JP3520751B2 - Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same - Google Patents

Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same

Info

Publication number
JP3520751B2
JP3520751B2 JP34445597A JP34445597A JP3520751B2 JP 3520751 B2 JP3520751 B2 JP 3520751B2 JP 34445597 A JP34445597 A JP 34445597A JP 34445597 A JP34445597 A JP 34445597A JP 3520751 B2 JP3520751 B2 JP 3520751B2
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
perpendicular magnetic
magnetic
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34445597A
Other languages
Japanese (ja)
Other versions
JPH11161934A (en
Inventor
誠 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP34445597A priority Critical patent/JP3520751B2/en
Publication of JPH11161934A publication Critical patent/JPH11161934A/en
Application granted granted Critical
Publication of JP3520751B2 publication Critical patent/JP3520751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はコンピュータの主と
して外部記憶装置として用いられる磁気ディスク装置又
は磁気テープ装置などに搭載される磁気記録媒体に関
し、特に、垂直方向の磁気特性に優れた薄膜型磁気記録
媒体及びその製造方法ならびにそれが組み込まれた記憶
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium mounted in a magnetic disk device or a magnetic tape device mainly used as an external storage device of a computer, and more particularly to a thin film type magnetic recording excellent in perpendicular magnetic characteristics. The present invention relates to a medium, a method for manufacturing the medium, and a storage device incorporating the medium.

【0002】[0002]

【従来の技術】最近、磁気記録の分野における高密度化
の進展は極めて早く、より短波長記録再生特性に優れた
記録媒体への要求が高まっている。現在、一般に用いら
れている磁気テープ、磁気ディスクはすべて膜面内方向
に磁気異方性を有する、いわゆる、面内磁化膜である。
これらは高密度化に対応すべく、各種の改良がなされて
いるが、しかし、この面内磁化膜は、記録密度が高まる
につれて反磁界が大きくなり、再生出力が低下してしま
うという本質的な問題を抱えている。
2. Description of the Related Art Recently, the progress of high density recording in the field of magnetic recording is extremely rapid, and there is an increasing demand for a recording medium having a shorter wavelength recording / reproducing characteristic. Currently used magnetic tapes and magnetic disks are all so-called in-plane magnetized films having magnetic anisotropy in the in-plane direction of the film.
Although various improvements have been made in order to cope with higher densities, the in-plane magnetized film has an essential demagnetizing field that increases as the recording density increases, resulting in a decrease in reproduction output. I have a problem.

【0003】これに対して、膜面に垂直な方向に磁気異
方性を有する、いわゆる、垂直磁化膜は短波長記録にお
いても反磁界が小さいため、面内磁化膜よりも高密度記
録に適しているといわれている。このような垂直磁化膜
の形成材料として、CoCr、CoCrTa、CoOな
どが開発されている。垂直磁化膜はスパッタリング法に
より成膜されるものが多いが、CoO膜のように、生産
効率の高い蒸着法によって成膜されるものもある。この
CoO膜は、非磁性基板上に直接成膜する場合と、下地
膜としてコバルト酸化物層すなわちCoO層を形成し、
その上に形成する場合とが報告されている。とくに、C
oO下地膜上にCoO磁性層を成膜した場合には結晶性
と垂直方向の磁気特性との双方が向上することが報告さ
れている(Takanobu Takayama an
d Kazuetu Yoshida,J.Magn.
Soc.Jpn.,Vol.15,No.S2,100
7(1991))。
On the other hand, a so-called perpendicular magnetization film having magnetic anisotropy in the direction perpendicular to the film surface has a small demagnetizing field even in short wavelength recording, and is therefore more suitable for high density recording than the in-plane magnetization film. It is said that CoCr, CoCrTa, CoO and the like have been developed as materials for forming such a perpendicular magnetization film. Most of the perpendicularly magnetized films are formed by a sputtering method, but there are also films such as a CoO film formed by an evaporation method with high production efficiency. This CoO film is formed directly on a non-magnetic substrate, and when a cobalt oxide layer, that is, a CoO layer is formed as a base film,
It is reported that it is formed on it. Especially, C
It has been reported that when a CoO magnetic layer is formed on an oO underlayer, both the crystallinity and the perpendicular magnetic properties are improved (Takanobu Takayama an.
d Kazuetu Yoshida, J .; Magn.
Soc. Jpn. , Vol. 15, No. S2,100
7 (1991)).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような報告における磁気特性を見ると、垂直方向と面内
方向の残留磁化の比がほぼ1であるため、垂直磁気配向
性が十分であるとは言えないという問題がある。
However, looking at the magnetic characteristics in the above reports, the ratio of the remanent magnetization in the perpendicular direction to that in the in-plane direction is almost 1, so that the perpendicular magnetic orientation is sufficient. There is a problem that I cannot say.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記問題を
解決すべく、コバルト酸化物よりなる下地層とコバルト
を主成分とする磁性層とを備えた垂直磁気記録媒体にお
いて、特に、磁性層の飽和磁化量と垂直方向の保磁力と
の関係、並びに、飽和磁化量と垂直配向比との関係に着
目して種々検討を重ねた結果、垂直方向の特定の飽和磁
化量の範囲において、保磁力及び垂直配向比が共に向上
することを見い出した。
In order to solve the above-mentioned problems, the present inventor has found that, particularly, in a perpendicular magnetic recording medium provided with an underlayer made of cobalt oxide and a magnetic layer containing cobalt as a main component, As a result of various studies focusing on the relationship between the saturation magnetization amount of the layer and the coercive force in the vertical direction, and the relationship between the saturation magnetization amount and the vertical orientation ratio, in the range of the specific saturation magnetization amount in the vertical direction , It has been found that both the coercive force and the vertical orientation ratio are improved.

【0006】すなわち、本発明によれば、非磁性基板上
にコバルト酸化物よりなる下地層及びコバルトを主成分
とする磁性層がこの順に積層されて形成された垂直磁気
記録媒体の磁性層の垂直方向の飽和磁化量が、300〜
600emu/ccの範囲にあり、かつ、垂直方向の保
磁力が1000Oe以上であるものが提供される。さら
に、上記の下地層及び磁性層を共に真空蒸着法により形
成する工程を含む垂直磁気記録媒体の製造方法も提供さ
れる。また、このような垂直磁気記録媒体が組み込まれ
た記憶装置も提供される。そして、上記の各構成におい
て、下地層の形成材料としてCoOが好適であり、ま
た、磁性層の形成材料としてはCoもしくはCo合金を
主成分とし、これに酸素が含有されたものであることが
好ましい。
[0006] That is, according to the present invention, the magnetic layer of the base layer and the cobalt consisting cobalt oxide on a nonmagnetic substrate mainly vertical magnetic layer of the perpendicular magnetic recording medium formed by laminating in this order Direction saturation magnetization is 300-
600 emu / cc range and vertical protection
A magnetic material having a magnetic force of 1000 Oe or more is provided. Further provided is a method of manufacturing a perpendicular magnetic recording medium, which includes a step of forming both the underlayer and the magnetic layer by a vacuum deposition method. A storage device incorporating such a perpendicular magnetic recording medium is also provided. In each of the above configurations, CoO is preferable as the material for forming the underlayer, and Co or Co alloy is the main component as the material for forming the magnetic layer, and oxygen is contained therein. preferable.

【0007】[0007]

【発明の実施の形態】本発明の垂直磁気記録媒体は、非
磁性基板上にコバルト酸化物よりなる下地層と、コバル
トを主成分とする磁性層とが積層されたもので、磁性層
の飽和磁化量(Ms)が300〜600emu/ccの
範囲にあるものである。この磁性層の飽和磁化量が30
0emu/cc未満である場合には、垂直方向の保磁力
が低下してしまい、逆に、600emu/ccを超える
と、垂直磁気配向性が低下してしまう。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The perpendicular magnetic recording medium of the present invention comprises a non-magnetic substrate on which an underlayer made of cobalt oxide and a magnetic layer containing cobalt as a main component are laminated. The magnetization amount (Ms) is in the range of 300 to 600 emu / cc. The saturation magnetization of this magnetic layer is 30
If it is less than 0 emu / cc, the coercive force in the perpendicular direction will decrease, and if it exceeds 600 emu / cc, the perpendicular magnetic orientation will deteriorate.

【0008】非磁性基板としては、ガラスの他に、ポリ
エチレンテレフタレート(PET)などの高分子フィル
ムや、アルミのような金属基板を使用することができ
る。下地層を形成するコバルト酸化物としては、CoO
が好ましく、また、磁性層は、コバルトもしくはコバル
ト合金を主成分とし、これに酸素を含有していることが
好ましい。コバルト合金としては、例えば、Coにニッ
ケル(Ni)、クロム(Cr)などが含有されたものを
あげることができ、また、Coの六方細密構造(HC
P)を崩さない程度であれば、それ以外の元素が含まれ
ていてもよい。また、下地層およ磁性層の膜厚は特に限
定されるものではないが、例えば、下地層が100〜8
00A(オングストローム:以下同様)、磁性層が60
0〜3000Aの範囲であることが好ましい。
As the non-magnetic substrate, besides glass, a polymer film such as polyethylene terephthalate (PET) or a metal substrate such as aluminum can be used. As the cobalt oxide forming the underlayer, CoO
It is preferable that the magnetic layer contains cobalt or a cobalt alloy as a main component and contains oxygen. As the cobalt alloy, for example, Co containing nickel (Ni), chromium (Cr), etc. can be cited, and the hexagonal close-packed structure (HC) of Co (HC
Other elements may be contained as long as P) is not destroyed. The film thickness of the underlayer and the magnetic layer is not particularly limited, but for example, the underlayer has a thickness of 100 to 8
00A (Angstrom: same below), 60 magnetic layer
It is preferably in the range of 0 to 3000A.

【0009】ついで、本発明の垂直磁気記録媒体の製造
方法について説明する。非磁性基板上に下地層及び磁性
層を真空蒸着法を使用して順次形成する。具体的には、
真空槽内に蒸発源として、例えばCoを配置すると共
に、酸素ガスの噴出口を基板から所定の距離に配置し、
酸素ガスを所定の流量で真空槽内に導入しながら例え
ば、電子ビームなどによりCoを加熱蒸発させることに
より、基板上にCoO膜を成膜する。とくに、磁性層を
成膜する工程においては、導入する酸素ガス流量によ
り、得られる磁性層の飽和磁化量Msが決定されるた
め、前述した特定の範囲のMs値が得られるように酸素
ガス流量を調節することが必要である。このような工程
によれば、導入酸素ガス流量を変えるだけで、下地膜と
磁性層とを連続して成膜することができるため、生産性
を高める上で極めて有用である。
Next, a method of manufacturing the perpendicular magnetic recording medium of the present invention will be described. A base layer and a magnetic layer are sequentially formed on a non-magnetic substrate using a vacuum deposition method. In particular,
As an evaporation source, for example, Co is arranged in the vacuum chamber, and an ejection port for oxygen gas is arranged at a predetermined distance from the substrate.
A CoO film is formed on the substrate by heating and evaporating Co by, for example, an electron beam while introducing oxygen gas into the vacuum chamber at a predetermined flow rate. In particular, in the step of forming the magnetic layer, the saturation magnetization amount Ms of the obtained magnetic layer is determined by the oxygen gas flow rate to be introduced, so that the oxygen gas flow rate is set so that the Ms value in the specific range described above is obtained. It is necessary to adjust According to such a process, the base film and the magnetic layer can be continuously formed only by changing the flow rate of the introduced oxygen gas, which is extremely useful for improving the productivity.

【0010】さらに、本発明の記憶装置は上記の垂直磁
気記録媒体を、例えば、HDDなどの外部記憶装置に組
み込むことにより得られるものであり、垂直方向の保磁
力、及び垂直磁気配向性に優れたものである。
Further, the storage device of the present invention is obtained by incorporating the above perpendicular magnetic recording medium into an external storage device such as an HDD, and has excellent coercive force in the vertical direction and perpendicular magnetic orientation. It is a thing.

【0011】<実施例> (実施例1)電子ビームを有する蒸着装置を用いて到達
真空度1×10-7Torrまで真空排気した。基板とし
て厚さ0.9mmのガラス基板を用い、これを蒸発源か
ら330mmの真上に設置した。蒸発源にはCo(純度
3N)を使用した。酸素ガスの噴出口を基板から10m
mの位置に配置した。まず、下地層の形成時には、酸素
ガス流量を5sccmで導入しながらCoを電子ビーム
により加熱蒸発させCoOを480Aの厚さに成膜し、
下地層とした。なお、この工程では、基板の加熱は行わ
なかった。続いて、酸素ガス流量を2sccmに低減
し、同様にCoを加熱蒸発させて膜厚1600Aの強磁
性金属薄膜よりなる磁性層を形成した。
<Example> (Example 1) Using a vapor deposition apparatus having an electron beam, the vacuum was evacuated to an ultimate vacuum of 1 x 10 -7 Torr. A glass substrate having a thickness of 0.9 mm was used as a substrate, and the glass substrate was set directly above 330 mm from the evaporation source. Co (purity 3N) was used as the evaporation source. Oxygen gas ejection port 10m from the substrate
It was arranged at the position of m. First, when forming the underlayer, Co is heated and evaporated by an electron beam while introducing oxygen gas at a flow rate of 5 sccm to form CoO to a thickness of 480 A.
It was used as a base layer. The substrate was not heated in this step. Subsequently, the oxygen gas flow rate was reduced to 2 sccm, and Co was similarly heated and evaporated to form a magnetic layer made of a ferromagnetic metal thin film having a film thickness of 1600A.

【0012】このようにして作製し試料を9×9mmの
大きさに切り出し、振動試料型磁力計(VSM)により
最大印加磁場10kOeで磁気特性の測定を行った。測
定は、試料膜面内に磁場をかける場合と、同じく試料の
膜面に対して垂直方向にかける場合の2方向について行
った。垂直配向比は、膜面に対して垂直方向の角形比R
s per.と膜面内方向の角形比Rs plan.と
の比を算出することにより評価した。この垂直配向比R
s per./Rs plan.の値が1以上であれ
ば、垂直方向に磁気配向しており、この値が大きいほど
垂直配向性が良好であるといえる。この結果、上記によ
り得られた試料の飽和磁化量Ms=466emu/c
c、垂直配向比Rs per./Rs plan.=
1.24、そして、垂直方向の保磁力Hc per.=
1400Oeであった。
The sample thus produced was cut into a size of 9 × 9 mm, and its magnetic characteristics were measured by a vibrating sample magnetometer (VSM) with a maximum applied magnetic field of 10 kOe. The measurement was performed in two directions: when a magnetic field was applied to the sample film surface and when it was applied in a direction perpendicular to the sample film surface. The vertical orientation ratio is the squareness ratio R in the direction perpendicular to the film surface.
s per. And the in-plane direction squareness ratio Rs plan. It was evaluated by calculating the ratio with. This vertical orientation ratio R
s per. / Rs plan. When the value is 1 or more, the magnetic orientation is in the vertical direction, and it can be said that the larger this value, the better the vertical orientation. As a result, the saturation magnetization amount Ms of the sample obtained above is 466 emu / c
c, vertical orientation ratio Rs per. / Rs plan. =
1.24, and the coercive force in the vertical direction Hc per. =
It was 1400 Oe.

【0013】(実施例2)磁性層を成膜する際の導入酸
素ガス流量を1.5sccmから2.5sccmの範囲
で変化させた以外は、上記実施例1と同様にして様々な
Msの試料を作製した。上記のように、磁性層のMsを
様々に変えて、すなわち、本発明の磁性層のMsの範囲
300〜600emu/ccに入るものに加えて、比較
のために、本発明のMsの範囲を外れるものも含めて試
料を作製し、同様に垂直方向の保磁力Hc per.及
び垂直配向比Rs per./Rs plan.を各々
測定して、MsとHc per.の関係、及び、Msと
Rs per./Rs plan.の関係をそれぞれ図
1及び図2に示した。
Example 2 Samples of various Ms were carried out in the same manner as in Example 1 except that the flow rate of introduced oxygen gas when forming the magnetic layer was changed in the range of 1.5 sccm to 2.5 sccm. Was produced. As described above, the Ms of the magnetic layer is variously changed, that is, the Ms of the magnetic layer of the present invention is in the range of 300 to 600 emu / cc. Samples including those that were out of alignment were prepared, and the coercive force Hc per. And vertical orientation ratio Rs per. / Rs plan. Of the Ms and Hc per. , And Ms and Rs per. / Rs plan. 1 and 2 respectively.

【0014】これらの図からも明らかなように、磁性層
のMsが300〜600の範囲にあるものは、Hc p
er.が1,000(Oe)以上と高く、しかも、垂直
配向比Rs per./Rs plan.が1以上とな
り垂直磁気配向性が良好であることがわかった。一方、
Msが300emu/cc未満である場合には、垂直配
向性は良好であるものの、Hc per.が低下してし
まい、逆にMsが600emu/ccを超えると、Hc
per.は比較的良好であるものの、垂直配向性が低
下してしまうことが確認された。さらに、上記の実施例
において、CoO下地層の膜厚を230A、725Aと
した以外は、上記と同様にして試料を作製し、同様の測
定を行った結果、図1、図2と同様の傾向を示した。
As is clear from these figures, the magnetic layer having Ms in the range of 300 to 600 has Hcp.
er. Is as high as 1,000 (Oe) or more, and the vertical orientation ratio Rs per. / Rs plan. Was 1 or more, and it was found that the perpendicular magnetic orientation was good. on the other hand,
When Ms is less than 300 emu / cc, the vertical alignment property is good, but Hc per. When Ms exceeds 600 emu / cc, Hc
per. Was relatively good, but it was confirmed that the vertical alignment property was deteriorated. Further, in the above example, a sample was prepared in the same manner as above except that the film thickness of the CoO underlayer was changed to 230A and 725A, and the same measurement was performed. As a result, the same tendency as in FIGS. 1 and 2 was obtained. showed that.

【0015】[0015]

【発明の効果】以上詳細に説明したように、本発明によ
れば、磁性層の飽和磁化量を最適な範囲に設定すること
により垂直配向性が良好で、垂直方向の保磁力が高い垂
直磁気記録媒体を得ることができ、結果として、一層の
高密度化を図ることが可能になる。さらに、本発明の製
造方法によれば、真空蒸着法を使用することにより、こ
のような垂直磁気記録媒体を効率良く生産することがで
きる。
As described above in detail, according to the present invention, by setting the saturation magnetization amount of the magnetic layer in the optimum range, the perpendicular orientation is good and the perpendicular magnetic field has a high coercive force. A recording medium can be obtained, and as a result, higher density can be achieved. Further, according to the manufacturing method of the present invention, such a perpendicular magnetic recording medium can be efficiently manufactured by using the vacuum deposition method.

【図面の簡単な説明】[Brief description of drawings]

【図1】飽和磁化量Msと垂直方向の保磁力Hc pe
r.との関係を示すグラフである。
FIG. 1 is a saturation magnetization Ms and a coercive force Hc pe in the perpendicular direction.
r. It is a graph which shows the relationship with.

【図2】飽和磁化量Msと垂直配向比Rs per./
Rs plan.との関係を示すグラフである。
FIG. 2 shows the saturation magnetization Ms and the vertical orientation ratio Rs per. /
Rs plan. It is a graph which shows the relationship with.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G11B 5/66 G11B 5/85 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) G11B 5/66 G11B 5/85

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非磁性基板上にコバルト酸化物よりなる
下地層及びコバルトを主成分とする磁性層がこの順に積
層されて形成された垂直磁気記録媒体において、前記磁
性層の垂直方向の飽和磁化量が、300〜600emu
/ccの範囲にあり、かつ、垂直方向の保磁力が100
0Oe以上であることを特徴とする垂直磁気記録媒体。
1. A non-magnetic undercoat layer formed of cobalt oxide on a substrate and cobalt magnetic layer mainly perpendicular magnetic recording medium formed by laminating in this order, the saturation magnetization in the vertical direction of the magnetic layer The amount is 300-600 emu
/ Cc and the vertical coercive force is 100
A perpendicular magnetic recording medium characterized by being 0 Oe or more .
【請求項2】 前記下地層がCoOにより形成されてい
る請求項1記載の垂直磁気記録媒体。
2. The perpendicular magnetic recording medium according to claim 1, wherein the underlayer is made of CoO.
【請求項3】 前記磁性層が、コバルトもしくはコバル
ト合金を主成分とし、さらに酸素を含有するものである
請求項1又は2記載の垂直磁気記録媒体。
3. The perpendicular magnetic recording medium according to claim 1, wherein the magnetic layer contains cobalt or a cobalt alloy as a main component and further contains oxygen.
【請求項4】 前記下地層及び磁性層を真空蒸着法を用
いて形成する工程を含む請求項1ないし3のいずれか1
つに記載の垂直磁気記録媒体の製造方法。
4. The method according to claim 1, including a step of forming the underlayer and the magnetic layer by a vacuum deposition method.
6. A method of manufacturing a perpendicular magnetic recording medium according to claim 6.
【請求項5】 請求項1ないし3のいずれか1つに記載
の垂直磁気記録媒体が組み込まれた記憶装置。
5. A storage device incorporating the perpendicular magnetic recording medium according to claim 1. Description:
JP34445597A 1997-11-28 1997-11-28 Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same Expired - Fee Related JP3520751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34445597A JP3520751B2 (en) 1997-11-28 1997-11-28 Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34445597A JP3520751B2 (en) 1997-11-28 1997-11-28 Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same

Publications (2)

Publication Number Publication Date
JPH11161934A JPH11161934A (en) 1999-06-18
JP3520751B2 true JP3520751B2 (en) 2004-04-19

Family

ID=18369409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34445597A Expired - Fee Related JP3520751B2 (en) 1997-11-28 1997-11-28 Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same

Country Status (1)

Country Link
JP (1) JP3520751B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855416B2 (en) 2001-10-17 2005-02-15 Victor Company Of Japan, Ltd. Thin film magnetic recording medium

Also Published As

Publication number Publication date
JPH11161934A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
JP3099790B2 (en) Perpendicular magnetic recording media
US6395413B1 (en) Perpendicular magnetic recording medium
JP2002208129A (en) Magnetic recording medium, its manufacturing method and magnetic recording device
US6753072B1 (en) Multilayer-based magnetic media with hard ferromagnetic, anti-ferromagnetic, and soft ferromagnetic layers
US4731300A (en) Perpendicular magnetic recording medium and manufacturing method thereof
US6863998B2 (en) Magnetic recording medium, method for producing the same, and magnetic recording apparatus
JPH07176027A (en) Magnetic recording medium and magnetic recording and reproducing device
US4798765A (en) Perpendicular magnetic recording medium
JP2991672B2 (en) Magnetic recording media
US6893542B1 (en) Sputtered multilayer magnetic recording media with ultra-high coercivity
JPH07134820A (en) Magnetic recording medium and magnetic recorder using the medium
GB2175013A (en) Perpendicular magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPS5965416A (en) Perpendicular magnetic recording medium
JPH0814889B2 (en) Perpendicular magnetic recording media
US6986954B2 (en) Perpendicular magnetic recording media
JPH08180360A (en) Perpendicular magnetic recording medium and magnetic recorder
JPS62128019A (en) Magnetic recording medium
JP3113069B2 (en) Magnetic recording film, magnetic recording medium, and magneto-optical recording medium
JP3093389B2 (en) Method of manufacturing magneto-optical memory device
JP2913684B2 (en) Magnetic recording media
JP4134851B2 (en) Method for manufacturing magnetic recording medium
JPH08273140A (en) Perpendicular magnetic recording medium and its production
JP2977618B2 (en) Magnetic recording method
JPH05159264A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees