JPH0450651B2 - - Google Patents

Info

Publication number
JPH0450651B2
JPH0450651B2 JP21890683A JP21890683A JPH0450651B2 JP H0450651 B2 JPH0450651 B2 JP H0450651B2 JP 21890683 A JP21890683 A JP 21890683A JP 21890683 A JP21890683 A JP 21890683A JP H0450651 B2 JPH0450651 B2 JP H0450651B2
Authority
JP
Japan
Prior art keywords
film
sputtering
substrate
coercive force
perpendicularly magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21890683A
Other languages
Japanese (ja)
Other versions
JPS60111348A (en
Inventor
Koichi Shinohara
Hideki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21890683A priority Critical patent/JPS60111348A/en
Publication of JPS60111348A publication Critical patent/JPS60111348A/en
Publication of JPH0450651B2 publication Critical patent/JPH0450651B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は垂直記録方式に適した磁気記録媒体の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a magnetic recording medium suitable for perpendicular recording.

従来例の構成とその問題点 従来実用に供されている長手記録は、記録波長
が短かくなるに従つて減磁界が大きくなり、大き
な残留磁化を得ることができなくなるのに反し、
磁気記録媒体面に垂直な方向に互いに反平行に記
録していく、いわゆる垂直記録方式は短波長程減
磁界が小さくなるので大きな残留磁化を得ること
ができるので、高密度記録方式として注目されて
いる。この記録方式を具体化するには、磁気記録
層が膜面に垂直に磁化されるいわゆる垂直磁化膜
を必要とし、現在Co−Cr(Cr20wt%前後)のス
パツタ膜が最も結晶配向性が良好であることが知
られている。
Conventional structure and its problems In the conventional longitudinal recording, as the recording wavelength becomes shorter, the demagnetizing field becomes larger and it becomes impossible to obtain a large residual magnetization.
The so-called perpendicular recording method, in which recording is performed antiparallel to each other in a direction perpendicular to the surface of the magnetic recording medium, is attracting attention as a high-density recording method because the shorter the wavelength, the smaller the demagnetizing field, making it possible to obtain a large residual magnetization. . To realize this recording method, the magnetic recording layer requires a so-called perpendicular magnetization film, in which the magnetic recording layer is magnetized perpendicularly to the film surface, and currently a sputtered film of Co-Cr (about 20wt% Cr) has the best crystal orientation. It is known that there is.

又垂直記録用の媒体になる材料としてはいくつ
かのCo−M(MはCrの他のW、Mo、Ti、Ru、
V、等のCoのもつ飽和磁化を稀釈し減磁界を弱
めるために添加される原子を示している。)合金
があり、いずれもスパツタ膜が良好な結晶配向性
を有している。
In addition, some Co-M (M is Cr, W, Mo, Ti, Ru,
It shows atoms added to dilute the saturation magnetization of Co such as V and weaken the demagnetizing field. ) alloys, all of which have good crystal orientation in their sputtered films.

これらの垂直磁化膜を移動する基板上に形成す
ることは、垂直記録の実用化には重要なことであ
る。第1図は、代表的な垂直記録用の磁気記録媒
体の拡大断面図である。基板1の上に軟磁性層2
があり、その上に垂直磁化膜3が配されたもの
で、表面保護層、裏面塗布層等は適宜配されるも
のである。第2図は、スパツタリング法の模式図
で、基板1に対向して、ターゲツト4を真空中に
配設し、ある圧力を選んでターゲツト4に高周波
電源5からマツチング回路6の調整により、高周
波電力を供給し、高周波グロー放電を生じせしめ
る。
Forming these perpendicularly magnetized films on a moving substrate is important for the practical application of perpendicular recording. FIG. 1 is an enlarged cross-sectional view of a typical magnetic recording medium for perpendicular recording. Soft magnetic layer 2 on substrate 1
A perpendicular magnetization film 3 is disposed thereon, and a surface protective layer, a back coating layer, etc. are disposed as appropriate. FIG. 2 is a schematic diagram of the sputtering method, in which a target 4 is placed in a vacuum facing the substrate 1, and a high frequency power source 5 is applied to the target 4 by adjusting a matching circuit 6 at a certain pressure. is supplied to generate a high-frequency glow discharge.

放電により生じたイオンA+はターゲツト4を
衝撃し、ターゲツト4を構成する原子Bを叩きだ
す。7は基板ホルダで、8はターゲツトホルダで
ある。ターゲツト4を例えば20%Crを含むCo−
Cr合金で作成しておき、放電ガスにアルゴンを
用いて13.56MHzの高周波を利用することで、垂
直保磁力をいろいろ変えた垂直磁化膜を得ること
ができるのであるが、基板1を移動しながら(こ
の場合は基板ホルダ7は巻取蒸着によく用いられ
る円筒状キヤンで置き変えるものとする。)垂直
磁化膜を得ようとすると第3図に曲線Dで示した
ように極端に保磁力が小さくなつてしまう問題が
あつた。
Ions A + generated by the discharge impact the target 4 and knock out atoms B forming the target 4. 7 is a substrate holder, and 8 is a target holder. For example, target 4 is Co-containing 20% Cr.
It is possible to obtain perpendicularly magnetized films with various perpendicular coercive forces by making the film from a Cr alloy, using argon as the discharge gas, and using a high frequency of 13.56 MHz. (In this case, the substrate holder 7 shall be replaced with a cylindrical can often used for roll-up deposition.) When attempting to obtain a perpendicularly magnetized film, the coercive force becomes extremely large as shown by curve D in Figure 3. I had a problem with it becoming smaller.

この原因として推察されるものに、基板からの
放出ガスがある。特に軟磁性層を配さない場合
は、次々に新しい基板面がスパツタ雰囲気に入つ
てくるので、連続したガス源とみることができる
が、この見方で基板の前処理を十分行つても、又
前処理した上に軟磁性層を配した上に垂直磁化膜
を形成しても、垂直保磁力がわずかに大きくなる
だけで、明瞭な改善がみられなかつた。
A possible cause of this is gas released from the substrate. In particular, when a soft magnetic layer is not provided, new substrate surfaces enter the sputtering atmosphere one after another, so it can be seen as a continuous gas source. Even if a perpendicularly magnetized film was formed on a pretreated soft magnetic layer, the perpendicular coercive force only increased slightly and no clear improvement was observed.

発明の目的 本発明は上記従来の問題点を解消するもので、
スパツタリング法により移動する高分子基板上に
大きな垂直保磁力を有する垂直磁化膜を形成する
ことができる磁気記録媒体の製造方法を提供する
ものである。
Purpose of the invention The present invention solves the above-mentioned conventional problems.
The present invention provides a method for manufacturing a magnetic recording medium that can form a perpendicularly magnetized film having a large perpendicular coercive force on a moving polymer substrate using a sputtering method.

発明の構成 本発明は、移動する高分子基板にCo−M合金
からなる垂直磁化膜をスパツタリング法にて形成
する際、Co原子のスパツタ速度がM原子のスパ
ツタ速度より大きいグロー放電を用いることを特
徴とするもので、垂直保磁力の大きい垂直磁化膜
を連続的に形成できるものである。
Structure of the Invention The present invention uses a glow discharge in which the sputtering speed of Co atoms is higher than the sputtering speed of M atoms when forming a perpendicularly magnetized film made of a Co-M alloy on a moving polymer substrate by a sputtering method. This method is characterized by the ability to continuously form a perpendicularly magnetized film with a large perpendicular coercive force.

実施例の説明 本発明は、スパツタリング法により大きい垂直
保磁力を有する垂直磁化膜を移動する高分子基板
上に形成するには、グロー放電条件の選択が極め
て重要であることを尽きとめ完成させたもので、
以下図面を参照しながら実施例について説明す
る。
DESCRIPTION OF EMBODIMENTS The present invention was completed by determining that the selection of glow discharge conditions is extremely important in forming a perpendicularly magnetized film having a large perpendicular coercive force on a moving polymer substrate by a sputtering method. Something,
Examples will be described below with reference to the drawings.

第1図の高分子基板1としては、ポリエチレン
テレフタレート等のポリエステル類、ポリプロピ
レン等のポリオレフイン類、セルローズジアセテ
ート、ニトロセルロース等のセルロース誘導体、
ポリカーボネート、ポリ塩化ビニル、ポリアミド
イミド、ポリヒダントイン、ポリパラパニツク
酸、ポリイミド等が用いられる。
As the polymer substrate 1 in FIG. 1, polyesters such as polyethylene terephthalate, polyolefins such as polypropylene, cellulose derivatives such as cellulose diacetate and nitrocellulose,
Polycarbonate, polyvinyl chloride, polyamideimide, polyhydantoin, polyparapanic acid, polyimide, etc. are used.

軟磁性層2としては、パーマロイ薄膜が代表的
であるが、Co、Fe、Ni等で置き変えることもで
きる。
A typical example of the soft magnetic layer 2 is a permalloy thin film, but it can also be replaced with Co, Fe, Ni, or the like.

垂直磁化膜は、Co−Cr、Co−Ti、Co−Mo、
Co−W、Co−Ru、Co−Mn、Co−Cr−Rh等で
三元合金の場合は、Mであらわされる元素が2つ
ある訳であるが、その場合は、重量%の多い方の
元素とCoとの間のスパツタ速度が本発明の条件
を満足するように選ぶものとする。
Perpendicular magnetization films include Co-Cr, Co-Ti, Co-Mo,
In the case of ternary alloys such as Co-W, Co-Ru, Co-Mn, and Co-Cr-Rh, there are two elements represented by M. The sputtering speed between the element and Co shall be selected so as to satisfy the conditions of the present invention.

又Co−Ni−Cr、Co−Ni−V、Co−Ni−Ti等
の場合は、CoがCo−Niに置き換つたものと考え
て取扱うこととしMは、Co−Ni以外の元素をさ
し、CoとM原子の関係に注目するものとする。
In addition, in the case of Co-Ni-Cr, Co-Ni-V, Co-Ni-Ti, etc., treat them as if Co has replaced Co-Ni. However, let us focus on the relationship between Co and M atoms.

スパツタリング法は公知の高周波スパツタ、直
流スパツタ、それぞれのマグネトロン方式等から
適宜選択できる。
The sputtering method can be appropriately selected from known high frequency sputtering, direct current sputtering, magnetron methods, and the like.

第4図は、高周波(周波数13.56MHz)二極ス
パツタリングでCo−Crのスパツタ率で、発振管
の陽極電圧とCoとCrのスパツタ率の関係を示し
たもので、Coの最大値を1に規格化した相対値
である。
Figure 4 shows the relationship between the anode voltage of the oscillator tube and the sputtering rate of Co and Cr using high-frequency (frequency 13.56MHz) two-pole sputtering. It is a normalized relative value.

動作条件を、、、と変えてCo−Cr
(Cr21w%)をスパツタして、Co−Crの膜厚は
0.1μmで一定になるように高周波電力を調整し、
高分子基板の移動速度を変えて垂直磁化膜を作成
し、振動試料型磁束計で垂直方向の保磁力を測定
した。
Co-Cr by changing the operating conditions...
(Cr21w%) was sputtered, and the Co-Cr film thickness was
Adjust the high frequency power so that it is constant at 0.1μm,
A perpendicularly magnetized film was created by varying the moving speed of the polymer substrate, and the coercive force in the vertical direction was measured using a vibrating sample magnetometer.

実施例 1 厚さ8μmのポリエチレンテレフタレートを80
℃の熱媒を循環させた直径50cmの円筒状のキヤン
に沿わせて移動させて、キヤン表面から10cm離れ
た位置にCo−Crのターゲツトを移動方向の長さ
が12cmのものを2基置いてCo−Crをスパツタ蒸
着した。真空槽はあらかじめ10-6Torrまで排気
し、基板の表面を300Wの高周波電力を投入し、
(陽極電圧1KV)Ar9×10-3Torrで1.2secグロー
放電処理してからスパツタ蒸着した。
Example 1 80 μm thick polyethylene terephthalate
A heating medium of °C was moved along a cylindrical can with a diameter of 50 cm, and two Co-Cr targets with a length of 12 cm in the moving direction were placed 10 cm away from the can surface. Then, Co-Cr was sputter deposited. The vacuum chamber was evacuated to 10 -6 Torr in advance, and 300W of high-frequency power was applied to the surface of the board.
(Anode voltage 1KV) After glow discharge treatment for 1.2 seconds at Ar9×10 -3 Torr, sputter deposition was performed.

動作条件を第4図の、、、にそれぞれ
選びArの圧力を1×10-3Torr〜1×10-2Torrに
変え、投入電力をターゲツト1基当り、560Wか
ら2.2KWまで変化させて、得たCo−Cr膜の垂直
保磁力を移動速度を変えてプロツトしたのが第3
図である。
Select the operating conditions as shown in Figure 4, change the Ar pressure from 1 x 10 -3 Torr to 1 x 10 -2 Torr, and change the input power from 560W to 2.2KW per target. The third graph plots the vertical coercive force of the Co-Cr film obtained by changing the moving speed.
It is a diagram.

本発明の構成要件を満足する、、は、停
止基板上に得られたCo−Cr膜の垂直保磁力に比
較すると少し基板が移動する状態で形成したCo
−Cr膜の方が小さいが、変化量は抑制されてお
り、大きな保磁力が得られている。それに比べて
では急激な保磁力低下が起つており、本発明と
の差は大きい。
Satisfying the structural requirements of the present invention, the Co-Cr film formed with the substrate moving a little compared to the vertical coercive force of the Co-Cr film obtained on the stopped substrate.
Although the −Cr film is smaller, the amount of change is suppressed and a large coercive force is obtained. In comparison, there was a rapid decrease in coercive force, and the difference with the present invention is large.

両者の差異が生じた原因のひとつは、本発明の
要件を満足したグロー放電状態の方がCrの励起
状態にある割合が大きいことが分光測定により知
られるが、それによる結晶配向性の向上が考えら
れる。
One of the reasons for the difference between the two is that it is known from spectroscopic measurements that the proportion of Cr in the excited state is higher in the glow discharge state that satisfies the requirements of the present invention, but the improvement in crystal orientation due to this is known. Conceivable.

他の例として熱媒温度を120℃にあげて前記し
たと同じ実験を行つたが、からの条件では、
5m/minで950〜1050〔エルステツド〕、では
420〔エルステツド〕であつた。
As another example, the same experiment as described above was conducted with the heating medium temperature raised to 120℃, but under the conditions of
950-1050 [Oersted] at 5m/min, then
420 [Ersted].

実施例 2 6.8μmのポリアミド基板を160℃で24時間真空
乾燥した後、キヤンの表面温度50℃でNi−Fe
(80wt%Ni)を0.43μm電子ビーム蒸着した。
Example 2 After vacuum drying a 6.8 μm polyamide substrate at 160°C for 24 hours, Ni-Fe was dried at a can surface temperature of 50°C.
(80 wt% Ni) was electron beam evaporated to a thickness of 0.43 μm.

その基板を用いて、実施例1と同じ要領で、
Co−CrターゲツトをCo−Vターゲツトに変えて
Co−V(V24wt%)から成る垂直磁化膜を0.15μ
m形成した。
Using the substrate, in the same manner as in Example 1,
Change Co-Cr target to Co-V target
A 0.15μ perpendicularly magnetized film made of Co-V (V24wt%)
m was formed.

基板の移動速度5m/minで得られた垂直保磁
力は動作条件によりそれぞれが1020〔エルステ
ツド〕、が990〔エルステツド〕、が950〔エルス
テツド〕、が380〔エルステツド〕であつた。
The vertical coercivity obtained at a substrate moving speed of 5 m/min was 1020 [Oersted], 990 [Oersted], 950 [Oersted], and 380 [Oersted] depending on the operating conditions.

発明の効果 以上のように本発明はCo−M合金から成る垂
直磁化膜をスパツタリング法で形成する際、スパ
ツタ速度がM原子よりCo原子の方が大きい条件
のグロー放電でスパツタすることで、例え高分子
基板が移動しても結晶配向性の良い、大きい垂直
保磁力をもつたCo−M合金垂直磁化膜が得られ
るもので、その実用的効果は大きい。
Effects of the Invention As described above, when forming a perpendicularly magnetized film made of a Co-M alloy by a sputtering method, the present invention uses glow discharge to form a perpendicularly magnetized film made of a Co-M alloy using a glow discharge condition in which the sputtering speed is higher for Co atoms than for M atoms. Even if the polymer substrate moves, a perpendicularly magnetized Co--M alloy film with good crystal orientation and a large perpendicular coercive force can be obtained, and its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、垂直磁気記録用の磁気記録媒体の拡
大断面図、第2図は、スパツタリング法による垂
直磁化膜形成を説明するための図、第3図は、グ
ロー放電条件をパラメータにした垂直保磁力の移
動速度依存性を示す特性図、第4図は、各原子の
スパツタ速度のグロー放電条件との関係を示す特
性図である。 1……高分子基板、3……垂直磁化膜。
Figure 1 is an enlarged cross-sectional view of a magnetic recording medium for perpendicular magnetic recording, Figure 2 is a diagram for explaining the formation of a perpendicularly magnetized film by the sputtering method, and Figure 3 is a diagram for explaining the formation of a perpendicular magnetic film using glow discharge conditions as parameters. FIG. 4 is a characteristic diagram showing the dependence of the coercive force on the moving speed. FIG. 4 is a characteristic diagram showing the relationship between the sputtering speed of each atom and the glow discharge conditions. 1... Polymer substrate, 3... Perpendicular magnetization film.

Claims (1)

【特許請求の範囲】[Claims] 1 移動する高分子基板にCo−M合金からなる
垂直磁性膜をスパツタリング法にて形成する際、
Co原子のスパツタ速度がM原子のスパツタ速度
より、大きいグロー放電を用いることを特徴とす
る磁気記録媒体の製造方法。
1. When forming a perpendicular magnetic film made of Co-M alloy on a moving polymer substrate by sputtering method,
A method for manufacturing a magnetic recording medium, characterized in that a glow discharge is used in which the sputtering speed of Co atoms is higher than the sputtering speed of M atoms.
JP21890683A 1983-11-21 1983-11-21 Production of magnetic recording medium Granted JPS60111348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21890683A JPS60111348A (en) 1983-11-21 1983-11-21 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21890683A JPS60111348A (en) 1983-11-21 1983-11-21 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60111348A JPS60111348A (en) 1985-06-17
JPH0450651B2 true JPH0450651B2 (en) 1992-08-14

Family

ID=16727162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21890683A Granted JPS60111348A (en) 1983-11-21 1983-11-21 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60111348A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104381A1 (en) * 2004-01-15 2011-05-05 Stefan Laure Plasma Treatment of Large-Scale Components

Also Published As

Publication number Publication date
JPS60111348A (en) 1985-06-17

Similar Documents

Publication Publication Date Title
US4539265A (en) Magnetic recording medium
US4990361A (en) Method for producing magnetic recording medium
JPH0450651B2 (en)
JPS62128019A (en) Magnetic recording medium
US4410406A (en) Process for preparing magnetic recording medium
JPH059849B2 (en)
EP0183120A2 (en) Magnetic recording member
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPS60111344A (en) Production of magnetic recording medium
JP2563457B2 (en) Method of manufacturing magnetic recording medium
JP2668994B2 (en) Manufacturing method of magnetic recording medium
JP2951892B2 (en) Magnetic recording media
JPH0334614B2 (en)
JPH08129741A (en) Magnetic recording medium
JPS62236141A (en) Production of magnetic recording medium
JPH0660448A (en) Magneto-optical recording medium
JPS59129944A (en) Method and device for manufacturing magnetic recording medium
JPH04188430A (en) Magnetic recording tape having excellent abrasion resistance and corrosion resistance and manufacture thereof
JPH0652537A (en) Magnetic recording medium
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPS6174134A (en) Magnetic recording medium
JPH0323968B2 (en)
JPH0357539B2 (en)
JPH05128515A (en) Manufacture of sputtered thin film
JPH03162740A (en) Magneto-optical recording medium