JPH04328325A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPH04328325A
JPH04328325A JP12546991A JP12546991A JPH04328325A JP H04328325 A JPH04328325 A JP H04328325A JP 12546991 A JP12546991 A JP 12546991A JP 12546991 A JP12546991 A JP 12546991A JP H04328325 A JPH04328325 A JP H04328325A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
recording medium
magnetic recording
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12546991A
Other languages
Japanese (ja)
Inventor
Kenichi Sato
研一 佐藤
Kazunobu Chiba
千葉 一信
Yuichi Arizaka
裕一 蟻坂
Yukari Yamada
ゆかり 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP12546991A priority Critical patent/JPH04328325A/en
Publication of JPH04328325A publication Critical patent/JPH04328325A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide the process for producing the magnetic recording medium having excellent electromagnetic conversion characteristics by improving the orientability of a ferromagnetic metallic thin film. CONSTITUTION:Slits 6 are disposed between an evaporating source 4 and a base body 2 at the time of forming the ferromagnetic metallic thin film 8 by depositing the vapor deposition particles evaporated from the evaporating source 4 by evaporation on the surface of the moving base body 2. The flying directions of the above-mentioned vapor deposition particles are unified in a specified direction by these slits 6, by which the crystal growth having good orientability is executed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、強磁性金属薄膜を磁性
層とする磁気記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium using a ferromagnetic metal thin film as a magnetic layer.

【0002】0002

【従来の技術】従来より磁気記録の分野においては、ポ
リエステルやポリエチレンテレフタレート(PET)等
からなる非磁性支持体の上に、γ−Fe2 O3 、酸
化クロム等の磁性酸化物やFe、Co、Ni等を主成分
とする磁性合金等の粉末を有機高分子材料からなるバイ
ンダー中に分散せしめた磁性塗料を塗布することにより
磁性層を形成した、所謂塗布型の磁気記録媒体が広く使
用されている。これに対して、高密度磁気記録への要求
の高まりとともに、金属あるいはCo−Ni等の合金か
らなる磁性材料をメッキや真空薄膜形成技術(真空蒸着
法、スパッタリング法、イオンプレーティング法等)に
より直接ポリエステルフィルム等の非磁性支持体上に被
着して強磁性金属薄膜を形成した、所謂蒸着型の磁気記
録媒体が知られている。この蒸着型の磁気記録媒体は、
抗磁力、角形比及び短波長域における電磁変換特性等に
優れていること、磁性層の薄膜化が可能であるために記
録減磁や再生時の厚み損失が著しく小さいこと、或いは
磁性層中に非磁性材料であるバインダー等を含有しない
ために磁性材料の充填密度を高くできること等、数々の
利点を有している。
[Prior Art] Conventionally, in the field of magnetic recording, magnetic oxides such as γ-Fe2 O3, chromium oxide, Fe, Co, Ni, etc. So-called coating-type magnetic recording media are widely used, in which a magnetic layer is formed by applying a magnetic coating in which powder of a magnetic alloy, etc., whose main components are dispersed in a binder made of an organic polymer material. . In response, with the increasing demand for high-density magnetic recording, magnetic materials made of metals or alloys such as Co-Ni are being developed by plating and vacuum thin film forming techniques (vacuum evaporation, sputtering, ion plating, etc.). A so-called vapor deposition type magnetic recording medium is known in which a ferromagnetic metal thin film is directly deposited on a non-magnetic support such as a polyester film. This vapor deposition type magnetic recording medium is
It has excellent coercive force, squareness ratio, and electromagnetic conversion characteristics in the short wavelength range, and because the magnetic layer can be made thin, the thickness loss during recording demagnetization and reproduction is extremely small, or Since it does not contain a non-magnetic material such as a binder, it has many advantages such as being able to increase the packing density of the magnetic material.

【0003】上記真空薄膜形成技術のうち、特に真空蒸
着法は、メッキ法のように排液処理を必要とすることが
なく、製造工程が簡単である上、膜の成膜速度を大きく
することが可能であることから、非常に実用的と考えら
れている。このような真空蒸着法により強磁性金属薄膜
を成膜する場合、例えば図3に示すように、ドラム11
の外周面11aに非磁性支持体12を巻回させ、上記ド
ラム11の回転に応じて上記非磁性支持体12を所定の
方向に移動させながら、ルツボ13内に充填された蒸発
源14からの蒸気流を上記非磁性支持体12の表面に入
射させて、上記非磁性支持体12上に強磁性材料を被着
させている。この時、上記ドラム11の近傍にマスク1
5を配設し、上記非磁性支持体12の法線方向に対する
上記蒸気流の入射角θを規制している。即ち、上記非磁
性支持体12に対する蒸着は、上記マスク15から露出
する上記非磁性支持体12に対してなされ、当該非磁性
支持体12が上記マスク15により遮蔽される時点で終
了される。従って、上記蒸気流の入射角θは、上記非磁
性支持体12の移動とともに高角度から低角度に徐々に
変化し、上記マスク15が配設された位置で最小値をと
る。また、得られる磁性層の磁気特性を向上させる目的
から、上記マスク15の端部にはO2 ガス導入口16
が設けられ、このO2 ガス導入口16より上記蒸気流
中にO2 ガスが導入されている。
Among the above-mentioned vacuum thin film forming techniques, the vacuum evaporation method in particular does not require drainage treatment unlike the plating method, and the manufacturing process is simple, and the film forming rate can be increased. It is considered very practical because it is possible. When forming a ferromagnetic metal thin film by such a vacuum evaporation method, for example, as shown in FIG.
A non-magnetic support 12 is wound around the outer peripheral surface 11a of the drum 11, and while the non-magnetic support 12 is moved in a predetermined direction according to the rotation of the drum 11, the evaporation source 14 filled in the crucible 13 is evaporated. A vapor flow is incident on the surface of the non-magnetic support 12 to deposit a ferromagnetic material on the non-magnetic support 12. At this time, a mask 1 is placed near the drum 11.
5 is disposed to regulate the incident angle θ of the vapor flow with respect to the normal direction of the non-magnetic support 12. That is, the vapor deposition on the non-magnetic support 12 is performed on the non-magnetic support 12 exposed through the mask 15, and is completed when the non-magnetic support 12 is shielded by the mask 15. Therefore, the incident angle θ of the vapor flow gradually changes from a high angle to a low angle as the non-magnetic support 12 moves, and takes a minimum value at the position where the mask 15 is disposed. In addition, for the purpose of improving the magnetic properties of the obtained magnetic layer, an O2 gas inlet 16 is provided at the end of the mask 15.
is provided, and O2 gas is introduced into the steam flow through this O2 gas inlet 16.

【0004】0004

【発明が解決しようとする課題】このような真空蒸着法
により磁性層を成膜する方法においては、磁性層を構成
している強磁性金属薄膜の結晶配向性が電磁変換特性に
大きく影響する。従って、電磁変換特性の向上を図るた
めには、蒸発源からの蒸気流の非磁性支持体に対する入
射方向を良好に制御し、得られる強磁性金属薄膜の結晶
配向性を改善することが要求される。ところが、図3に
示されるような従来の技術では、蒸発せしめられた蒸発
粒子は何ら束縛されることなく蒸発源から非磁性支持体
の表面に向かって飛ばされる。このため、上記蒸発粒子
の飛来方向はある程度は揃っているものの、決して十分
な制御性が保たれているとは言い難い。そこで本発明は
、上述の従来の実情に鑑みて提案されたものであり、蒸
発源からの蒸気流の入射角を良好に制御して、強磁性金
属薄膜の配向性の向上を図り、電磁変換特性に優れた磁
気記録媒体の製造方法を提供することを目的とする。
Problems to be Solved by the Invention In the method of forming a magnetic layer by such a vacuum evaporation method, the crystal orientation of the ferromagnetic metal thin film constituting the magnetic layer greatly influences the electromagnetic conversion characteristics. Therefore, in order to improve the electromagnetic conversion characteristics, it is necessary to properly control the direction of incidence of the vapor flow from the evaporation source onto the non-magnetic support and to improve the crystal orientation of the resulting ferromagnetic metal thin film. Ru. However, in the conventional technique as shown in FIG. 3, the evaporated particles are blown from the evaporation source toward the surface of the nonmagnetic support without being restrained in any way. Therefore, although the flying directions of the evaporated particles are aligned to some extent, it cannot be said that sufficient controllability is maintained. The present invention was proposed in view of the above-mentioned conventional situation, and aims to improve the orientation of a ferromagnetic metal thin film by well controlling the incident angle of the vapor flow from the evaporation source, thereby improving electromagnetic conversion. An object of the present invention is to provide a method for manufacturing a magnetic recording medium with excellent characteristics.

【0005】[0005]

【課題を解決するための手段】本発明者らは上述の目的
を達成するために検討を重ねた結果、強磁性金属薄膜を
成膜するための蒸着の際に、スリットを用いて蒸発せし
められた蒸発粒子の飛来方向を揃えることにより、配向
性の良い結晶成長を行うことができ、電磁変換特性が向
上することを見出し、本発明に至ったものである。即ち
、本発明の磁気記録媒体の製造方法は、基体上に強磁性
金属薄膜を真空蒸着法により成膜するに際し、蒸発源と
前記基体との間に前記蒸発源からの蒸気流の方向に対し
て平行となるようにスリットを配設することを特徴とす
るものである。
[Means for Solving the Problems] As a result of repeated studies in order to achieve the above-mentioned object, the inventors of the present invention have found that slits are used during vapor deposition to form a ferromagnetic metal thin film. The inventors have discovered that by aligning the flying directions of the evaporated particles, crystal growth with good orientation can be achieved, and electromagnetic conversion characteristics can be improved, leading to the present invention. That is, in the method for manufacturing a magnetic recording medium of the present invention, when forming a ferromagnetic metal thin film on a substrate by vacuum evaporation, there is a gap between the evaporation source and the substrate with respect to the direction of the vapor flow from the evaporation source. The slits are arranged parallel to each other.

【0006】本発明において、磁性層とされる強磁性金
属薄膜は真空蒸着法により成膜される。ここで、真空蒸
着法としては、典型的に斜め蒸着が採用される。上記斜
め蒸着とは、蒸発源から蒸発せしめられた強磁性金属材
料の蒸気流を移動する基体の表面の法線方向に対して所
定の入射角をなす方向から入射させ、上記基体上に強磁
性金属材料を蒸着させる方法である。
In the present invention, the ferromagnetic metal thin film serving as the magnetic layer is formed by vacuum deposition. Here, as the vacuum evaporation method, oblique evaporation is typically employed. The above-mentioned oblique evaporation means that a vapor flow of a ferromagnetic metal material evaporated from an evaporation source is made incident from a direction forming a predetermined angle of incidence with respect to the normal direction of the surface of a moving substrate, and a ferromagnetic metal material is deposited on the substrate. This is a method of vapor depositing a metal material.

【0007】このような蒸着に際し、蒸発源と前記基体
との間にスリットを配設する。このスリットは、前記蒸
発源からの蒸気流の方向(蒸発せしめられた蒸発粒子全
体としての流れの方向)に対して平行となるように配設
される。これにより、上記蒸発源からの蒸気流の方向に
対して平行に飛んできた蒸発粒子は、そのまま上記基体
の表面に被着し、それ以外の散乱されて飛んできた蒸発
粒子は上記スリットに衝突して、上記基体の表面には到
達できなくなる。従って、上記蒸発粒子の飛来方向が前
記蒸発源からの蒸気流の方向に揃えられる。これにより
、配向性の良い結晶成長を行うことができ、電磁変換特
性の向上が図られる。上記スリットは、一定の厚さ及び
上記蒸気流の方向に一定の長さを有し、且つ上記基体の
幅方向に長い平板状とされる。上記厚さや基体の幅方向
の長さは、装置の種類や蒸発源の大きさ、形状等によっ
て適宜選定されることが望ましい。また、上記蒸気流の
方向の長さも、装置や蒸発源等の制約から適宜選定され
れば良いが、好ましくは3cm以上とされる。このよう
なスリットは、上記基板の走行方向に複数枚配列させて
も良い。この場合、各スリット間の間隔は、適宜選定さ
れれば良い。
[0007] During such vapor deposition, a slit is provided between the vapor source and the substrate. This slit is arranged parallel to the direction of the vapor flow from the evaporation source (the direction of the flow of the evaporated particles as a whole). As a result, the evaporative particles that have flown parallel to the direction of the vapor flow from the evaporation source are directly deposited on the surface of the substrate, and the other evaporative particles that have been scattered have collided with the slit. As a result, the surface of the substrate cannot be reached. Therefore, the flying direction of the evaporated particles is aligned with the direction of the vapor flow from the evaporation source. Thereby, crystal growth with good orientation can be performed, and electromagnetic conversion characteristics can be improved. The slit has a constant thickness and a constant length in the direction of the steam flow, and is shaped like a flat plate that is long in the width direction of the base body. It is desirable that the thickness and the length of the substrate in the width direction are appropriately selected depending on the type of device, the size and shape of the evaporation source, etc. Further, the length in the direction of the vapor flow may be appropriately selected depending on the constraints of the device, the evaporation source, etc., but is preferably 3 cm or more. A plurality of such slits may be arranged in the running direction of the substrate. In this case, the interval between each slit may be appropriately selected.

【0008】本発明において、上記強磁性金属薄膜を構
成する金属材料としては、特に限定されるものではなく
、例えばCo、Co−Cr、Co−Ni、Co−Fe−
Ni、Co−Ni−Cr、Fe、Fe−Co等の従来公
知の強磁性金属材料が何れも使用可能である。また、上
記基体としては、通常この種の磁気記録媒体において使
用されるものが何れも使用可能である。更に、本発明に
おいては、必要に応じて、上記基体上に下塗り膜を形成
する工程やバックコート層、トップコート層等を形成す
る工程等を加えても良い。この場合、下塗り膜、バック
コート層、トップコート層等の成膜条件は、通常この種
の磁気記録媒体の製造方法に適用される方法であれば良
く、特に限定されない。
In the present invention, the metal material constituting the ferromagnetic metal thin film is not particularly limited, and examples thereof include Co, Co-Cr, Co-Ni, Co-Fe-
Any conventionally known ferromagnetic metal material such as Ni, Co-Ni-Cr, Fe, Fe-Co, etc. can be used. Moreover, as the above-mentioned substrate, any substrate that is normally used in this type of magnetic recording medium can be used. Furthermore, in the present invention, a step of forming an undercoat film, a back coat layer, a top coat layer, etc. on the substrate may be added as necessary. In this case, the conditions for forming the undercoat film, backcoat layer, topcoat layer, etc. are not particularly limited, as long as they are generally applied to the manufacturing method of this type of magnetic recording medium.

【0009】[0009]

【作用】基体上に強磁性金属薄膜を成膜するに際し、蒸
発源と前記基体との間に前記蒸発源からの蒸気流の方向
に対して平行となるようにスリットを配設することによ
り、蒸発せしめられた蒸発粒子の上記基体の表面に対す
る入射方向が一定に揃えられる。これは、上記蒸発粒子
のうち、蒸発源からの蒸気流の方向と平行に飛んできた
ものは、そのまま上記基体の表面に入射されるが、それ
以外の散乱されて飛んできたものは上記スリットに衝突
して、上記基体の表面には到達できなくなるためである
。従って、上記蒸発粒子が上記基体の表面に対して常に
一定の方向から入射されるので、配向性の良い結晶成長
が行われ、電磁変換特性が向上する。
[Operation] When forming a ferromagnetic metal thin film on a substrate, by arranging a slit between the evaporation source and the substrate so as to be parallel to the direction of the vapor flow from the evaporation source, The direction of incidence of the evaporated particles on the surface of the substrate is uniformly aligned. This is because, among the evaporated particles, those that fly parallel to the direction of the vapor flow from the evaporation source are directly incident on the surface of the base, but other particles that are scattered and fly through the slit. This is because the particles collide with the surface of the substrate and cannot reach the surface of the substrate. Therefore, since the evaporated particles are always incident on the surface of the substrate from a constant direction, crystal growth with good orientation is performed, and electromagnetic conversion characteristics are improved.

【0010】0010

【実施例】以下、本発明の好適な実施例について実験結
果にもとづき説明する。本実施例は、蒸発源と非磁性支
持体との間に複数のスリットを前記蒸発源からの蒸気流
の方向に対して平行となるようにそれぞれ配設して、斜
め蒸着により強磁性金属薄膜を成膜した例である。先ず
、図1に示すように、ドラム1の外周面1aに非磁性支
持体2を巻回させ、上記ドラム1の回転に応じて上記非
磁性支持体2を図中a方向に5m/分の速度で移動させ
ながら、ルツボ3内に充填された蒸発源(Co100 
)4からの蒸気流Yを上記非磁性支持体2の表面の法線
方向Xに対してある入射角θを持たせて入射させ、上記
非磁性支持体2上に強磁性金属薄膜8を成膜する。
EXAMPLES Preferred examples of the present invention will be described below based on experimental results. In this example, a plurality of slits are arranged between an evaporation source and a non-magnetic support so as to be parallel to the direction of vapor flow from the evaporation source, and a ferromagnetic metal thin film is formed by oblique evaporation. This is an example in which a film was formed. First, as shown in FIG. 1, the non-magnetic support 2 is wound around the outer peripheral surface 1a of the drum 1, and as the drum 1 rotates, the non-magnetic support 2 is rotated at a speed of 5 m/min in the direction a in the figure. While moving at a high speed, the evaporation source (Co100
) 4 is made incident on the non-magnetic support 2 at a certain incident angle θ with respect to the normal direction To form a film.

【0011】ここで、上記ドラム1の近傍で、且つ上記
非磁性支持体2に対して蒸着をなす領域(蒸着領域)の
最終部にはマスク5が配設される。これにより、上記非
磁性支持体2に対する蒸着は、上記非磁性支持体2の表
面が上記マスク5から露出する領域においてなされ、当
該非磁性支持体2の表面が上記マスク5で遮蔽される時
点で終了される。従って、上記蒸気流Yの入射角θは、
上記非磁性支持体2の移動とともに高角度から低角度に
徐々に変化し、上記マスク5が配設された位置で最小値
をとる。この蒸気流Yの入射角θの最小値は30°に設
定されることが好ましい。このように、上記蒸気流Yの
入射角θを規制することにより、良好な蒸着効率を確保
できると同時に、磁気特性の向上を図ることができる。 このマスク5の端部側にはO2 ガス導入口7が設けら
れ、このO2 ガス導入口7から上記非磁性支持体2の
表面にO2 ガスが供給される。このように、O2 ガ
スを上記蒸発源4からの蒸気流Y中に導入することによ
り、得られる強磁性金属薄膜8の磁気特性が改善される
A mask 5 is disposed near the drum 1 and at the end of the region where vapor deposition is performed on the nonmagnetic support 2 (vapor deposition region). As a result, vapor deposition on the non-magnetic support 2 is performed in a region where the surface of the non-magnetic support 2 is exposed from the mask 5, and at the time when the surface of the non-magnetic support 2 is shielded by the mask 5. be terminated. Therefore, the incident angle θ of the vapor flow Y is:
As the non-magnetic support 2 moves, the angle gradually changes from a high angle to a low angle, and reaches a minimum value at the position where the mask 5 is placed. It is preferable that the minimum value of the incident angle θ of this vapor flow Y is set to 30°. In this manner, by regulating the incident angle θ of the vapor flow Y, it is possible to ensure good vapor deposition efficiency and at the same time, it is possible to improve the magnetic properties. An O2 gas inlet 7 is provided at the end of the mask 5, and O2 gas is supplied to the surface of the nonmagnetic support 2 from the O2 gas inlet 7. In this way, by introducing O2 gas into the vapor flow Y from the evaporation source 4, the magnetic properties of the resulting ferromagnetic metal thin film 8 are improved.

【0012】また、上記蒸着領域の中間部における上記
ドラム1の近傍で、且つ上記蒸発源4と上記非磁性支持
体との間には、複数のスリット板6が配設される。これ
らスリット板6は、図2に示すように、上記非磁性支持
体2の走行方向に互いに一定間隔dを空けて配列され、
且つ各スリット板6の板面が上記蒸気流Yの方向(蒸発
せしめられた蒸発粒子全体としての流れの方向)に対し
て平行となるように配設される。上記スリット板6の間
隔dは、適宜選定されれば良く、狭いほど蒸発粒子の飛
来方向を効果的に揃えることができるが、狭すぎると蒸
着効率が低下する虞れがある。上記スリット板6は上記
蒸気流Yの方向に一定の長さlを有し、且つ上記非磁性
支持体2の幅方向の長さkが当該非磁性支持体2の幅と
ほぼ等しくされている。上記蒸気流Yの方向の長さlは
、電磁変換特性の向上を図る目的から、3cm以上とさ
れることが好ましい。このようなスリット板6により、
蒸発せしめられた蒸発粒子のうち、上記蒸気流Yの方向
と平行に飛んできたものは、そのまま上記非磁性支持体
2の表面に入射されるが、それ以外の散乱されて飛んで
きたものは当該スリット板6に衝突して、上記非磁性支
持体2の表面には到達できなくなる。従って、上記蒸気
流Yの方向と平行な方向から飛んできた蒸発粒子のみが
上記非磁性支持体2の表面に被着されることになり、配
向性の良い結晶成長を行うことができる。このため、電
磁変換特性の向上を図ることができる。
Further, a plurality of slit plates 6 are arranged near the drum 1 in the middle of the vapor deposition region and between the evaporation source 4 and the nonmagnetic support. As shown in FIG. 2, these slit plates 6 are arranged at a constant interval d from each other in the running direction of the non-magnetic support 2,
Moreover, the plate surface of each slit plate 6 is arranged so as to be parallel to the direction of the vapor flow Y (the direction of flow of the evaporated particles as a whole). The interval d between the slit plates 6 may be appropriately selected; the narrower the interval d, the more effectively the flying direction of the evaporated particles can be aligned, but if it is too narrow, there is a risk that the vapor deposition efficiency will decrease. The slit plate 6 has a constant length l in the direction of the steam flow Y, and the length k in the width direction of the non-magnetic support 2 is approximately equal to the width of the non-magnetic support 2. . The length l in the direction of the vapor flow Y is preferably 3 cm or more for the purpose of improving electromagnetic conversion characteristics. With such a slit plate 6,
Among the evaporated particles, those that fly parallel to the direction of the vapor flow Y are directly incident on the surface of the non-magnetic support 2, but the other particles that are scattered and fly are It collides with the slit plate 6 and cannot reach the surface of the non-magnetic support 2. Therefore, only the evaporated particles flying from a direction parallel to the direction of the vapor flow Y are deposited on the surface of the non-magnetic support 2, allowing crystal growth with good orientation. Therefore, it is possible to improve electromagnetic conversion characteristics.

【0013】以上のような磁気記録媒体の製造方法によ
り上記蒸気流Yの方向の長さlが1cm、3cm及び5
cmであるスリット板6を用いて各種磁気テープを作製
し、得られた磁気テープと上記スリット板6を使用せず
に従来の斜め蒸着により磁性層を形成した磁気テープ(
比較例)について、それぞれ角形比及び出力特性を調べ
た。この結果を表1に示す。なお、出力特性は、波長0
.54μmにおける再生出力を8mmビデオテープレコ
ーダ(商品名EVS900)により測定した値とした。
By the method of manufacturing a magnetic recording medium as described above, the length l in the direction of the vapor flow Y is 1 cm, 3 cm, and 5 cm.
Various types of magnetic tapes were produced using a slit plate 6 with a diameter of 1.5 cm.
Comparative Example), the squareness ratio and output characteristics of each were investigated. The results are shown in Table 1. Note that the output characteristics are at wavelength 0.
.. The playback output at 54 μm was measured using an 8 mm video tape recorder (trade name EVS900).

【表1】[Table 1]

【0014】表1から明らかなように、比較例と比べる
と、本発明を適用した磁気テープでは、何れも高い角形
比が得られるとともに、再生出力が2dB程度又はそれ
以上改善することが判った。また、上述のようなスリッ
ト板の蒸気流Yの方向の長さlが3cm以上とされる時
に、良好な磁気特性、電磁変換特性を確保することがで
きた。
As is clear from Table 1, when compared with the comparative example, it was found that the magnetic tapes to which the present invention was applied all had a high squareness ratio, and the reproduction output was improved by about 2 dB or more. . Further, when the length l of the slit plate in the direction of the vapor flow Y as described above was set to 3 cm or more, good magnetic properties and electromagnetic conversion properties could be ensured.

【0015】[0015]

【発明の効果】以上の説明からも明らかなように、本発
明の磁気記録媒体の製造方法は、基体に対して蒸着を行
う際に、スリットによって蒸発せしめられた蒸発粒子の
飛来方向が一定方向に揃えられるので、結晶配向性が向
上し、良好な電磁変換特性を確保するとができる。
[Effects of the Invention] As is clear from the above description, the method for manufacturing a magnetic recording medium of the present invention allows the evaporation particles evaporated by the slit to fly in a fixed direction when vapor deposition is performed on the substrate. Since the crystal orientation is improved, good electromagnetic conversion characteristics can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の磁気記録媒体の製造方法における強磁
性金属薄膜の蒸着工程を示す断面図である。
FIG. 1 is a cross-sectional view showing a step of depositing a ferromagnetic metal thin film in the method of manufacturing a magnetic recording medium of the present invention.

【図2】本発明の磁気記録媒体の製造方法における強磁
性金属薄膜の蒸着工程を示す斜視図である。
FIG. 2 is a perspective view showing a step of depositing a ferromagnetic metal thin film in the method of manufacturing a magnetic recording medium of the present invention.

【図3】従来の磁気記録媒体の製造方法における強磁性
金属薄膜の蒸着工程を示す断面図である。
FIG. 3 is a cross-sectional view showing a step of depositing a ferromagnetic metal thin film in a conventional method for manufacturing a magnetic recording medium.

【符号の説明】[Explanation of symbols]

2・・・非磁性支持体 4・・・蒸発源 5・・・マスク 6・・・スリット板 2...Nonmagnetic support 4... Evaporation source 5...Mask 6...Slit plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  基体上に強磁性金属薄膜を真空蒸着法
により成膜するに際し、蒸発源と前記基体との間に前記
蒸発源からの蒸気流の方向に対して平行となるようにス
リットを配設することを特徴とする磁気記録媒体の製造
方法。
1. When forming a ferromagnetic metal thin film on a substrate by vacuum evaporation, a slit is provided between an evaporation source and the substrate so as to be parallel to the direction of vapor flow from the evaporation source. 1. A method of manufacturing a magnetic recording medium, comprising:
JP12546991A 1991-04-27 1991-04-27 Manufacture of magnetic recording medium Withdrawn JPH04328325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12546991A JPH04328325A (en) 1991-04-27 1991-04-27 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12546991A JPH04328325A (en) 1991-04-27 1991-04-27 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH04328325A true JPH04328325A (en) 1992-11-17

Family

ID=14910861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12546991A Withdrawn JPH04328325A (en) 1991-04-27 1991-04-27 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH04328325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679410A (en) * 1994-06-06 1997-10-21 Matsushita Electric Industrial Co., Ltd. Continuous fabrication of thin film magnetic recording medium with vacuum deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679410A (en) * 1994-06-06 1997-10-21 Matsushita Electric Industrial Co., Ltd. Continuous fabrication of thin film magnetic recording medium with vacuum deposition

Similar Documents

Publication Publication Date Title
US4371590A (en) Magnetic recording medium with stepwise orientation of deposited metallic particles
JPH0995776A (en) Vacuum deposition device
JP2003059040A (en) Manufacturing method for magnetic recording medium
JPH04328325A (en) Manufacture of magnetic recording medium
JPH0227732B2 (en)
EP0227069A2 (en) Middle layer material for magnetic disc
JPH0237525A (en) Production of magnetic recording medium
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPH0997413A (en) Magnetic recording medium
JPS61273738A (en) Production of magnetic recording medium
JPS59157833A (en) Magnetic recording medium
JP2605803B2 (en) Magnetic recording media
JPH0321965B2 (en)
JPH0311531B2 (en)
JP2977618B2 (en) Magnetic recording method
JP3173541B2 (en) Apparatus and method for manufacturing magnetic recording medium
JP4371881B2 (en) Magnetic recording medium manufacturing apparatus and manufacturing method
JPS61227222A (en) Magnetic recording medium
JPH08221751A (en) Production of magnetic recording medium
JPS62102414A (en) Magnetic recording medium
JPH06195672A (en) Magnetic recording medium and its production
JPH10208229A (en) Magnetic recording medium, method and device for manufacturing the same
JPS6260119A (en) Magnetic recording medium and its production
JPH08129740A (en) Magnetic recording medium, manufacture and manufacturing device therefor
JPH0656650B2 (en) Magnetic recording medium

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711