JPH0215440A - Magneto-optical recording medium and production thereof - Google Patents

Magneto-optical recording medium and production thereof

Info

Publication number
JPH0215440A
JPH0215440A JP16470888A JP16470888A JPH0215440A JP H0215440 A JPH0215440 A JP H0215440A JP 16470888 A JP16470888 A JP 16470888A JP 16470888 A JP16470888 A JP 16470888A JP H0215440 A JPH0215440 A JP H0215440A
Authority
JP
Japan
Prior art keywords
magneto
optical recording
recording medium
ptmnsb
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16470888A
Other languages
Japanese (ja)
Inventor
Akira Kunimoto
晃 国元
Shigehiro Onuma
繁弘 大沼
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Japan Science and Technology Agency
Research Institute for Electromagnetic Materials
Original Assignee
Riken Corp
Research Development Corp of Japan
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Research Development Corp of Japan, Research Institute for Electromagnetic Materials filed Critical Riken Corp
Priority to JP16470888A priority Critical patent/JPH0215440A/en
Publication of JPH0215440A publication Critical patent/JPH0215440A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details

Abstract

PURPOSE:To increase Kerr rotating power and to obtain perpendicular anisotropy and large coercive force by using a thin PtMnSb film having a superfine columnar crystal structure. CONSTITUTION:The thin PtMnSb film having the superfine columnar crystal structure is formed of the superfine columnar crystals 3 of the PtMnSb formed on the projections 2 of a substrate 1. The large coercive force of >=5,000Oe and the perpendicular magnetization predominance are provided to this thin film. The form such as grain size of the superfine columnar crystals depends on the size and distribution density of the fine projections on the substrate surface and the formed by using the substrate having the adequate fine projections on the surface.

Description

【発明の詳細な説明】 (技術分野) この発明は、光磁気記録媒体およびその製造方法に関す
るものである。さらに詳しくは、この発明は、PtMn
Sb薄膜からなり、大きな保磁力と垂直磁化優位性を有
する光磁気記録媒体およびその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a magneto-optical recording medium and a method for manufacturing the same. More specifically, the present invention provides PtMn
The present invention relates to a magneto-optical recording medium made of an Sb thin film and having a large coercive force and superior perpendicular magnetization, and a method for manufacturing the same.

(背景技術) 近年、記録媒体に高密度、高アクセス速度がますます要
求されてきており、このような要請に応えるものとして
光磁気記録方式、光記録方式が注目されてきている。
(Background Art) In recent years, there has been an increasing demand for high density and high access speed for recording media, and magneto-optical recording systems and optical recording systems are attracting attention as solutions that meet these demands.

この、光磁気記録方式は、垂直磁気記録方式や光記録方
式に比べて書替え可能でかつ記録密度を高くすることが
できるという優位性を有している。
This magneto-optical recording system has advantages over perpendicular magnetic recording systems and optical recording systems in that it is rewritable and can increase recording density.

光磁気記録方式は、偏光した光束が磁性合金で反射する
際に、その偏光面が磁性合金の磁化の状態に応じて回転
するという原理を利用するものであり、このような原理
に基づく光磁気記録方式の記録材料としては、書き込み
時には、■垂直磁気異方性が大きくいわゆる垂直磁化膜
となること、■保磁力が高いこと、■キューリー点が適
度に低いこと等の磁気特性が要求され、また、再生時に
は、■カー回転角(θ1)が大きいこと、■カー・しス
テリシスの角型性が高いこと、■反射率が高いこと等の
磁気光学特性が要求されている。また記録材料を構成す
る磁性合金としては、その結晶サイズが小さく均一であ
り、耐久性に優れていることが必要とされてもいる。
The magneto-optical recording method utilizes the principle that when a polarized light beam is reflected by a magnetic alloy, the plane of polarization rotates depending on the state of magnetization of the magnetic alloy. As a recording material for this recording method, during writing, magnetic properties are required such as: 1) having a large perpendicular magnetic anisotropy to form a so-called perpendicular magnetization film, 2) having a high coercive force, and 2) having a moderately low Curie point. Further, during reproduction, magneto-optical properties such as (1) a large Kerr rotation angle (θ1), (2) high squareness of Kerr steresis, and (2) high reflectance are required. Furthermore, the magnetic alloy constituting the recording material is required to have a small and uniform crystal size and to have excellent durability.

このような緒特性を指向する記録材料として、これまで
に種々の光磁気記録媒体が開発されている。たとえば、
キューり点書き込み方式のものとして、T b F e
 Co薄膜やGdTbFe薄膜があり、耐酸化性を付与
すべくこれらに若干の貴金属元素を添加したものがある
。また、補償点書き込み方式のものとして、T b C
o薄膜等がある。
Various magneto-optical recording media have been developed as recording materials that are oriented toward such magnetic properties. for example,
As a cue point writing method, T b F e
There are Co thin films and GdTbFe thin films, and some of them have some noble metal elements added to them in order to impart oxidation resistance. In addition, as a compensation point writing method, T b C
o There are thin films etc.

しかしながら、このようなこれまでの光磁気記録媒体は
カー回転角(θk)が最大でも0.45°程度であり、
再生時のC/N比が小さく、ディジタル記録方式に供す
るにも不十分なものであった。
However, such conventional magneto-optical recording media have a maximum Kerr rotation angle (θk) of about 0.45°,
The C/N ratio during reproduction was low, and it was insufficient to be used in digital recording systems.

一方、近年、カー回転角(θ、)の大きい光磁気記録媒
体として、θに〜1.27° (波長λ=720 nn
、外部磁界flax 〜12kOa)を有するPtMn
5b系薄膜が注目されてきているが、これまでに開発さ
れたPtMnSb系薄膜は容易磁化方向が基板面に平行
で垂直異方性がほとんどなく、また保磁力が小さいとい
う欠点を有するため、光磁気記録媒体として満足できる
ものではなかった。
On the other hand, in recent years, as a magneto-optical recording medium with a large Kerr rotation angle (θ, ), θ is ~1.27° (wavelength λ=720 nn
, external magnetic field flux ~12 kOa)
5b-based thin films have been attracting attention, but the PtMnSb-based thin films developed so far have the drawbacks of easy magnetization parallel to the substrate surface, almost no perpendicular anisotropy, and low coercive force. It was not satisfactory as a magnetic recording medium.

(発明の目的) この発明は、以上の事情をFIPiまえてなされたもの
であり、大きなカー回転角のPtMnSb系薄膜の特長
を生かし、しかも垂直異方性と大きな保磁力とを有する
新しい光磁気記録媒体を提供することを目自勺としてい
る。
(Objective of the Invention) This invention was made in consideration of the above-mentioned circumstances, and is a new magneto-optical film that takes advantage of the characteristics of the PtMnSb thin film with a large Kerr rotation angle and also has perpendicular anisotropy and a large coercive force. Our goal is to provide recording media.

(発明の開示) この発明は、上記の目的を実現するために、PtMnS
bの極微細柱状晶構3ia薄膜からなることを特徴とす
る光磁気記録媒体を提供する。
(Disclosure of the Invention) In order to achieve the above object, the present invention provides PtMnS
The present invention provides a magneto-optical recording medium characterized by comprising a thin film having an ultrafine columnar crystal structure 3ia.

また、この発明は、このような光磁気記録媒体の製造方
法として、表面に極微細突起を有する基板上に、PtM
nSbの極微細柱状晶構造薄膜を形成することを特徴と
する光磁気記録媒体の製造方法をも提供する。
The present invention also provides a method for manufacturing such a magneto-optical recording medium, in which PtM is deposited on a substrate having ultrafine protrusions on the surface.
The present invention also provides a method for manufacturing a magneto-optical recording medium characterized by forming an nSb ultrafine columnar crystal thin film.

ここでいうPtMnSb記録媒体の極微細柱状晶構造薄
膜は、たとえば第1図に示したような、基板(1)の突
起(2)上に形成した PtMnSbの極微細柱状晶(3)からなっており、た
とえばその径0.02〜5μm、高さ0.05〜5μm
、分布密度5xlO’ 〜5x10’個/lra”のP
tMnSb柱状晶からなる薄膜を好適なものとして例示
することができる。PtMnSbの元素組成については
適宜に変更することができることはいうまでもない。
The ultrafine columnar crystal structure thin film of the PtMnSb recording medium referred to here is composed of ultrafine columnar crystals (3) of PtMnSb formed on protrusions (2) of a substrate (1), as shown in FIG. For example, its diameter is 0.02 to 5 μm, and its height is 0.05 to 5 μm.
, distribution density 5xlO' ~ 5x10'pieces/lra'' P
A suitable example is a thin film made of tMnSb columnar crystals. It goes without saying that the elemental composition of PtMnSb can be changed as appropriate.

この発明は、このようなPtMn5bi膜に5000a
以上の大きな保磁力と垂直磁化優位性を持たせている。
In this invention, a 5000a film is applied to such PtMn5bi film.
It has a large coercive force and superior perpendicular magnetization.

大きな保磁力と垂直磁化優位性は、その結晶粒界がある
程度酸化されることにより極微細柱状晶が磁気的に孤立
化し、また、その形状磁気異方性によって薄膜に垂直磁
化優位性か付与されることによる。
The large coercive force and perpendicular magnetization advantage are due to the ultrafine columnar crystals being magnetically isolated by oxidation of their grain boundaries to some extent, and also due to the shape magnetic anisotropy that gives the thin film a perpendicular magnetization advantage. Depends on the situation.

このPtMnSb極微細柱状晶の粒径等の形態は基板表
面の微細突起の大きさ、分布密度に依存し、表面に適度
な微細突起を有する基板を用いることにより、所望の極
微細柱状晶を容易に形成することができる。たとえば具
体的には、基板表面の極微細突起としては、径0.01
〜1μm、高さ0.02〜2.czm、分布密度8X1
05〜8×109個/112のものとするのが好ましい
The grain size and other morphology of the PtMnSb ultrafine columnar crystals depend on the size and distribution density of the fine protrusions on the substrate surface, and by using a substrate with appropriate fine protrusions on the surface, it is easy to form the desired ultrafine columnar crystals. can be formed into For example, specifically, the ultrafine protrusions on the substrate surface have a diameter of 0.01
~1μm, height 0.02~2. czm, distribution density 8X1
It is preferable to set it as the thing of 05-8x109 pieces/112.

この場合、基板の材料としては、質プラスチックス、硬
質ガラス(石英)、セラミックス、金属、あるいはそれ
らの酸化物、窒化物、炭化物、珪化物等を広く用いるこ
とができる。
In this case, a wide variety of materials such as hard plastics, hard glass (quartz), ceramics, metals, or oxides, nitrides, carbides, and silicides thereof can be used for the substrate.

基板上にPtMnSb極微細柱状晶構造薄膜を形成する
方法としては、公知の蒸着法を利用することができる。
A known vapor deposition method can be used to form the PtMnSb ultrafine columnar crystal thin film on the substrate.

たとえば、真空蒸着法、スパッタリング法、ガスプラズ
マスパッタリング法、イオンビームスパッタリング法、
クラスターイオンビーム法、イオンブレーティング法等
を用いることができる。
For example, vacuum evaporation method, sputtering method, gas plasma sputtering method, ion beam sputtering method,
A cluster ion beam method, an ion brating method, etc. can be used.

PtMnSb極微細柱状晶構造薄膜の形成源材料として
は、たとえばスパッタリングにより堆積するときには、
MnSb合金ターゲットにptチップを張り付けた複合
ターゲットを使用することができる。また、そのスパッ
タリングの条件としては、基板の温度を室温〜300℃
程度とし、アルゴンガス等を導入して行うことができる
As the source material for the PtMnSb ultrafine columnar crystal structure thin film, for example, when deposited by sputtering,
A composite target in which a PT chip is attached to a MnSb alloy target can be used. In addition, the sputtering conditions include a substrate temperature of room temperature to 300°C.
This can be done by introducing argon gas or the like.

このような気相法によるPtMnSbのNMの形成に際
しては、PtMnSbがまず基板(1)の極微細突起(
2)上にに堆積して微粒子を生じ、次いでそのPtMn
Sbの微粒子が相互に会合していわゆる超微粒子配向膜
を形成し、さらにそのまま堆積を続けて結晶を成長させ
る。
When forming PtMnSb NMs by such a vapor phase method, PtMnSb first forms ultrafine protrusions (
2) Deposit on the PtMn to produce fine particles, then the PtMn
The fine particles of Sb associate with each other to form a so-called ultrafine grain alignment film, and the deposition is continued to grow crystals.

以上のようにして得られたPtMnSbの極微III柱
状晶構造薄膜は、さらに温度200℃以上で熱処理をす
ることにより、その磁気特性をさらに向上させることが
できる。この熱処理により保磁力は8000e以上にす
ることができ、また垂直磁気異方性を増加させ、カー回
転角も0.8°以上にし、より大きなC/N比を実現す
ることができる。
The ultrafine III columnar crystal structure thin film of PtMnSb obtained as described above can be further improved in its magnetic properties by further heat treatment at a temperature of 200° C. or higher. This heat treatment makes it possible to increase the coercive force to 8000e or more, increase the perpendicular magnetic anisotropy, increase the Kerr rotation angle to 0.8° or more, and realize a larger C/N ratio.

以下、この発明を実施例に基づいて具体的に説明する。Hereinafter, this invention will be specifically explained based on examples.

もちろん、この発明は、以下の実施例によって限定され
るものではない。
Of course, the invention is not limited to the following examples.

実施例I Arガスプラズマエツチングにより表面に微小突起を形
成したプラスチック板を基板とし、この基板上に高周波
スパッタリング法によりPtMn5bをスパッタ堆積さ
せ、PtMnSb極微細柱状晶構造薄膜からなる光磁気
記録媒体を作製しな。
Example I A plastic plate with minute protrusions formed on its surface by Ar gas plasma etching was used as a substrate, and PtMn5b was sputter-deposited on this substrate by high-frequency sputtering to produce a magneto-optical recording medium consisting of a PtMnSb ultra-fine columnar crystal structure thin film. Shina.

この場合、ターゲットとしては、MnSb合金ターゲッ
トに5ral角のptチップを張り合わせた複合ターゲ
ットを使用した。またスパッタリング条件としては、ス
パッタ電力20014. A rガス圧力2 X 10
−2Torr、スパッタ時間約1時間を採用した。
In this case, a composite target was used as a target, which was a MnSb alloy target and a PT chip of 5 ral square. The sputtering conditions include sputtering power of 20014. A r gas pressure 2 x 10
-2 Torr and sputtering time of about 1 hour were used.

得られた薄膜の磁気特性を測定した結果、第2図に示す
磁化曲線を得た。これにより6500eという大きな保
磁力が確認され、また垂直磁化優位性も確認された。
As a result of measuring the magnetic properties of the obtained thin film, the magnetization curve shown in FIG. 2 was obtained. As a result, a large coercive force of 6500e was confirmed, and the predominance of perpendicular magnetization was also confirmed.

実施例2 上記実施例1で得た薄膜を350℃にて約30分間真空
加熱処理した。
Example 2 The thin film obtained in Example 1 above was subjected to vacuum heat treatment at 350° C. for about 30 minutes.

得られた薄膜の磁気特性を測定した結果、保磁力は93
00eに増加し、またカー回転角も1.15゜と大きな
値を示した。
As a result of measuring the magnetic properties of the obtained thin film, the coercive force was 93
00e, and the Kerr rotation angle also showed a large value of 1.15°.

実施例3 スパッタリング条件として、Arガス圧力を3 x 1
0−2Torrとし、実施例1と同様にしてPtMnS
b極微細柱状晶構造薄膜からなる光磁気記録媒体を作製
した。その後、さらに磁場中(3kOe)にて約400
℃の真空熱処理を行った。
Example 3 Sputtering conditions include Ar gas pressure of 3 x 1
PtMnS was heated to 0-2 Torr in the same manner as in Example 1.
A magneto-optical recording medium consisting of a thin film with an extremely fine columnar crystal structure was prepared. After that, approximately 400
℃ vacuum heat treatment was performed.

熱処理後、得られた薄膜の磁気特性を測定した結果、保
磁力は1.2kOaとなり、カー回転角も1.6°とい
う大きな値を示した。
After the heat treatment, the magnetic properties of the obtained thin film were measured. As a result, the coercive force was 1.2 kOa, and the Kerr rotation angle also showed a large value of 1.6°.

実施例4 基板の突起の高さを種々変化させて、実施例1と同様に
高周波スパッタリング法によりPtMn5bを堆積させ
た。
Example 4 PtMn5b was deposited by the high frequency sputtering method in the same manner as in Example 1, while varying the height of the protrusions on the substrate.

得られたPtMnSb薄膜の柱状結晶の分布密度の変化
を第3図に示しな、この図から明らかなように、基板の
突起の高さを低くするに従って結晶密度は増大する。こ
れは、突起の高さが低い程早期にPtMnSb粒子が会
合し始めるため、結晶粒径が小さくなるためと考えられ
る。
FIG. 3 shows changes in the distribution density of columnar crystals in the obtained PtMnSb thin film. As is clear from this figure, the crystal density increases as the height of the protrusions on the substrate is decreased. This is thought to be because the lower the height of the protrusions, the earlier the PtMnSb particles begin to associate, resulting in a smaller crystal grain size.

(発明の効果) この発明により、カー回転角が大きく、しかも垂直磁化
優位性と大きな保磁力とを有する光磁気記録媒体が得ら
れる。
(Effects of the Invention) According to the present invention, a magneto-optical recording medium having a large Kerr rotation angle, a perpendicular magnetization predominance, and a large coercive force can be obtained.

また、この光磁気記録媒体は、熱処理により一層大きな
カー回転角、垂直磁化は位性および保磁力を発揮するよ
うになる。
Furthermore, this magneto-optical recording medium exhibits a larger Kerr rotation angle, vertical magnetization, and coercive force by heat treatment.

C/N比の大きい光磁気記録媒体が実現される。A magneto-optical recording medium with a high C/N ratio is realized.

さらにまた、極微小突起を有する基板への蒸着により光
磁気記録媒体を製造するこの発明の製造方法によれば、
基板の極微細突起の大きさ、分布を制御することにより
、蒸着方法の種類にかかわらず、容易に、かつ所望の磁
気特性の PtMnSb薄膜の光磁気記録媒体を製造することがで
きる。
Furthermore, according to the manufacturing method of the present invention, which manufactures a magneto-optical recording medium by vapor deposition on a substrate having extremely small protrusions,
By controlling the size and distribution of the ultrafine protrusions on the substrate, a magneto-optical recording medium of a PtMnSb thin film having desired magnetic properties can be easily manufactured regardless of the type of vapor deposition method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の光磁気記録媒体を示した模式的断
面図である。 第2図は、この発明の光磁気記録媒体の磁化曲線を示し
た磁気特性図である。 第3図は、基板の突起の高さとPtMnSb柱状結晶の
分布密度との関係を示した相関図である。 1・・・基 板 2・・・基板の突起
FIG. 1 is a schematic cross-sectional view showing a magneto-optical recording medium of the present invention. FIG. 2 is a magnetic characteristic diagram showing the magnetization curve of the magneto-optical recording medium of the present invention. FIG. 3 is a correlation diagram showing the relationship between the height of the protrusions on the substrate and the distribution density of PtMnSb columnar crystals. 1... Board 2... Protrusions on the board

Claims (1)

【特許請求の範囲】 (1)PtMnSbの極微細柱状晶構造薄膜からなるこ
とを特徴とする光磁気記録媒体。 (2)PtMnSbの極微細柱状晶が、径 0.02〜5μm、高さ0.05〜5μm、分布密度5
×10^5〜5×10^9個/mm^2からなる請求項
第(1)項記載の光磁気記録媒体。 (3)表面に極微細突起を有する基板上に、PtMnS
bの極微細柱状晶構造薄膜を形成することを特徴とする
請求項第(1)項記載の光磁気記録媒体の製造方法。 (4)表面に、径0.01〜1μm、高さ0.02〜2
μm、分布密度8×10^5〜8×10^9個/mm^
2の極微細突起を有する基板を用いる請求項第(3)項
記載の光磁気記録媒体の製造方法。 (5)PtMnSbの極微細柱状晶構造薄膜を形成後、
温度200℃以上で熱処理をする請求項第(3)項記載
の光磁気記録媒体の製造方法。
[Scope of Claims] (1) A magneto-optical recording medium comprising a PtMnSb thin film with an ultrafine columnar crystal structure. (2) Ultrafine columnar crystals of PtMnSb have a diameter of 0.02 to 5 μm, a height of 0.05 to 5 μm, and a distribution density of 5
The magneto-optical recording medium according to claim 1, comprising ×10^5 to 5 × 10^9 pieces/mm^2. (3) PtMnS on a substrate with ultrafine protrusions on the surface.
2. The method of manufacturing a magneto-optical recording medium according to claim 1, further comprising forming a thin film having an ultra-fine columnar crystal structure. (4) On the surface, diameter 0.01-1 μm, height 0.02-2
μm, distribution density 8×10^5 to 8×10^9 pieces/mm^
3. The method for manufacturing a magneto-optical recording medium according to claim 3, wherein a substrate having two ultrafine protrusions is used. (5) After forming a PtMnSb ultrafine columnar crystal structure thin film,
The method for manufacturing a magneto-optical recording medium according to claim (3), wherein the heat treatment is performed at a temperature of 200° C. or higher.
JP16470888A 1988-07-01 1988-07-01 Magneto-optical recording medium and production thereof Pending JPH0215440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16470888A JPH0215440A (en) 1988-07-01 1988-07-01 Magneto-optical recording medium and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16470888A JPH0215440A (en) 1988-07-01 1988-07-01 Magneto-optical recording medium and production thereof

Publications (1)

Publication Number Publication Date
JPH0215440A true JPH0215440A (en) 1990-01-19

Family

ID=15798373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16470888A Pending JPH0215440A (en) 1988-07-01 1988-07-01 Magneto-optical recording medium and production thereof

Country Status (1)

Country Link
JP (1) JPH0215440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1416481A2 (en) * 2002-10-08 2004-05-06 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium, method of manufacturing magneto-optical recording medium, method of recording on magneto-optical recording medium, and method of reproduction from magneto-optical recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1416481A2 (en) * 2002-10-08 2004-05-06 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium, method of manufacturing magneto-optical recording medium, method of recording on magneto-optical recording medium, and method of reproduction from magneto-optical recording medium
EP1416481A3 (en) * 2002-10-08 2008-01-23 Matsushita Electric Industrial Co., Ltd. Magneto-optical recording medium, method of manufacturing magneto-optical recording medium, method of recording on magneto-optical recording medium, and method of reproduction from magneto-optical recording medium

Similar Documents

Publication Publication Date Title
US4202932A (en) Magnetic recording medium
JPH0215440A (en) Magneto-optical recording medium and production thereof
JPH07244831A (en) Manufacture of magnetic recording medium
EP0178685B1 (en) Perpendicular magnetic recording medium and method of making same
JP2758407B2 (en) Ultrafine columnar structure thin film
JPS6098611A (en) Manufacture of thermomagnetic recording material
JPH0619859B2 (en) Magneto-optical recording medium
JP2763913B2 (en) Magnetic film and method of manufacturing the same
JPS6126938A (en) Production of vertically magnetized recording medium
JP2001134929A (en) Magnetic recording medium and magnetic recording device
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPS63177330A (en) Production of magneto-optical recording medium
JPH10340441A (en) Structure of magnetic recording medium and magnetic recording device using that
JPH02236815A (en) Magnetic recording medium and its production
JPH0544728B2 (en)
JPS60111348A (en) Production of magnetic recording medium
JPH0239019B2 (en) JIKIKIROKUBAITAINOSEIZOHOHO
JPH0261819A (en) Perpendicular magnetic recording medium
JPS58137134A (en) Manufacture of magnetic recording medium
JPS60173745A (en) Photoelectromagnetic recording medium
JPH11161934A (en) Perpendicular magnetic recording medium and its production as well as storage device using the same
JPH0449547A (en) Production of metal laminated film
JPH1166558A (en) Manufacture for magnetic disk
JPH0562173A (en) Manufacture of magnetic disk
JPS62295219A (en) Production of perpendicular magnetic recording medium