production method of the present invention, Co
It is possible to improve the electromagnetic conversion characteristics of the system magnetic film and to make the magnetic characteristics uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCo系磁性膜の深さ方向の酸素濃度分布を示す
特性図であり、第2図は実施例および比較例においてC
oNi磁性膜を作製するのに使用された真空蒸着装置の
模式図であり、第3図はそのノズル部分の拡大概要斜視
図である。 ■・・・真空蒸着装置、3・・・強磁性金属。 5・・・基板、7・・・酸素吹き出しノズル。 9・・・酸素吹き出し開孔、11・・・防着板。 13・・・キャン、15・・・巻出ロール。 17・・・巻取ロール、19・・・排気ダクト第 図 磁性膜〉軍さ
FIG. 1 is a characteristic diagram showing the oxygen concentration distribution in the depth direction of the Co-based magnetic film, and FIG. 2 is a characteristic diagram showing the oxygen concentration distribution in the depth direction of the Co-based magnetic film.
FIG. 3 is a schematic diagram of the vacuum evaporation apparatus used to produce the oNi magnetic film, and FIG. 3 is an enlarged schematic perspective view of the nozzle portion thereof. ■...Vacuum deposition equipment, 3...Ferromagnetic metal. 5... Board, 7... Oxygen blowing nozzle. 9... Oxygen blowing hole, 11... Anti-adhesion plate. 13... Can, 15... Unwinding roll. 17... Winding roll, 19... Exhaust duct Diagram Magnetic film〉Military

Claims (1)

【特許請求の範囲】[Claims] (1)コバルトを主成分として酸素を吹きこみながら、
斜め入射蒸着法により強磁性金属薄膜を回転するドラム
にて連続的に形成することからなる磁気記録媒体の製造
方法において、酸素吹き込み微細孔ピッチをAcm、微
細孔と蒸着ドラムとの距離をBcm、単位時間単位巾あ
たりの酸素吹き込み量をC(cc/sec・cm)、基
板送り速さをD(cm/sec)としたときに、B・C
/A・Dの値が0.04〜0.1の範囲内であることを
特徴とする磁気記録媒体の製造方法。
(1) While blowing oxygen into the main component of cobalt,
In a method for producing a magnetic recording medium, which comprises continuously forming a ferromagnetic metal thin film on a rotating drum by an oblique incidence evaporation method, the pitch of the oxygen-blown micropores is Acm, the distance between the micropores and the evaporation drum is Bcm, When the amount of oxygen blown per unit time unit width is C (cc/sec cm) and the substrate feeding speed is D (cm/sec), B C
A method for manufacturing a magnetic recording medium, characterized in that the value of /A·D is within a range of 0.04 to 0.1.
JP17929890A 1990-07-06 1990-07-06 Production of magnetic recording medium Pending JPH0467433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17929890A JPH0467433A (en) 1990-07-06 1990-07-06 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17929890A JPH0467433A (en) 1990-07-06 1990-07-06 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0467433A true JPH0467433A (en) 1992-03-03

Family

ID=16063382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17929890A Pending JPH0467433A (en) 1990-07-06 1990-07-06 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0467433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554440A (en) * 1992-09-09 1996-09-10 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554440A (en) * 1992-09-09 1996-09-10 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium and method for producing the same

Similar Documents

Publication Publication Date Title
JPH0467433A (en) Production of magnetic recording medium
JPH0475577B2 (en)
JP2894253B2 (en) Manufacturing method of highly functional thin film
JP2605803B2 (en) Magnetic recording media
JPH01264632A (en) Method and apparatus for producing magnetic recording medium
JPH09320031A (en) Magnetic recording medium
JP3173541B2 (en) Apparatus and method for manufacturing magnetic recording medium
JP2529395B2 (en) Method for manufacturing metal thin film magnetic recording medium
JPH08129748A (en) Magnetic recording medium
JPS6378336A (en) Production of magnetic recording medium
JPH0311531B2 (en)
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH0798831A (en) Magnetic recording medium, its production and producing device
JPS62102414A (en) Magnetic recording medium
JPH06195672A (en) Magnetic recording medium and its production
JPS5850629A (en) Production of magnetic recording medium
JPH10255263A (en) Magnetic recording medium
JPH08319567A (en) Film forming device and production of magnetic recording medium using the same
JPS63152018A (en) Magnetic recording medium
JPS60202524A (en) Magnetic recording medium
JPH0319619B2 (en)
JPH04328325A (en) Manufacture of magnetic recording medium
JPS6262431A (en) Production of magnetic recording medium
JPS6079532A (en) Manufacture of magnetic recording medium
JPS6262430A (en) Production of magnetic recording medium