JPS60111344A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS60111344A
JPS60111344A JP21809783A JP21809783A JPS60111344A JP S60111344 A JPS60111344 A JP S60111344A JP 21809783 A JP21809783 A JP 21809783A JP 21809783 A JP21809783 A JP 21809783A JP S60111344 A JPS60111344 A JP S60111344A
Authority
JP
Japan
Prior art keywords
film
magnetic recording
evaporation
stage
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21809783A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Toshiaki Kunieda
国枝 敏明
Hideki Yoshida
秀樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21809783A priority Critical patent/JPS60111344A/en
Publication of JPS60111344A publication Critical patent/JPS60111344A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable mass production of a magnetic recording medium for vertical magnetic recording with good reproducibility and to obtain the medium having high coercive force by using a high polymer base plate having high versatility by maintaining the temp. in the stage of depositing a thin ''Permalloy'' film by evaporation higher than the temp. in the stage of depositing a vertically magnetized film by evaporation. CONSTITUTION:Polyamide imide having about 10mum thickness is preliminarily subjected to a glow discharge treatment to form a thin Ni-Fe alloy film to about 0.5mum and in succession a thin Co-Cr alloy film is formed at about 0.15mum. The base plate is masked to keep the incident angle of Co-Cr within 6 deg. and said alloy is deposited by evaporation under the conditions under which vertical orientation is easy. The alloy is deposited by evaporation while the relation at which the base plate temp. in the stage of vapor deposition of Ni-Fe is higher by 55 deg.C than the base plate temp. in the stage of vapor deposition of Co-Cr is maintained. The vertical coercive force of the Co-Cr film obtd. in such a way is as shown in the figure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は垂直記録方式に適した磁気記録媒体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium suitable for perpendicular recording.

従来例の構成とその問題点 近年磁気記録は、高密度化のために、金属薄膜を磁気記
録層とする磁気記録媒体を用いることが検討されている
。その中で、高分子基板上にパーマロイ薄膜と、例えば
C0−Crの垂直磁化膜とを積層した垂直記録媒体は現
在最も高い記録密度を達成している。
Conventional Structures and Their Problems In recent years, in order to increase the density of magnetic recording, the use of magnetic recording media having a magnetic recording layer made of a metal thin film has been considered. Among these, a perpendicular recording medium in which a permalloy thin film and a perpendicular magnetization film of, for example, C0-Cr are laminated on a polymer substrate has currently achieved the highest recording density.

しかし、この垂直記録媒体は高周波スパッタリング法で
形成したもので、量産性に乏しく、真空蒸着法でかかる
媒体を製造する試みがなされ、基板全高温にすることで
、高い保磁力の垂直磁化膜が得られ量産性に期待がかけ
られている。
However, this perpendicular recording medium is formed using a high-frequency sputtering method and is not suitable for mass production. Attempts have been made to manufacture such a medium using a vacuum evaporation method. There are high expectations for mass production.

しかし、従来知られる真空蒸着法による垂直磁化膜は、
再現性に問題があり、それは保磁力の基板温度依存性が
太きすぎるため、真空中で基板温度を一定に保つのが必
ずしも容易ではないことから起っていたものと考えられ
るもので改良が望まれていた。
However, the perpendicularly magnetized film produced by the conventionally known vacuum evaporation method is
There was a problem with reproducibility, which is thought to be caused by the fact that the dependence of coercive force on substrate temperature is too strong, so it is not always easy to maintain a constant substrate temperature in vacuum. It was wanted.

発明の目的 本発明は、上記事情に鑑みなされたもので、再現性の良
い垂直記録用の磁気記録媒体の製造方法全提供するのが
目的である。
OBJECTS OF THE INVENTION The present invention was made in view of the above circumstances, and it is an object of the present invention to provide a complete method for manufacturing a magnetic recording medium for perpendicular recording with good reproducibility.

発明の構成 本発明は真空蒸着法により基板上にパーマロイ薄膜と垂
直磁化膜の2層構造の薄膜を形成する際、パーマロイ薄
膜を蒸着する時の基板温度が垂直磁化膜を蒸着する時の
基板温度より高いことを特徴とするもので、再現良く、
高保磁力の垂直記録用の磁気記録媒体全製造できるもの
である。
Structure of the Invention The present invention provides a method for forming a thin film having a two-layer structure of a permalloy thin film and a perpendicular magnetization film on a substrate by a vacuum evaporation method. It is characterized by being higher, has good reproduction,
All magnetic recording media for perpendicular recording with high coercive force can be manufactured.

実施例の説明 以下本発明の実施例について図面を参照しながら説明す
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の製造方法により得られる磁気記録媒体
の拡大断面図である。
FIG. 1 is an enlarged sectional view of a magnetic recording medium obtained by the manufacturing method of the present invention.

高分子基板1上に軟磁性層薄膜であるパーマロイ薄膜2
を配し、その」二に、Co −M (Mは、Cr。
Permalloy thin film 2 which is a soft magnetic layer thin film on a polymer substrate 1
and secondly, Co -M (M is Cr.

M o +W + T i+ V r Mn + Ru
等から選ぶことができる。)合金薄膜からなる垂直磁化
膜3を配し、更にその上に保護層4を配して成るもので
、テープ状、ディスク状、シート状のいずれの形態であ
っても良いものである。
M o + W + T i + V r Mn + Ru
You can choose from. ) A perpendicularly magnetized film 3 made of a thin alloy film is disposed, and a protective layer 4 is further disposed thereon, and may be in the form of a tape, disk, or sheet.

本発明に用いることのできる高分子基板は、ポリエチレ
ンテレフタレート、ポリエチレン2−6ナフタレート、
ポリアミドイミド、ポリヒダントイン、ポリバラパニッ
ク酸ポリイミド等である。
Polymer substrates that can be used in the present invention include polyethylene terephthalate, polyethylene 2-6 naphthalate,
These include polyamideimide, polyhydantoin, polybalapic acid polyimide, and the like.

本発明に用いることのできる保護層は、湿式法。The protective layer that can be used in the present invention is a wet method.

軟式法を問わず、有機、無機の材料から適宜選択される
が、当然のこととして、保護層の膜厚がo、iμ?n以
下、好捷しくはo、03μm以下で目的に合った保護能
力を有するものでないと、スペース損失が大きく高密度
記録に向かないので、その点からの制約もある。
Regardless of the soft-forming method, the material is appropriately selected from organic and inorganic materials, but it is a matter of course that the thickness of the protective layer is o, iμ? If it does not have a protection ability suitable for the purpose at a thickness of n or less, preferably o, 03 μm or less, the space loss will be large and it will not be suitable for high-density recording, so there are restrictions from this point of view.

次に本発明の要旨とするところである真空蒸着法により
2層構造の磁気記録媒体の製造部分について詳述する。
Next, the manufacturing part of the two-layer magnetic recording medium by the vacuum evaporation method, which is the gist of the present invention, will be described in detail.

用いた蒸着装置は、直径50mの円筒状キャン全2個配
し、夫々の円筒状キャンの直下25111??+に電子
ビーム蒸発源を配した巻取蒸着装置であり、円筒状キャ
ンはヒーターを内蔵した熱媒循環方式により表面温度全
制御するもので、10℃から390℃捷での範囲で制御
できるものを用い、2個の円筒状キャンの表面温度は独
立に制御できる構造としだ。
The evaporation equipment used consisted of two cylindrical cans with a diameter of 50 m, and a cylindrical can with a diameter of 25111 cm directly below each cylindrical can. ? It is a winding evaporation device with an electron beam evaporation source placed on the + side.The cylindrical can has a built-in heater and uses a heating medium circulation system to fully control the surface temperature, and can be controlled in the range of 10℃ to 390℃. The surface temperature of the two cylindrical cans can be controlled independently.

co−M合金の蒸発源は二元で、蒸発源の中心間距離は
7.6crnとし、Ni−Fe蒸発源は単−蒸発源分用
いた。
The evaporation sources for the co-M alloy were binary, the distance between the centers of the evaporation sources was 7.6 crn, and the Ni-Fe evaporation source was used as a single evaporation source.

〔実施例−1〕 厚み1000mのポリアミドイミドをあらかじめ、グロ
ー放電処理しく放電ガスAr 3x10−3Torr 
[Example-1] Polyamideimide with a thickness of 1000 m was treated with glow discharge in advance using a discharge gas of Ar 3x10-3 Torr.
.

電力550W、周波数13.56MHz 、処理時間2
秒)80%NiのNi−Fe合金薄膜f0.6pm形成
し、引き続きCo5o係Cr2O% となるような条件
でCo−Cr合金薄膜を0.15μm形成した。
Power 550W, frequency 13.56MHz, processing time 2
Second) A Ni--Fe alloy thin film of 80% Ni was formed to a thickness of 0.6 pm, and then a Co--Cr alloy thin film of 0.15 .mu.m was formed under conditions such that the Co5o ratio was Cr2O%.

Co−Crの入射角は6°以内となるようマスキングを
して垂直配向し易い条件で蒸着した。N i −F e
の蒸着時の基板温度が、Go−Crの蒸着時の基板温度
より56℃高くなるような関係を保ち々から蒸着して得
たC0−Cr膜の垂直保磁力全第2図に示した。直線A
が本発明の例で直線Bが、室温でNi−Fe膜f0.6
μm形成した上にCo−Cr膜を形成した場合である。
Co-Cr was deposited under conditions that facilitated vertical alignment by masking so that the incident angle was within 6°. N i −F e
Figure 2 shows the vertical coercivity of a CO--Cr film obtained by continuously depositing the substrate temperature such that the substrate temperature during the deposition of Go--Cr is 56 DEG C. higher than the substrate temperature during the deposition of Go--Cr. straight line A
In the example of the present invention, the straight line B is the Ni-Fe film f0.6 at room temperature.
This is a case where a Co--Cr film is formed on a .mu.m film.

この両者を比較すると特徴的な点が2つあることに気が
つ〈0そのひとつは、C0−Crの蒸着時の温度が低く
ても大きな保磁力が得られることであり、もうひとつは
、Go−Crの蒸着時の基板温度に対する依存性が小さ
いことである。
When comparing the two, I noticed two distinctive points. One is that a large coercive force can be obtained even at a low temperature during the deposition of CO-Cr, and the other is that The dependence of Go-Cr on the substrate temperature during vapor deposition is small.

この両者の特徴より、Co−Cr垂直磁化膜全量産する
上での優れた効果が生れる。即ち、Co−Cr蒸着時の
基板温度のゆらぎは、保磁力に殆んど影響しないのと、
低い温度であっても大きい保磁力が得られるので、大き
い保磁力の垂直磁化膜を再現良く得ることのできる効果
が生れるのである。
Both of these features provide an excellent effect in mass-producing the entire Co--Cr perpendicular magnetization film. In other words, fluctuations in the substrate temperature during Co-Cr deposition have almost no effect on the coercive force.
Since a large coercive force can be obtained even at a low temperature, it is possible to obtain a perpendicularly magnetized film with a large coercive force with good reproducibility.

一方、Ni−Fe膜を得る時の基板温度のゆらぎの影響
は無視できる。即ち、第2図で直線Aで示したデータは
、C0−Crの蒸着時の基板温度より55℃高くなる条
件でN i −F eを蒸着したものであるが、両者の
温度差f、(20℃から30℃まで変化させたものにつ
いても±10〔エルステッド〕の範囲で直線Aにのるこ
とが確かめられている。
On the other hand, the influence of fluctuations in substrate temperature when obtaining a Ni--Fe film can be ignored. That is, the data shown by straight line A in FIG. 2 is obtained when Ni-Fe was deposited under conditions that the substrate temperature was 55°C higher than the substrate temperature during the deposition of CO-Cr, but the temperature difference between the two, f, ( It has been confirmed that even when the temperature is changed from 20°C to 30°C, the temperature falls on the straight line A within a range of ±10 [Oersted].

20℃以下では、基板温度のゆらぎで本発明の効果が不
安定になるので、20℃以上の開きをもって実施するの
が好ましい。
If the temperature is below 20°C, the effect of the present invention will become unstable due to fluctuations in the substrate temperature, so it is preferable to carry out the process with a gap of 20°C or more.

第2図で示される従来例との差は、ひとつは、N i 
−F eの結晶配向性が良い点に加えて、Co −Cr
の蒸着時の基板温度の方がN i −F eの蒸着温度
より低いので、Co−Cr膜の結晶成長に不純物、特に
基板から出るガスが関与しないことで、生じた作用効果
と考えられるもので、この効果は、2511mのポリイ
ミド基板(DuPont社製、商品名カブl−/) 2
2μmのポリヒダントイン基板(バイエル社製、商品名
RESISFOL)についても同じであり、Co−Cr
の他に、Co −Mo 、 Co −V等についても同
様に確認された。
One difference from the conventional example shown in FIG. 2 is that N i
In addition to the good crystal orientation of -Fe, Co -Cr
This is thought to be due to the effect that impurities, especially the gas emitted from the substrate, do not participate in the crystal growth of the Co-Cr film because the substrate temperature during the deposition of Co-Cr is lower than that of Ni-Fe. This effect is achieved by using a 2511m polyimide substrate (manufactured by DuPont, trade name: Kabu l-/) 2
The same is true for the 2 μm polyhydantoin substrate (manufactured by Bayer AG, trade name RESISFOL), and Co-Cr
In addition, Co-Mo, Co-V, etc. were similarly confirmed.

〔実施例−2〕 厚み10μmのポリエチレンテレフタレートに実施例−
1と同じグロー処理を施し、80%N’iのNi−Fe
合金k 0.5 μm 、基板温度120℃で蒸着し、
ひき続きCr2O%のCo−Cr ’io、16μm基
板温度40℃で蒸着した。
[Example 2] Example on polyethylene terephthalate with a thickness of 10 μm
The same glow treatment as in 1 was applied to 80%N'i of Ni-Fe.
Alloy k 0.5 μm, deposited at a substrate temperature of 120°C,
Subsequently, Cr2O% Co-Cr'io was deposited to a thickness of 16 μm at a substrate temperature of 40° C.

このCo−Cr膜の垂直保磁力ば9061:エルステッ
ド〕であった。
The perpendicular coercive force of this Co--Cr film was 9061: Oersted.

この実験を基板のメーカーを変えて3種類ずつ各30ツ
ト、計9回行った。
This experiment was repeated nine times in total, with three types of substrates and 30 samples each, using different manufacturers of substrates.

このロット間の再現性は極めて良好で、垂直保磁力は、
900〜92o〔エルステッド〕の範囲に入っていた。
This lot-to-lot reproducibility is extremely good, and the vertical coercive force is
It was in the range of 900-92o [Oersted].

この実施例の別に注目できる点は1、従来、真空蒸着法
では汎用性の高いポリエチレンテレフタレートで媒体が
出来ないと考えられていた壁を取り去ることが出来るこ
とが証明された点である。
The other noteworthy point of this example is 1. It has been proven that it is possible to remove the wall, which was previously thought to be impossible to create as a medium using polyethylene terephthalate, which is highly versatile, in the vacuum evaporation method.

発明の効果 本発明は、基板上にパーマロイ薄膜と垂直磁化膜全積層
する蒸着法の改良で、パーマロイ薄膜を蒸着する時の温
度を垂直磁化膜を蒸着する時の温度より高く保持するこ
とで、垂直磁気記録用の磁気記録媒体を再現良く量産で
き、かつ高い保磁力の媒体全汎用性の高い高分子基板を
用いて得られる効果があり実用価値は太きい。
Effects of the Invention The present invention is an improved vapor deposition method in which a permalloy thin film and a perpendicularly magnetized film are fully laminated on a substrate. The present invention has great practical value because magnetic recording media for perpendicular magnetic recording can be mass-produced with good reproducibility, and a highly coercive force medium can be obtained using a highly versatile polymer substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録媒体の製造方法の対象となる
磁気記録媒体の拡大断面図、第2図は従来例と比較した
垂直保磁力の垂直磁化膜形成時の基板温度依存性を示す
図である。 1・・・・・・基板、2・・・・・・パーマロイ薄膜、
3・・・・・・垂直磁化膜。
FIG. 1 is an enlarged cross-sectional view of a magnetic recording medium that is a target of the magnetic recording medium manufacturing method of the present invention, and FIG. 2 shows the dependence of perpendicular coercive force on substrate temperature during the formation of a perpendicularly magnetized film in comparison with a conventional example. It is a diagram. 1... Substrate, 2... Permalloy thin film,
3... Perpendicular magnetization film.

Claims (1)

【特許請求の範囲】[Claims] 真空蒸着法により基板上にパーマロイ薄膜と垂直磁化膜
の2層構造の薄膜を形成する際、パーマロイ薄膜全蒸着
する時の基板温度が、垂直磁化膜を蒸着する時の基板温
度より高いことを特徴とする磁気記録媒体の製造方法。
When forming a thin film with a two-layer structure of a permalloy thin film and a perpendicularly magnetized film on a substrate using the vacuum evaporation method, the substrate temperature when the entire permalloy thin film is evaporated is higher than the substrate temperature when the perpendicularly magnetized film is evaporated. A method for manufacturing a magnetic recording medium.
JP21809783A 1983-11-18 1983-11-18 Production of magnetic recording medium Pending JPS60111344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21809783A JPS60111344A (en) 1983-11-18 1983-11-18 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21809783A JPS60111344A (en) 1983-11-18 1983-11-18 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60111344A true JPS60111344A (en) 1985-06-17

Family

ID=16714579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21809783A Pending JPS60111344A (en) 1983-11-18 1983-11-18 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60111344A (en)

Similar Documents

Publication Publication Date Title
US4990361A (en) Method for producing magnetic recording medium
JPS60111344A (en) Production of magnetic recording medium
JPS6339124A (en) Magnetic recording medium and its production
US4671971A (en) Process for manufacturing a magnetic recording medium
JPS62128019A (en) Magnetic recording medium
US4526131A (en) Magnetic recording medium manufacturing apparatus
JPH0581967B2 (en)
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPH0450651B2 (en)
EP0066146B1 (en) Method for manufacturing magnetic recording medium
JPS6126938A (en) Production of vertically magnetized recording medium
JPH0311531B2 (en)
JPS592232A (en) Production of magnetic recording medium
JPS6043915B2 (en) Vacuum deposition method
JPS61292219A (en) Magnetic recording medium
JPS6378341A (en) Production of magnetic recording medium
JPS6224432A (en) Production of magnetic recording medium
JPS63255827A (en) Production of magnetic recording medium
JPS60202524A (en) Magnetic recording medium
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPS6031013B2 (en) Method for manufacturing magnetic recording media
JPH0215440A (en) Magneto-optical recording medium and production thereof
JPH01189030A (en) Production of magnetic recording medium
JPS59124939A (en) Wind-up metallizing method
JPS62102414A (en) Magnetic recording medium