JPS5841439A - Magnetic recording medium and its manufacture - Google Patents

Magnetic recording medium and its manufacture

Info

Publication number
JPS5841439A
JPS5841439A JP56137621A JP13762181A JPS5841439A JP S5841439 A JPS5841439 A JP S5841439A JP 56137621 A JP56137621 A JP 56137621A JP 13762181 A JP13762181 A JP 13762181A JP S5841439 A JPS5841439 A JP S5841439A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
recording medium
magnetic layer
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56137621A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Nobuo Nakamura
信雄 中村
Kaji Maezawa
可治 前澤
Toshiaki Kunieda
国枝 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56137621A priority Critical patent/JPS5841439A/en
Publication of JPS5841439A publication Critical patent/JPS5841439A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a ferromagnetic metallic thin film type magnetic recording medium with enhanced corrosion and wear resistances by oxidizing the surface of a vapor-deposited magnetic layer made of a substance contg. Co. CONSTITUTION:A material 2 to be evaporated in a container 3 is vapor-deposited on a substrate 1 transferred from a feeding shaft 7 to a coiling shaft 8 along a rotating can 9 through a shielding plate 11 in a vacuum vessel 4, and while introducing oxygen or a gaseous mixture contg. oxygen from a nozzle 10 attached to one end of the side of the plate 11 facing to the can 9, glow discharge treatment 15 is carried out to oxidize the surface of the vapor-deposited ferromagnetic layer. Thus, a protective film contg. CoO and Co3O4 is formed.

Description

【発明の詳細な説明】 本発明は高分子成形物基板上に蒸着された強磁性層を磁
気記録層とする磁気記録媒体及びその製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium whose magnetic recording layer is a ferromagnetic layer deposited on a polymer molded substrate, and a method for manufacturing the same.

本発明は、コバルト(Cψを含む物質よりなる蒸着層の
表面を効果的に保護する酸化層を有する媒体及びその製
造方法を提供するものである。
The present invention provides a medium having an oxide layer that effectively protects the surface of a deposited layer made of a substance containing cobalt (Cψ), and a method for producing the medium.

磁気記録に於て、短波長記録に、強磁性金属薄膜を磁気
記録層として用いることの有用性は良く知られている。
In magnetic recording, the usefulness of using a ferromagnetic metal thin film as a magnetic recording layer for short wavelength recording is well known.

しかし、かかる媒体を実用レベルで利用する時に最も大
きな問題は、腐食、摩耗に対する強磁性層の耐性である
However, the biggest problem when using such media on a practical level is the resistance of the ferromagnetic layer to corrosion and wear.

従来この種の問題は、湿式めっき法、蒸着法のいずれの
方法で得だ強磁性膜についても共通の課題で、各方面で
この問題解決のだめの努力が払われてきた。
Conventionally, this kind of problem has been common to ferromagnetic films obtained by either wet plating or vapor deposition, and efforts have been made in various fields to solve this problem.

このためにとられた方法の多くは、強磁性層の上に更に
別の保護層を設けるものであったっN1・W合金(特開
昭51−43110号公報)。
Most of the methods taken for this purpose were to provide another protective layer on the ferromagnetic layer (Japanese Patent Application Laid-Open No. 51-43110).

N1−B合金(特開昭52−2405号公報)、N1合
金層を熱処理により硬度をあげたもの(特開昭51−1
02605号公報) 、  Ni−Cr合金(特開昭5
3−73108号公報)等の合金薄膜を保護層とするも
の、酸化物、炭化物(特開昭50−104602号公報
)、酸化物磁性体上にα−Fe20.系薄膜を保護層と
して配したもの(特開昭51−59606号公報)、5
i−8i酸化物(特開昭52−127203号公報)、
磁性層との間にCrを介しての5i−8ja?化物(特
開昭52−127204号公報)、窒化ケイ素化合物(
特開昭56−73931号公報)、Laの硼化物層(特
開昭56−11626号公報)を保護層とするもの、有
機物を保護層とするもの、例えば、飽和脂肪酸の単分子
層(特開昭60〜7500号公報)、滑性液体層中に酸
化防止剤を含有させたもの(特開昭61−20805号
公報)等が提案さノtでいる。
N1-B alloy (Japanese Unexamined Patent Publication No. 52-2405), N1 alloy layer hardened by heat treatment (Japanese Unexamined Patent Publication No. 51-1
02605), Ni-Cr alloy (JP-A-5
3-73108), oxides, carbides (JP-A-50-104602), α-Fe20. system thin film as a protective layer (Japanese Unexamined Patent Publication No. 51-59606), 5
i-8i oxide (JP-A-52-127203),
5i-8ja with Cr interposed between it and the magnetic layer? compound (Japanese Unexamined Patent Publication No. 52-127204), silicon nitride compound (
JP-A-56-73931), La boride layer (JP-A-56-11626) as a protective layer, organic material as a protective layer, for example, a monomolecular layer of saturated fatty acid (JP-A-56-11626). JP-A No. 61-20805) and one containing an antioxidant in the lubricating liquid layer (JP-A No. 61-20805) have been proposed.

これら開示された技術に共通している問題は、短波長記
録に於けるスペーンングロスの制約からこれらの保護層
を極めて薄く仕上げることが要求されることから生じて
いる。即ち、厚みとして、50ム程度では耐蝕性、耐摩
耗性の両方に優れた改善を与えにくく、このことは、相
対速度3m//sec〜5m/8o0という高速で回転
するヘッドとの摺動に於て、より深酷化しているのであ
る。
A problem common to these disclosed techniques arises from the fact that these protective layers are required to be made extremely thin due to the limitations of spacing loss in short wavelength recording. In other words, if the thickness is about 50 mm, it is difficult to improve both corrosion resistance and abrasion resistance. However, it is becoming more serious.

これらは強磁性層と保護層とが異なる材質である点と、
強磁性層の形成と独立の工程により保護膜の形成を行っ
ていることに改善すべき問題を含んでいる。
The ferromagnetic layer and the protective layer are made of different materials, and
The fact that the protective film is formed in a process independent of the formation of the ferromagnetic layer involves a problem that should be improved.

即ち自然環境下で長期間保存されたときの媒体ば。That is, the media when stored for a long time in a natural environment.

目視観察(光学顕微鏡で倍率をあげて観察する場合も含
める。)上、何の変化もみられなくても、前述した如く
、高速回転するヘッドに当接した時保護層の剥離を引き
起すことが多く、この事実は異なる物質量の界面の破壊
を示しており、改善が望まれるのである。
Even if no change is observed in visual observation (including observation with increased magnification using an optical microscope), as mentioned above, the protective layer may peel off when it comes into contact with a high-speed rotating head. This fact often indicates destruction of the interface between different amounts of substances, and improvements are desired.

本発明はかかる点に鑑みなされたもので、磁性体を構成
するCoそのものの酸化物層により目的を達成するもの
である。この場合、前述したように付加的な物質を使用
しないことから安定性、信頼性の面で後述する利点を明
らかに有している。
The present invention has been made in view of this point, and achieves the object by using an oxide layer of Co itself, which constitutes the magnetic material. In this case, as mentioned above, since no additional substances are used, it clearly has the advantages in terms of stability and reliability, which will be described later.

なおここで本発明でいう蒸着は、真空蒸着、スパッタリ
ング、イオンブレーティング等を含むものである。
Note that the term "vapor deposition" as used in the present invention includes vacuum deposition, sputtering, ion blasting, and the like.

本発明は、高分子成形物基板上に蒸着されたCOを含む
強磁性体層が少なくともCoo、  0o504を含む
被覆層を有する磁気記録媒体を提供し、又かかる媒体る
高速で得る方法を提供するものである。
The present invention provides a magnetic recording medium in which a ferromagnetic layer containing CO deposited on a polymer molded substrate has a coating layer containing at least Coo, 0o504, and a method for obtaining such a medium at high speed. It is something.

本発明によると後出の各実施例のいずれによっても得ら
れた媒体は、表面解析によりCooと00304を含ん
でいることが示され、他の特定の方法によって得た、C
OO又はCo3O4のみが含まれる媒体に比較して、後
述する環境安定性、耐摩耗性に優れた改善効果を有して
いる。
According to the present invention, the media obtained by any of the Examples described below were shown to contain Coo and 00304 by surface analysis, and the media obtained by other specific methods were shown to contain Coo and 00304.
Compared to a medium containing only OO or Co3O4, it has excellent improvement effects in environmental stability and abrasion resistance, which will be described later.

表面構造の解析には、反射電子線回折、ESCA。Backscattered electron diffraction and ESCA are used to analyze the surface structure.

オージェ電子分光が用いられた。Auger electron spectroscopy was used.

それらの分析により、CooとCo3O4の割合につい
て特別の限定が必要ではないことが示され、複合酸化物
であることが重要であることが(そのメカニズノ、につ
いては明確ではないが、)結論された。
These analyzes showed that there was no need for any special limitation on the ratio of Coo and Co3O4, and it was concluded that it was important that it was a composite oxide (although the mechanism was not clear). .

ここで各実施例について詳述する前に、本発明を実施す
るだめの装置について図面を用い説明する。
Before describing each embodiment in detail, an apparatus for carrying out the present invention will be described with reference to the drawings.

第1図に前記装置の一例を示す。図に示すように、真空
槽4は、主に高分子成形物基板の捲き取り機構を配設し
た上室13と、蒸発源を配した下室14の二室構成釦な
っている。二室構成を選ぶか 否かは・目的、装置の規
模等で決定すれば良く本発明を限定するものではない。
FIG. 1 shows an example of the device. As shown in the figure, the vacuum chamber 4 is comprised of two chambers: an upper chamber 13 in which a mechanism for winding up the polymer molded substrate is disposed, and a lower chamber 14 in which an evaporation source is disposed. Whether or not to choose a two-chamber configuration may be determined based on the purpose, scale of the device, etc., and does not limit the present invention.

上室13は、例えば油拡散エジェクタポンプを主体とし
た排気系6により、10 ’Torr〜10 ’Tor
rの真空度に保持される。下室14は油拡散ポンプを主
体とした排気系6により105TOrr〜10−6To
rrの真空度まで排気される。
The upper chamber 13 is heated to a pressure of 10' Torr to 10' Torr by an exhaust system 6 mainly composed of an oil diffusion ejector pump, for example.
The vacuum level is maintained at r. The lower chamber 14 has a pressure of 105 TOrr to 10-6 To by an exhaust system 6 mainly composed of an oil diffusion pump.
It is evacuated to a vacuum level of rr.

基板1は、送り出し軸7より、回転キャン9に沿って移
動し、捲き取り軸8に捲き取られる。
The substrate 1 is moved from the feed shaft 7 along the rotary can 9 and is rolled up by the winding shaft 8.

第1図では最も簡素な捲き取り系をモデル化して示した
が、具体的には、回転キャン9の役割は基板1の冷却と
支持を兼ねるものであり、斜方蒸着に於ける蒸着効率を
更に改善するだめに、例えば、[「1転するステンレス
スチール製のベルトKGわせで移動することで回転キャ
ンと同様の役割を果たすこともできる。15はグロー放
電処理機構をモデル的に示したもので、その具体的−例
は第2図に示す。
Figure 1 shows a model of the simplest winding system, but specifically, the role of the rotating can 9 is to both cool and support the substrate 1, and to improve the deposition efficiency in oblique deposition. For further improvement, for example, it is possible to perform the same role as a rotating can by moving with a stainless steel belt KG that rotates once. 15 is a model showing the glow discharge treatment mechanism. A specific example is shown in FIG.

第1図における下室14には蒸発源を配設する。An evaporation source is provided in the lower chamber 14 in FIG.

蒸発源は蒸発源容器3と蒸発材料2とでモデル的に示し
たが、加熱は電子ビームによるのが好ましい1 蒸発源の最も高温部を蒸発ポイント6とし、遮へい板1
1の端部Mとを通る直線がキャンの表面と交わる点をP
Oとする。
The evaporation source is shown as a model with an evaporation source container 3 and an evaporation material 2, but heating is preferably done by an electron beam.1 The highest temperature part of the evaporation source is the evaporation point 6, and the shielding plate 1
The point where the straight line passing through the end M of 1 intersects with the surface of the can is P
Let it be O.

磁性層の形成は、矢印ムの方向に移動する基板1上に高
入射角でかつ低蒸着速度から、低入射角でかつ最大蒸着
速度域まで、入射角と蒸着速度が動的に変化する系で行
われる。
The magnetic layer is formed using a system in which the incident angle and deposition rate dynamically change from a high incidence angle and low deposition rate to a low incidence angle and maximum deposition rate on the substrate 1 moving in the direction of the arrow M. It will be held in

遮へい板11のキャンを見込む側の端部に例えばパイプ
に複数個の孔を配したノズル1oを配設し、ここより、
酸素、又は酸素を含む混合気体を系に導入する。
A nozzle 1o, for example a pipe with a plurality of holes, is arranged at the end of the shielding plate 11 on the side where the can is seen, and from here,
Oxygen or a gas mixture containing oxygen is introduced into the system.

この導入は、ノズル1Qの孔より噴出する気体流が主と
して、Po又はPOに近い領域に向けて行われるよう角
度調整、配置関係を決定して行われる。
This introduction is performed by adjusting the angle and determining the arrangement relationship so that the gas flow ejected from the hole of the nozzle 1Q is directed mainly toward Po or a region close to PO.

これはノズルの機構によっても異なるが、要は最大蒸着
速度域へ導入気体を差し向けることが重要なのである。
This differs depending on the nozzle mechanism, but the important thing is to direct the introduced gas to the maximum deposition rate region.

この場合、最大蒸着速度域へ導入気体を差し向けること
は、前記蒸発源からの蒸発気流の磁性層の表面部形成に
あずかる部分に導入気体を差し向けることとなる。12
は上室13と下室14を仕切るかく壁である。第2図に
示したグロー放電処理機構は公知の同軸マグネトロン放
電を誘起するだめの要素を示したものである。
In this case, directing the introduced gas to the maximum deposition rate region means directing the introduced gas to the portion of the evaporation air flow from the evaporation source that participates in forming the surface portion of the magnetic layer. 12
is a wall that partitions the upper chamber 13 and the lower chamber 14. The glow discharge treatment mechanism shown in FIG. 2 shows elements for inducing a known coaxial magnetron discharge.

第2図に示すように、移動する基板16上に形成された
強磁性層1了の表面は、高電圧を印加した陽極18 (
これは筒状の電極で内部には永久磁石、又は電磁石のマ
l−IJラックス組み込まれ、図示したように、電子が
らせん運動し、イオン化確率を増やすような磁場を構成
するように組立てら!1でいる)と陰極19.カバー2
0で構成される空間21内に強制的に酸素ガス又は酸素
を含む混合気体を導入して得たグロー放電を利用して処
理されるものである。
As shown in FIG. 2, the surface of the ferromagnetic layer 1 formed on the moving substrate 16 is exposed to the anode 18 (
This is a cylindrical electrode with a permanent magnet or electromagnet Mar-IJ Lux built into it, and as shown in the figure, it is assembled to create a magnetic field that causes electrons to move in a spiral manner and increases the probability of ionization! 1) and cathode 19. cover 2
The treatment is performed using a glow discharge obtained by forcibly introducing oxygen gas or a mixed gas containing oxygen into the space 21 consisting of zero.

陰極19とカバー20は同電位であってもいいが、カバ
ー20は接地電位で陽極18.陰極19はカバー2oか
ら絶縁されて、電極18が陰極19に対して正になるよ
う直流電圧を印加するが、又は、陽極18.陰極19間
に交流、さらに積極的に高周波電圧を印加するかは自由
に選択できる。
The cathode 19 and the cover 20 may be at the same potential, but the cover 20 is at ground potential and the anode 18. The cathode 19 is insulated from the cover 2o and a DC voltage is applied so that the electrode 18 is positive with respect to the cathode 19, or the anode 18. It can be freely selected whether to apply an alternating current or more actively a high frequency voltage between the cathodes 19.

グロー放電処理は他の平板マグネトロン放電。Glow discharge treatment is different from other flat plate magnetron discharge.

熱陰極グロー放電等公知のいずれによるものでもよいこ
とは後出の実施例のなかからも理解できる。
It can be understood from the examples described later that any known method such as hot cathode glow discharge may be used.

次に具体的な実施例の説明を行う。Next, a specific example will be explained.

なお以下の実施例1〜4における共通条件として、第1
図に示した装置でφ500の回転キャンを用いるととも
に、第1図中に書き込んだX、  Zの座標軸に基づい
た座標表示により、蒸発ポイントOが(16o、○)、
交点Poが(95,310)となるような位置関係で、
ノズル1oの中心位置を(了0,2了6)とし、ノズル
の孔の中心・軸がPoを向くように設定し、また、グロ
ー放電処理機構は第2図で陽極18の中心と強磁性層1
7表面との距離ムを1QO、陽極18の径を60 とし
だ。
In addition, as a common condition in Examples 1 to 4 below, the first
Using the device shown in the figure and using a rotating can of φ500, the evaporation point O is (16o, ○) by coordinate display based on the X and Z coordinate axes written in Figure 1.
With the positional relationship such that the intersection Po is (95, 310),
The center position of the nozzle 1o is set as (RY0, 2Ryo6), the center and axis of the nozzle hole are set to face Po, and the glow discharge treatment mechanism is set so that the center of the anode 18 and the ferromagnetic layer 1
7. The distance to the surface is 1QO, and the diameter of the anode 18 is 60.

〔実施例1〕 ポリエチレン・テレフタレートフィルム(10,5μm
厚)を25 ”/minで捲き取りながらコバルト(C
o)100%を電子ビーム加熱により蒸発させ、酸素ヲ
O−1s 1/min (圧力1 、5 Kli、)導
入しながら、真空度4.5X10Torrで0.13μ
mの厚さに磁性層を形成した。その時回転キャンの温度
は、冷媒を循環させることで25°C土1°Cに保持し
た。
[Example 1] Polyethylene terephthalate film (10.5 μm
Cobalt (C) is rolled up at 25”/min.
o) Evaporate 100% by electron beam heating, and introduce oxygen at 0-1s 1/min (pressure 1,5 Kli) to 0.13μ at a vacuum level of 4.5X10Torr.
A magnetic layer was formed to a thickness of m. At that time, the temperature of the rotating can was maintained at 25°C and 1°C by circulating a refrigerant.

この磁性層の深さ方向の元素分布をオージェ電子分光で
調べた結果を第3図に示す。
FIG. 3 shows the results of examining the elemental distribution in the depth direction of this magnetic layer by Auger electron spectroscopy.

表面酸化層の定義は、便宜的に第3図における表面から
点Bまでの厚みtoで行った。なお第3図において、酸
素(0)とコバルI−(Go)の感度差は補正されてい
る。
For convenience, the surface oxidized layer was defined by the thickness to from the surface to point B in FIG. Note that in FIG. 3, the sensitivity difference between oxygen (0) and Kobal I-(Go) has been corrected.

厚みWばこの例ではγ0ムで、厚みtoの領域中にはC
O5O4,C00の混在が解析により示された。
In the example of a tobacco with a thickness of W, γ0 μm, and C in the region of thickness to.
Analysis showed a mixture of O5O4 and C00.

なおこの磁性層は柱状結晶粒からなり、柱状結晶粒の側
部の酸化状態は、現在、解析手段をもたないので不明で
あるが、本発明の要件は表面酸化層の規定であり、これ
は、例えばオージェ電子分光で示されるところのtoに
相当する領域の規定である。それには電子線回折、Es
c五等で酸化物の固定が必要であり、以下のいずれの例
でも、これにより確認している。
This magnetic layer consists of columnar crystal grains, and the oxidation state of the side parts of the columnar crystal grains is currently unknown as there is no means of analysis, but a requirement of the present invention is the provision of a surface oxidation layer, and this is a definition of a region corresponding to to as shown by Auger electron spectroscopy, for example. For this, electron diffraction, Es
It is necessary to fix the oxide with c5, etc., and this is confirmed in all of the following examples.

〔実施例2〕 実施例1の場合と同様な条件で磁性層を形成したのちグ
ロー放電処理を行った。その条件は、酸2 素分圧3X10Torrで高周波電界2 KVp 、3
80W投人で行った。その結果、 Co3O4、Coo
の混在状態に若干の変化がみられた。即ち、00504
層の等価厚みが実施例1では15人であったのが本実施
例では20人と若干厚みが増していた。しかし表面酸化
層の厚みtoは同じであった。
[Example 2] After forming a magnetic layer under the same conditions as in Example 1, a glow discharge treatment was performed. The conditions are: oxygen partial pressure 3 x 10 Torr, high frequency electric field 2 KVp, 3
I went with an 80W pitcher. As a result, Co3O4, Coo
A slight change was observed in the mixed state. i.e. 00504
The equivalent thickness of the layer was 15 people in Example 1, but it was 20 people in this example, which was slightly thicker. However, the thickness to of the surface oxidation layer was the same.

〔実施例3〕 ポリエチレンテレフタレー)(14,5μm厚)を30
 m/Binで捲き取りながらCo75 % Ni25
 %の合金を電子ビーム加熱により蒸発させ、酸素を圧
力2.3 ’%、i、0.22 l/min導入しなが
ら真空度5X10Torrで0.15μmの厚さの磁性
層を形成した。その時回転キャンの温度はo℃電力、6
°Cに保持された。
[Example 3] Polyethylene terephthalate) (14.5 μm thick) was
Co75% Ni25 while rolling with m/Bin
% alloy was evaporated by electron beam heating, and a magnetic layer with a thickness of 0.15 μm was formed at a vacuum degree of 5×10 Torr while introducing oxygen at a pressure of 2.3′%, i, and 0.22 l/min. At that time, the temperature of the rotating can is ℃ power, 6
held at °C.

とうして得られた磁性層は、to=90ムでやはりCO
3O4とCooの混在した複合酸化物層を有していた。
The magnetic layer finally obtained is also CO at to=90 μm.
It had a composite oxide layer containing a mixture of 3O4 and Coo.

〔実施例4〕 ポリイミドフィルム(26μm厚)を15”Ainで捲
き取りながらGo80%Ni2Oチの合金を蒸発させ、
酸素を圧力2−3 Twc4r O−221/m in
 + COガスを圧力1.5をる小0.031/min
導入し、−真空度6X10TOrrで01μm厚の磁性
層を形成した。回転キャン温度は10’C,1℃である
[Example 4] While rolling up a polyimide film (26 μm thick) with 15” Ain, an alloy of 80% Go and Ni2O was evaporated,
Oxygen at a pressure of 2-3 Twc4r O-221/min
+ CO gas at a pressure of 1.5 at a rate of 0.031/min
A magnetic layer having a thickness of 01 μm was formed at a vacuum degree of 6×10 TOrr. The rotary can temperature is 10'C, 1°C.

このようにして磁性層が形成されたフィルムを捲き戻し
ながら磁性層に6m//In1nで酸素分圧0.1To
rrでAC65Q  、550  のグロー放電処理を
施した。
While unwinding the film on which the magnetic layer was formed in this way, the magnetic layer was coated with 6m//In1n and an oxygen partial pressure of 0.1To.
AC65Q, 550 glow discharge treatment was performed at rr.

かかる処理を施しだ磁性層は表面酸化層の厚みが6oi
でCO3O4とCooの混在する複合酸化物層をイユす
ることがわかった。3 〔実施例5〕 実施例1と同一の系内に、2ターンの高周波電恰(直径
46“、ターン間距離181)を電極−4m部がZ−1
30″11の位置になるよう配置して、高周波グロー放
電中で蒸着を行えるよう構成した。
The magnetic layer subjected to such treatment has a surface oxidation layer with a thickness of 6 oi.
It was found that a composite oxide layer in which CO3O4 and Coo are mixed is formed. 3 [Example 5] In the same system as in Example 1, a 2-turn high-frequency electric circuit (diameter 46", inter-turn distance 181) was installed, with the electrode-4m section being Z-1.
It was arranged at a position of 30''11, and was configured so that vapor deposition could be performed in a high frequency glow discharge.

ポリエチレンテレフタレート(9,5μnl)上に、C
090%N i 10%の合金を、電子ビーム加熱して
蒸発させ、16 m/minで捲き取りながら、091
6μm厚の磁性層を形成した。
C on polyethylene terephthalate (9.5 μnl)
090% Ni 10% alloy was evaporated by electron beam heating and rolled at 16 m/min.
A magnetic layer with a thickness of 6 μm was formed.

真空度8.6 X 1 o−’rorrで導入酸素量は
α11/min (圧力3 K//、1) 、高周波電
力は350W(陽極電圧2.8 K V )であった。
The degree of vacuum was 8.6 x 1 o-'rorr, the amount of oxygen introduced was α11/min (pressure 3 K//, 1), and the high frequency power was 350 W (anode voltage 2.8 KV).

回転キャン温度は5°CO,5°Cに保持した。The rotating can temperature was maintained at 5°C, 5°C.

この磁性層の表面酸化層は、厚み切が10OAでGoc
o4とCooの混在するものであることがわか−7だ。
The surface oxidation layer of this magnetic layer has a thickness of 10 OA and a Goc
It turns out that it is a mixture of o4 and Coo, so it is -7.

〔実施例6〕 ポリエチレンテレフタレー) 、(14,5μm厚)上
にC090%Ni5%Or5%の合金を電子ビーム加熱
により蒸発させ、実施例6と同一の系でイオンブレーテ
ィングした。
[Example 6] An alloy of C090%Ni5%Or5% was evaporated on polyethylene terephthalate (14.5 μm thick) by electron beam heating, and ion blasting was performed in the same system as in Example 6.

酸素導入量はO−11/win (圧力2.6 Ky/
c、4) 、Ar導入量は○−21/min (圧力2
.6にり/C4) 、真空度は9 X 1 o−’ro
rr、キャン温度は0℃吉0.5℃で磁性層を形成した
。このようにして形成した磁性層に対し、平板マグネト
ロン放電を利用し、酸素分圧0.005 Torrで4
50 2.2ムの条件で表面処理(フィルム移動速度1
2 ”/min、  グロー放電処理域長さ60crr
L)シた結果、表面酸化層はto−13oAOで0o5
04とCooを含む複合酸化物層であることがわかった
The amount of oxygen introduced is O-11/win (pressure 2.6 Ky/
c, 4), Ar introduction amount is ○-21/min (pressure 2
.. 6 Niri/C4), the degree of vacuum is 9 x 1 o-'ro
The magnetic layer was formed at a temperature of 0°C to 0.5°C. The magnetic layer formed in this way was heated to 400 nm at an oxygen partial pressure of 0.005 Torr using a flat plate magnetron discharge.
50 Surface treatment under the conditions of 2.2 mm (film movement speed 1
2”/min, glow discharge treatment area length 60crr
L) As a result, the surface oxidation layer is to-13oAO and 0o5
It was found that the layer was a composite oxide layer containing 04 and Coo.

〔実施例ア〕[Example A]

キャン直径を1mとし、また、蒸発源の中心Oを(30
0,O)とし、交点POを(250,400)と17、
ノズルノ中心位置を(240,360)とし、ノズルの
孔の中心軸が真上を向くように配設した。
The can diameter is 1 m, and the center O of the evaporation source is (30
0, O), and the intersection PO is (250, 400) and 17,
The center position of the nozzle was set at (240, 360), and the nozzle was arranged so that the central axis of the hole faced directly above.

この系でキャン温度を30℃に保持し、ポリエチレンテ
レフタレート (11,5μm、If)上KC090%
N110係の合金を電子ビームで加熱して、蒸発させ0
.11μm厚の磁性層を形成した。フィルム捲き取り速
度は40 m/win、酸素導入量は0.461/wi
n (圧力1.tsK%4) 、真空度は3×10To
rrである。
In this system, the can temperature was maintained at 30 °C, and KC090% on polyethylene terephthalate (11,5 μm, If) was
The N110 alloy is heated with an electron beam and evaporated to 0.
.. A magnetic layer with a thickness of 11 μm was formed. Film winding speed is 40 m/win, oxygen introduction amount is 0.461/wi
n (pressure 1.tsK%4), degree of vacuum is 3×10To
It is rr.

この磁性層の表面酸化層は、to=80人でGo504
/Cooの混合する複合酸化物層であることがわかった
The surface oxidation layer of this magnetic layer is Go504 when to=80 people.
It was found that this was a composite oxide layer containing a mixture of /Coo.

〔実施例8〕 実施例1および7の場合と同様の条件で、磁性材料をG
O95%V5%  として、磁性層を形成した。
[Example 8] Under the same conditions as in Examples 1 and 7, magnetic material was
A magnetic layer was formed using O95%V5%.

この磁性層の表面は、Cooが主でvo2.  v、、
C5がそれに続いて強いピークを示したが、 Co3O
4のピークも観察され、やはp Go504/Cooの
複合酸化物層からなるto=110人の表面酸化層を有
することがわかった。
The surface of this magnetic layer is mainly composed of Coo and vo2. v,,
C5 showed a strong peak followed by Co3O
A peak of 4 was also observed, indicating that the sample had a surface oxidation layer of to=110 consisting of a p Go504/Coo composite oxide layer.

〔実施例9〕 実施例6の場合と同条件下で、GO95%RhS係の磁
性層を形成した。
[Example 9] Under the same conditions as in Example 6, a GO95% RhS magnetic layer was formed.

この磁性層でも反射電子線回折による解析の結果、表面
層にCo3O4/Coo混合物の存在が認められた。
As a result of analysis using reflected electron beam diffraction in this magnetic layer, the presence of a Co3O4/Coo mixture was observed in the surface layer.

さらに、Go94%W6%、Go80%Ni15%Mo
5%の磁性層についても同様なことが確かめられた。
Furthermore, Go94%W6%, Go80%Ni15%Mo
The same thing was confirmed for the 5% magnetic layer.

〔従来例〕[Conventional example]

比較のだめの従来例として、実施例1と同じ位置関係で
酸素導入量を変化させて磁性層形成を行った。すなわち
第1図に示すガス導入部Gより酸素を0.33 l/w
in導入し、真空度5X10TorrでCoao%Ni
2O% の磁性層を0.13μmの厚さに形成してから
、表面を実施例6の場合と同様の条件でグロー放電処理
した。この場合、磁性層の表面部はCooとNiOが主
でCo3O4は検出されなかった。
As a conventional example for comparison, a magnetic layer was formed with the same positional relationship as in Example 1 but with varying amounts of oxygen introduced. That is, 0.33 l/w of oxygen was introduced from the gas introduction part G shown in Fig. 1.
Coao%Ni was introduced in a vacuum degree of 5X10 Torr.
After forming a 20% magnetic layer to a thickness of 0.13 μm, the surface was subjected to glow discharge treatment under the same conditions as in Example 6. In this case, the surface portion of the magnetic layer was mainly composed of Coo and NiO, and no Co3O4 was detected.

なおガス導入部Gの位置は、2座標軸に関し−4007
11111、X座標軸に関し−600mWである。ここ
でガス導入位置の影響についていうと、ガス導・人を例
えば上室13より行っても前記の結果には変りがないこ
とがわかった。
The position of the gas introduction part G is -4007 with respect to the two coordinate axes.
11111, -600 mW on the X coordinate axis. Regarding the influence of the gas introduction position, it was found that the above results did not change even if the gas was introduced from the upper chamber 13, for example.

なおここで前記実施例1〜9および従来例のいずれにお
いても幅soo”、長さ10oorrLのフィルムを標
ωとして同フィルム上に磁性層を形成した。そして同フ
ィルムの裏面には、走行性を高めるために樹脂コーティ
ングを行い、%“幅にスリン]・シて磁気テープとした
。これをオープンリールに各100771ずつ捲き込み
、各種環境下に同時に保存し耐環境性の評価をした。
In each of Examples 1 to 9 and the conventional example, a magnetic layer was formed on a film having a width soo'' and a length of 10 oorrL as a mark ω.The back surface of the film was coated with running properties. To increase the strength, a resin coating was applied, and the width was made into magnetic tape. Each of 100,771 pieces of this was wound onto an open reel and simultaneously stored in various environments to evaluate environmental resistance.

評価法としては、記録波長0.8μの矩形波を磁気テー
プに記録したのち、同磁気テープを60℃90係RH雰
囲気中、60℃の純水中、60℃の工業用水中、60℃
90%RHの雰囲気にCOガスを’ CC/min流し
た環境、60℃904RHに同様にCO2ガスを流した
環境のそれぞれに1週間jii位で保存し、取り出して
、再生テストを行った。
The evaluation method was to record a rectangular wave with a recording wavelength of 0.8μ onto a magnetic tape, and then place the same magnetic tape at 60°C in a 90% RH atmosphere, in pure water at 60°C, in industrial water at 60°C, and at 60°C.
They were stored for about one week in an environment in which CO gas was flowed at CC/min in an atmosphere of 90% RH, and in an environment in which CO2 gas was similarly flowed in an atmosphere of 60° C., 904 RH, and then taken out and subjected to a regeneration test.

その結果、従来例を除いて、いずれも3週間以′主実用
に供し得た。一方、従来例の場合には前記各種環境試験
のいずれにおいても、1週間以内で実用に供し得ない品
質劣化をきたした。
As a result, all of them, except for the conventional example, could be put to practical use for more than three weeks. On the other hand, in the case of the conventional example, in all of the various environmental tests mentioned above, the quality deteriorated to such an extent that it could not be put to practical use within one week.

このように本発明によるものは各種環境下においてすぐ
れた耐久性を示すものとなっている。
As described above, the product according to the present invention exhibits excellent durability under various environments.

なおここで、従来より比較的安定な酸化層を構成する酸
化物としてCO3O4が知られていたが、ガスに対する
安定性について詳細に調べたところ、単にCoρ4を含
む酸化層では特にC02ガスに対して必ずしも有効な保
護作用を有していなかった。
Here, CO3O4 has been known as an oxide constituting a relatively stable oxide layer, but when we investigated its stability against gases in detail, we found that an oxide layer simply containing Coρ4 is particularly sensitive to CO2 gas. It did not necessarily have an effective protective effect.

この点本発明によるものは、磁性層表面の酸化層にCo
3O4とCooが混在してこれがGO2CO2などのガ
スに対し充分な保護作用を呈し、この結果、前記のよう
なGo又はCO2ガスを流した環境下においてもすぐれ
た耐久性を示すものと考えられる。
In this regard, in the present invention, Co is added to the oxide layer on the surface of the magnetic layer.
It is thought that the mixture of 3O4 and Coo provides a sufficient protective effect against gases such as GO2CO2, and as a result, it exhibits excellent durability even in an environment where Go or CO2 gas is flowed as described above.

以上の説明により明らかにしたように、本発明は各種環
境下においてすぐれた耐久性を示す磁気記録媒体を提供
するものであり、その工業的価値は極めて犬である。
As has been made clear from the above description, the present invention provides a magnetic recording medium that exhibits excellent durability under various environments, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するだめの装置の一例を示す図、
第2図は上記装置の要部をなすグロ、−放電処理部を示
す図、第3図は本発明による磁気記19・− 録媒体を構成する磁性層のオージェ電子分光分析結果を
示す図である。 1.16・・・・・基板、2・・・・蒸発材料、3・・
・・・・容器、4・・・・・・真空槽、5,6・・・・
・排気系、7・・・・・・送り出し軸、8・・・・・捲
き取り軸、9・・・・・・回転キャン、1Q・・・・ノ
ズル、11・・・・・・遮へい板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a diagram showing an example of an apparatus for carrying out the present invention;
Fig. 2 is a diagram showing the glow and discharge processing section that constitutes the main part of the above device, and Fig. 3 is a diagram showing the results of Auger electron spectroscopy of the magnetic layer constituting the magnetic recording medium according to the present invention. be. 1.16...Substrate, 2...Evaporation material, 3...
...Container, 4...Vacuum chamber, 5,6...
・Exhaust system, 7... Delivery shaft, 8... Rolling shaft, 9... Rotating can, 1Q... Nozzle, 11... Shielding plate . Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (3)

【特許請求の範囲】[Claims] (1)高分子成形物基板と、上記基板上に形成されたコ
バルトを含む強磁性体層と、上記強磁性体層の表面部に
形成された、少なくともCooとCO3O4を含む保護
層とからなることを特徴とする磁気記録媒体。
(1) Consisting of a polymer molded substrate, a ferromagnetic layer containing cobalt formed on the substrate, and a protective layer containing at least Coo and CO3O4 formed on the surface of the ferromagnetic layer. A magnetic recording medium characterized by:
(2)真空層内において高分子成形物基板上にコバルト
を含む物質の蒸気流を差し向は前記基板上に強磁性体層
を形成するに際し、前記蒸気流の前記強磁性体層の表面
部形成にあずかる部分に酸素を含む気体を差し向けるこ
とを特徴とする磁気記録媒体の製造方法。
(2) When forming a ferromagnetic layer on the substrate, a vapor flow of a substance containing cobalt is directed onto the polymer molded substrate in a vacuum layer, and the surface portion of the ferromagnetic layer of the vapor flow is A method for manufacturing a magnetic recording medium, characterized by directing a gas containing oxygen to a portion that participates in formation.
(3)強磁性体層の形成後、その表面を酸素を含むグロ
ー放電雰囲気に露呈することを特徴とする特許請求の範
囲第2項記載の磁気記録媒体の製造方法。
(3) The method for manufacturing a magnetic recording medium according to claim 2, wherein after forming the ferromagnetic layer, the surface thereof is exposed to a glow discharge atmosphere containing oxygen.
JP56137621A 1981-09-01 1981-09-01 Magnetic recording medium and its manufacture Pending JPS5841439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137621A JPS5841439A (en) 1981-09-01 1981-09-01 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137621A JPS5841439A (en) 1981-09-01 1981-09-01 Magnetic recording medium and its manufacture

Publications (1)

Publication Number Publication Date
JPS5841439A true JPS5841439A (en) 1983-03-10

Family

ID=15202948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137621A Pending JPS5841439A (en) 1981-09-01 1981-09-01 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS5841439A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144048A (en) * 1983-02-07 1984-08-17 Sony Corp Production of magnetic recording medium
JPS60157728A (en) * 1984-01-26 1985-08-19 Hitachi Maxell Ltd Production of magnetic recording medium
EP0180242A2 (en) * 1984-11-02 1986-05-07 Teijin Limited Magnetic recording medium, method for producing the same, and method of recording and reproduction using the same and magnetic head
JPS6192418A (en) * 1984-10-11 1986-05-10 Teijin Ltd Vertical magnetic recording medium
JPS61110302A (en) * 1984-11-02 1986-05-28 Teijin Ltd Magnetic recording system
JPS61196424A (en) * 1985-02-26 1986-08-30 Canon Inc Magnetic recording medium
JPS61253638A (en) * 1985-05-02 1986-11-11 Teijin Ltd Production of vertical magnetic recording medium
JPS61253639A (en) * 1985-05-02 1986-11-11 Teijin Ltd Production of magnetic recording medium
JPS61253625A (en) * 1985-05-02 1986-11-11 Teijin Ltd Magnetic recording medium
JPS61253637A (en) * 1985-05-02 1986-11-11 Teijin Ltd Production of vertical magnetic recording medium
JPS61253636A (en) * 1985-05-02 1986-11-11 Teijin Ltd Production of vertical magnetic recording medium
US4766034A (en) * 1984-02-16 1988-08-23 Konishiroku Photo Industry Co., Ltd. Magnetic recording medium
EP0387619A2 (en) * 1985-05-31 1990-09-19 Hitachi Maxell Ltd. Method of and apparatus for making magnetic recording medium
US5013583A (en) * 1984-02-11 1991-05-07 Teijin Limited Method of producing a magnetic recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4220025Y1 (en) * 1965-07-23 1967-11-21
JPS4929445A (en) * 1972-07-20 1974-03-15
JPS52737A (en) * 1975-06-24 1977-01-06 Asahi Denka Kogyo Kk Waterrsoluble anticorrosive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4220025Y1 (en) * 1965-07-23 1967-11-21
JPS4929445A (en) * 1972-07-20 1974-03-15
JPS52737A (en) * 1975-06-24 1977-01-06 Asahi Denka Kogyo Kk Waterrsoluble anticorrosive

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057766B2 (en) * 1983-02-07 1993-01-29 Sony Corp
JPS59144048A (en) * 1983-02-07 1984-08-17 Sony Corp Production of magnetic recording medium
JPS60157728A (en) * 1984-01-26 1985-08-19 Hitachi Maxell Ltd Production of magnetic recording medium
US5013583A (en) * 1984-02-11 1991-05-07 Teijin Limited Method of producing a magnetic recording medium
US4766034A (en) * 1984-02-16 1988-08-23 Konishiroku Photo Industry Co., Ltd. Magnetic recording medium
JPS6192418A (en) * 1984-10-11 1986-05-10 Teijin Ltd Vertical magnetic recording medium
EP0180242A2 (en) * 1984-11-02 1986-05-07 Teijin Limited Magnetic recording medium, method for producing the same, and method of recording and reproduction using the same and magnetic head
JPS61110302A (en) * 1984-11-02 1986-05-28 Teijin Ltd Magnetic recording system
JPS61196424A (en) * 1985-02-26 1986-08-30 Canon Inc Magnetic recording medium
JPS61253625A (en) * 1985-05-02 1986-11-11 Teijin Ltd Magnetic recording medium
JPS61253636A (en) * 1985-05-02 1986-11-11 Teijin Ltd Production of vertical magnetic recording medium
JPS61253637A (en) * 1985-05-02 1986-11-11 Teijin Ltd Production of vertical magnetic recording medium
JPS61253639A (en) * 1985-05-02 1986-11-11 Teijin Ltd Production of magnetic recording medium
JPS61253638A (en) * 1985-05-02 1986-11-11 Teijin Ltd Production of vertical magnetic recording medium
JPH0513332B2 (en) * 1985-05-02 1993-02-22 Teijin Ltd
EP0387619A2 (en) * 1985-05-31 1990-09-19 Hitachi Maxell Ltd. Method of and apparatus for making magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS5841439A (en) Magnetic recording medium and its manufacture
Anders et al. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs
JP4193268B2 (en) Thin film forming apparatus, thin film forming method, and guide guide roll
EP0174024B1 (en) Magnetic recording medium and method of producing the same
JPH0152472B2 (en)
JP2505024B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPH0330213B2 (en)
JPS59147422A (en) Formation of magnetic layer
JP4234469B2 (en) Method and apparatus for manufacturing magnetic recording medium
JP2959274B2 (en) Magnetic recording medium, method of manufacturing the same, and sliding member
JPH0120490B2 (en)
JPS58143435A (en) Manufacture of magnetic recording medium
JPH0896339A (en) Magnetic recording medium
JP2874419B2 (en) Method and apparatus for manufacturing magnetic recording medium
JP3076543B2 (en) Magnetic recording media
JPS5814329A (en) Production of magnetic recording medium
JP3831424B2 (en) Method for manufacturing magnetic recording medium
JPH06228748A (en) Thin film forming device
JPS5812134A (en) Production of magnetic recording medium
JPS5888834A (en) Production of magnetic recording medium
JPH01220216A (en) Magnetic recording medium
JPS63183609A (en) Magnetic recording medium
JP2002327272A (en) Film forming apparatus
JPS5914129A (en) Production of magnetic recording medium
JPS60185224A (en) Magnetic recording medium