JPS63183609A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS63183609A
JPS63183609A JP1678787A JP1678787A JPS63183609A JP S63183609 A JPS63183609 A JP S63183609A JP 1678787 A JP1678787 A JP 1678787A JP 1678787 A JP1678787 A JP 1678787A JP S63183609 A JPS63183609 A JP S63183609A
Authority
JP
Japan
Prior art keywords
film layer
film layers
protective film
thin film
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1678787A
Other languages
Japanese (ja)
Inventor
Hideaki Niimi
秀明 新見
Kunio Wakai
若居 邦夫
Tetsuo Mizumura
哲夫 水村
Noboru Isoe
磯江 昇
Minoru Ichijo
稔 一條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1678787A priority Critical patent/JPS63183609A/en
Publication of JPS63183609A publication Critical patent/JPS63183609A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled recording medium which as a small deterioration rate and has long still time by forming at least >=1 layers of thin ferromagnetic film layers contg. spinel ferrite on a substrate and providing protective film layers consisting of carbon on the thin ferromagnetic film layers. CONSTITUTION:An Al disk 1 subjected to an alumite treatment on the surface by using a sputtering treatment device is set on the rear face of a substrate 3 provided in the upper part in a treatment vessel 2. Fe 5 of 99.9atom% purity is set as a target on a stainless steel electrode 4 provided in the lower part of the vessel 2. Sputtering is then executed in an Ar atmosphere to form the thin ferromagnetic film layers contg. signal ferrite to 1,500Angstrom thickness. Graphite is set as a target on the electrode 4 and is sputtered to form the protective film layers consisting of the carbon to 200Angstrom thickness, by which the ferromagnetic film layers 9 and the protective film layers 10 are successively laminated on the Al disk 1 and the magnetic disk is thus prepd. The magnetic disk having the small deterioration rate, the long still time and the improved durability and corrosion resistance is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はスピネルフェライトを含む強磁性薄膜層を磁
気記録層とする磁気記録媒体に関し、さらに詳しくは耐
久性および耐食性に優れた前記の磁気記録媒体に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium having a ferromagnetic thin film layer containing spinel ferrite as a magnetic recording layer, and more specifically relates to a magnetic recording medium having excellent durability and corrosion resistance. Regarding the medium.

〔従来の技術〕[Conventional technology]

強磁性金属薄膜層を磁気記録層とする磁気記録媒体は、
通常、金属もしくはそれらの合金などを真空蒸着、スパ
ッタリング等によって基体フィルム上に被着してつくら
れ、磁気記録特性に優れたものとしてCOを主成分とす
る強磁性金属薄膜層を形成したものが広く知られている
。ところが、Coを主成分とする強磁性金属薄膜層は、
高密度記録に通した特性を有する反面、酸性雰囲気でC
Oが不安定であるため耐食性に欠けるという問題があっ
た。
A magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film layer is
It is usually made by depositing metals or their alloys on a base film by vacuum deposition, sputtering, etc., and has a thin ferromagnetic metal layer mainly composed of CO, which has excellent magnetic recording properties. widely known. However, a ferromagnetic metal thin film layer mainly composed of Co,
Although it has characteristics suitable for high-density recording, C
There was a problem in that corrosion resistance was lacking because O was unstable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで、強磁性金属薄膜層を構成する素材について種々
検討を行った結果、Fe3O4、CoO・Fe2O3な
どのスピネルフェライトを含む強磁性薄膜層を形成する
と、酸性雰囲気で極めて安定で耐食性に優れた磁気記録
媒体が得られることが分かったが、同時にこれらのスピ
ネルフェライトを含む強磁性薄膜層は磁気へンドとの耐
摩耗性に劣ることも判明した。
Therefore, as a result of various studies on the materials constituting the ferromagnetic metal thin film layer, we found that forming a ferromagnetic thin film layer containing spinel ferrite such as Fe3O4, CoO/Fe2O3, etc., provides magnetic recording that is extremely stable in an acidic atmosphere and has excellent corrosion resistance. Although it was found that a medium could be obtained, it was also found that these ferromagnetic thin film layers containing spinel ferrite had poor abrasion resistance with the magnetic head.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は、かかる現状に鑑み強磁性薄膜層に、腐食さ
れにくくて耐摩耗性に優れた保護膜層を設けることにつ
いて種々検討を行った結果なされたもので、スピネルフ
ェライトを含む強磁性薄膜層上に、カーボンからなる保
護膜層を設けることによって、耐久性および耐食性を充
分に向上させたものである。
In view of the current situation, this invention was made as a result of various studies on providing a protective film layer that is resistant to corrosion and has excellent wear resistance on a ferromagnetic thin film layer. By providing a protective film layer made of carbon on top, durability and corrosion resistance are sufficiently improved.

この発明において、スピネルフェライトを含む強磁性薄
膜層上に形成されるカーボンからなる保護膜層は、スパ
ッタリング法、プラズマCVD法、イオンビーム蒸着法
等のいわゆるペーパーデポジション法により形成される
In this invention, the protective film layer made of carbon formed on the ferromagnetic thin film layer containing spinel ferrite is formed by a so-called paper deposition method such as a sputtering method, a plasma CVD method, or an ion beam evaporation method.

スパッタリングによる場合は、処理槽内にグラファイト
などの炭素を主体とするターゲットをセットし、これを
アルゴンガス、ヘリウムガスなどの不活性ガス等の存在
下で、高周波によりスパッタリングさせ、強磁性薄膜層
上に析出させて形成される。この際、アルゴンガスなど
のガス圧および高周波の電力は、形成されたカーボンか
らなる保護膜層の脆化と軟化を防止するため、ガス圧を
0.001〜0.1  トールとし、高周波電力を0.
1〜2W/cdの範囲内にするのが好ましい。
In the case of sputtering, a target mainly composed of carbon such as graphite is set in a processing tank, and this is sputtered with high frequency in the presence of an inert gas such as argon gas or helium gas to form a target on a ferromagnetic thin film layer. It is formed by precipitation. At this time, the gas pressure such as argon gas and high frequency power are set at 0.001 to 0.1 torr to prevent the formed protective film layer made of carbon from becoming brittle and softened. 0.
It is preferably within the range of 1 to 2 W/cd.

また、プラズマCVD法によって形成される場合は、処
理槽内にメタン、エタン、エチレン、ベンゼン等の炭化
水素ガスを導入し、高周波によりプラズマを発生し、炭
化水素分子を分解させることにより、強磁性薄膜層上に
析出させて形成される。この際、脆化と軟化を防止する
ため、炭化水素ガスのガス圧を0.001〜0.1トー
ルとし、高周波電力を0.5〜3 W/c+Jの範囲内
にするのが好ましい。
In addition, when forming by plasma CVD method, ferromagnetic It is formed by depositing on a thin film layer. At this time, in order to prevent embrittlement and softening, it is preferable that the gas pressure of the hydrocarbon gas be 0.001 to 0.1 Torr and the high frequency power be in the range of 0.5 to 3 W/c+J.

カーボンからなる保護膜層はこのようにして形成される
が、この形成時カーボン保護膜層が析出形成される領域
に電子を照射すると、カーボン保護膜層を形成しつつあ
る粒子に熱的、化学的エネルギーが付与されて架橋反応
が促進され、また強磁性薄膜゛層表面の電位を負に帯電
させることによって、活性な陽イオンが強磁性薄膜層表
面に誘引されるため、架橋度の高い強靭なカーボン保護
膜層が形成され、カーボンからなる保護膜層の強度が著
しく増大して、耐久性および耐食性がさらに一段と向上
される。
A protective film layer made of carbon is formed in this way, and when electrons are irradiated to the area where the carbon protective film layer is deposited, thermal and chemical effects are applied to the particles forming the carbon protective film layer. The cross-linking reaction is promoted by imparting physical energy, and by negatively charging the surface potential of the ferromagnetic thin film layer, active cations are attracted to the surface of the ferromagnetic thin film layer, resulting in a strong and highly cross-linked film. A carbon protective film layer is formed, the strength of the carbon protective film layer is significantly increased, and the durability and corrosion resistance are further improved.

このように、カーボン保護膜層形成中に照射する電子の
加速電圧と電子電流は、それぞれ0.5〜50KVおよ
び1〜500mAの範囲内とし、さらに1〜20Kvお
よび10〜200mAの範囲内にするのがより好ましく
、50KVおよび500mAより大きくすると、強磁性
薄膜層に損傷を与え、0.5KVおよび1mAより小さ
くすると所定の効果が得られない。また、電子の照射方
法としては、電子流を拡散させて強磁性薄膜層全面に照
射する方法と、電子流をビームにして強磁性薄膜層表面
を走査する方法がいずれも好適に用いられる。なお、プ
ラズマCVD法などの比較的高い圧力を必要とする場合
、電子銃のフィラメントの損傷を防ぐため、電子銃部分
の差動排気が必要である。
In this way, the acceleration voltage and electron current of electrons irradiated during the formation of the carbon protective film layer should be within the range of 0.5 to 50 KV and 1 to 500 mA, respectively, and further within the range of 1 to 20 KV and 10 to 200 mA. More preferably, if the voltage is higher than 50 KV and 500 mA, the ferromagnetic thin film layer will be damaged, and if it is lower than 0.5 KV and 1 mA, the desired effect cannot be obtained. Further, as a method for irradiating electrons, both a method of diffusing an electron current and irradiating the entire surface of the ferromagnetic thin film layer, and a method of scanning the surface of the ferromagnetic thin film layer by using the electron current as a beam are preferably used. Note that when relatively high pressure is required, such as in a plasma CVD method, differential pumping of the electron gun portion is required to prevent damage to the filament of the electron gun.

このようにして形成されたカーボンからなる保護膜層は
、耐摩耗性に優れるとともに、それ自身が酸性雰囲気で
変化せず、従って、このようなカーボンからなる保護膜
層が、スピネルフェライトを含む強磁性薄膜層上に形成
されると、耐久性および耐食性が充分に向上される。な
お、このようなカーボンからなる保護膜層は、ダイヤモ
ンド状カーボン、アモルファス状カーボンのいずれであ
ってもよく、さらにこれらが混合されたものであっても
よい。またこのカーボンからなる保護膜層の膜厚は、3
0〜500人の範囲内であることが好ましく、30人よ
り薄いとこのカーボンからなる保護膜層による耐久性お
よび耐食性の効果が充分に発揮されず、500人より厚
くするとスペーシングロスが大きくなりすぎて、電磁変
換特性に悪影響を及ぼす。
The protective film layer made of carbon formed in this way has excellent wear resistance and does not change itself in an acidic atmosphere. When formed on a magnetic thin film layer, durability and corrosion resistance are sufficiently improved. Note that the protective film layer made of such carbon may be either diamond-like carbon or amorphous carbon, or may be a mixture of these. The thickness of the protective film layer made of carbon is 3.
The range is preferably from 0 to 500. If it is thinner than 30, the durability and corrosion resistance effects of this carbon protective film layer will not be sufficiently exhibited, and if it is thicker than 500, spacing loss will increase. If it is too much, it will adversely affect the electromagnetic conversion characteristics.

スピネルフェライトを含む強磁性薄膜層としては、F1
3304、Coo−Fe203、r−Fe2o3、ある
いはこれらにCo −、T s % N i % 03
などをこの発明の効果を損なわない程度に添加したもの
からなるものであることが好ましく、これらのスピネル
フェライトを含む強磁性1膜層は、真空蒸着、イオンブ
レーティング、スパッタリング、メッキ等の手段によっ
て基体上に被着形成される。
As a ferromagnetic thin film layer containing spinel ferrite, F1
3304, Coo-Fe203, r-Fe2o3, or Co −, T s % Ni % 03
It is preferable that the ferromagnetic single layer containing spinel ferrite is added by such means as vacuum evaporation, ion blasting, sputtering, plating, etc. It is deposited and formed on the substrate.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリエチレンフィルム、ポリイミドフィルムなどの合成
樹脂を基体とする磁気テープ、合成樹脂フィルム、アル
ミ板、ガラス板等からなる円盤やドラムを基体とする磁
気ディスクや磁気ドラムなど、種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
It includes various forms such as magnetic tapes based on synthetic resins such as polyethylene films and polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 第1図に示すスパッタ処理装置を使用し、表面をアルマ
イト処理したアルミニウム円盤1を、処理槽2内の上部
に配設した基板3の下面にセットするとともに、処理槽
2内の下部に配設したステンレスからなる電極4にター
ゲットとして純度が99.9原子%のFe5をセットし
た。次いで、排気系6で処理槽2内を5X10−’トー
ルまで真空排気し、処理槽2に取りつけたガス導入管7
から酸素ガスを20m1/minの流量で、またアルゴ
ンガスを20m1/minの流量で導入し、酸素分圧2
×10−21−−ルおよびアルゴン分圧2xlO−2ト
ールの雰囲気下に、電極4の高周波電力密度4W/−で
2分間スパッタリングを行って、厚さ1500人のスピ
ネルフェライトを含む強磁性薄膜層を形成した。次ぎに
、処理槽2内の下部に配設したステンレスからなる電極
4にターゲットとしてグラファイトをセットし、電極4
の高周波電力密度0.5W/cJで1分間スパッタリン
グを行って、厚さ200人のカーボンからなる保護膜層
を形成し、第2図に示すようなアルミニウム円II上に
、強磁性薄膜N9および保護膜N10を順次に積層形成
した磁気ディスクAをつくった。得られた磁気ディスク
の強磁性薄膜層9を、透過電子線回折により調べた結果
、F e  (b、c、c )とFe50゜が検出され
た。なお、図中8は電極4に高周波を印加するための高
周波電源である。
Example 1 Using the sputter processing apparatus shown in FIG. Fe5 having a purity of 99.9 atom % was set as a target on the electrode 4 made of stainless steel disposed in the electrode 4 . Next, the inside of the processing tank 2 is evacuated to 5×10-' torr with the exhaust system 6, and the gas introduction pipe 7 attached to the processing tank 2 is
Oxygen gas was introduced at a flow rate of 20 m1/min and argon gas was introduced at a flow rate of 20 m1/min.
A ferromagnetic thin film layer containing spinel ferrite with a thickness of 1500 nm was formed by sputtering for 2 minutes at a high frequency power density of 4 W/- for electrode 4 in an atmosphere of was formed. Next, graphite is set as a target on the electrode 4 made of stainless steel disposed at the bottom of the processing tank 2, and the electrode 4
Sputtering was performed for 1 minute at a high-frequency power density of 0.5 W/cJ to form a protective film layer of carbon with a thickness of 200 nm, and the ferromagnetic thin films N9 and A magnetic disk A was produced in which protective films N10 were sequentially laminated. The ferromagnetic thin film layer 9 of the obtained magnetic disk was examined by transmission electron beam diffraction, and as a result, Fe (b, c, c) and Fe50° were detected. Note that 8 in the figure is a high frequency power source for applying high frequency to the electrode 4.

実施例2 実施例1における強磁性溝H¥1層の形成において、純
度が99.9原子%の鉄に代えてFe−Co合金(原子
比70:30)をスンレスからなる電極4上にターゲッ
トとしてセットした以外は、実施例1と同様にして強磁
性薄膜層を形成し、さらに保護膜層を形成して磁気ディ
スクAをつくった。得られた磁気ディスクの強磁性薄膜
層9を、透過電子線回折により調べた結果、Fa (C
o)  (b、c。
Example 2 In the formation of the ferromagnetic groove H\1 layer in Example 1, instead of iron with a purity of 99.9 atomic %, Fe-Co alloy (atomic ratio 70:30) was targeted on the electrode 4 made of stainless steel. A magnetic disk A was produced by forming a ferromagnetic thin film layer and further forming a protective film layer in the same manner as in Example 1, except that the magnetic disk A was set as follows. As a result of examining the ferromagnetic thin film layer 9 of the obtained magnetic disk by transmission electron beam diffraction, it was found that Fa (C
o) (b, c.

C)と000・Fe3O4が検出された。C) and 000.Fe3O4 were detected.

実施例3 第3図に示す真空蒸着兼スパッタ処理装置を使用し、厚
さ10μmのポリエステルフィルム11を、処理槽12
内で、供給ロール13から円筒状キャン14の周側面に
沿って移動させ、巻き取りロール15に巻き取るように
セットするとともに、処理槽12の下部に配設した強磁
性材蒸発源16に純度が99.9原子%のFe17をセ
ットした。
Example 3 A polyester film 11 with a thickness of 10 μm was placed in a processing tank 12 using a vacuum evaporation/sputter processing apparatus shown in FIG.
The ferromagnetic material is moved from the supply roll 13 along the circumferential side of the cylindrical can 14 and set to be wound up on the take-up roll 15, and the ferromagnetic material evaporation source 16 disposed at the bottom of the processing tank 12 is supplied with purity. was set at 99.9 atom % Fe17.

次いで、排気系18で処理槽2内を2X10“5トール
まで真空排気し、円筒状キャン14と防着板19との間
に配設したガス導入管20から酸素ガスを500ml/
minの流量で導入し、ガス圧5×10″′4トールで
Fe17を加熱蒸発させて、最低入射角50度、蒸着速
度1000人/secで斜め入射蒸着し、厚さ1500
人のスピネルフェライトを含む強磁性薄膜層を形成した
。次に円筒状キャン14に隣接して配設したスパッタ処
理装置21で、グラファイトをターゲットとして、電力
500Wでスパッタリングを行い、厚さ100人のカー
ボンからなる保護膜層を、スピネルフェライトを含む強
磁性薄膜層上に形成した。しかる後、所定の巾に裁断し
て第4図に示すように、ポリエステルフィルム11上に
強磁性薄膜層22および保護膜層23を順次に積層形成
した磁気テープBをつくった。得られた磁気テープの強
磁性薄膜層22を透過電子線回折により調べた結果、F
e(b、c、c )とFe3O4が検出された。
Next, the inside of the processing tank 2 is evacuated to 2×10"5 Torr using the exhaust system 18, and 500 ml of oxygen gas is introduced from the gas introduction pipe 20 arranged between the cylindrical can 14 and the anti-adhesion plate 19.
Fe17 was introduced at a flow rate of min., heated to evaporate Fe17 at a gas pressure of 5 x 10'''4 Torr, and obliquely deposited at a minimum incidence angle of 50 degrees and a deposition rate of 1000 people/sec to a thickness of 1500 mm.
A ferromagnetic thin film layer containing human spinel ferrite was formed. Next, using a sputtering device 21 disposed adjacent to the cylindrical can 14, sputtering is performed with a power of 500 W using graphite as a target, and a protective film layer made of carbon with a thickness of 100 mm is coated with a ferromagnetic material containing spinel ferrite. Formed on a thin film layer. Thereafter, it was cut to a predetermined width to produce a magnetic tape B in which a ferromagnetic thin film layer 22 and a protective film layer 23 were sequentially laminated on a polyester film 11, as shown in FIG. As a result of examining the ferromagnetic thin film layer 22 of the obtained magnetic tape by transmission electron beam diffraction, it was found that F
e(b, c, c) and Fe3O4 were detected.

実施例4 実施例3における強磁性薄膜層の形成において、純度が
99.9原子%の鉄に代えてFe−Co合金(原子比7
0:30)を、強磁性材蒸発源16にセットした以外は
、実施例3と同様にして強磁性薄膜層を形成し、さらに
保護膜層を形成して磁気テープBをつくった。得られた
磁気テープの強磁性薄膜層22を、透過電子線回折によ
り調べた結果、Fe (Go)  (b、c、c )と
Coo−Fe3O4が検出された。
Example 4 In the formation of the ferromagnetic thin film layer in Example 3, Fe-Co alloy (atomic ratio 7
Magnetic tape B was produced by forming a ferromagnetic thin film layer and further forming a protective film layer in the same manner as in Example 3, except that a magnetic tape (0:30) was set in the ferromagnetic material evaporation source 16. The ferromagnetic thin film layer 22 of the obtained magnetic tape was examined by transmission electron beam diffraction, and as a result, Fe (Go) (b, c, c) and Coo-Fe3O4 were detected.

実施例5 実施例3において、スパッタ処理装置でのスパッタリン
グを省いた以外は、実施例3と同様にして、厚さ10μ
mのポリエステルフィルムll上に厚さ1500人のス
ピネルフェライトを含む強磁性i膜層を形成した。次い
で、第5図に示すプラズマ処理装置を使用し、強磁性薄
膜層を形成したポリエステルフィルム11を処理槽24
内の原反ロール25から円筒状キャン26の周側面に沿
って移動させ、巻き取りロール27に巻き取るようにセ
ットした。次いで、ポリエステルフィルム11を円筒状
キャン26の周側面に沿って2m/minの走行速度で
走行させながら、処理槽24に取り付けたガス導入管2
8からメタンのモノマーガスを50scc−の流量で導
入し、ガス圧を00Olトールとして電極29に13.
56 MHzの高周波を0.6w / cdの電力密度
で印加し、同時に処理槽24の下端部に隣接して配設し
た差動排気槽30内の電子銃31により、加速電圧2K
V、電子電流50mAで、電子をポリエステルフィルム
11上のカーボン膜が形成されつつある領域に走査して
照射し、厚さ180人のカーボンからなる保護膜層を、
スピネルフェライトを含む強磁性薄膜層上に形成した。
Example 5 A film with a thickness of 10 μm was prepared in the same manner as in Example 3, except that sputtering in the sputter processing equipment was omitted.
A ferromagnetic i-film layer containing spinel ferrite with a thickness of 1500 mm was formed on a polyester film 11 of 150 mm thick. Next, using the plasma processing apparatus shown in FIG.
It was moved from the inner fabric roll 25 along the circumferential side of the cylindrical can 26 and set to be wound up on the winding roll 27. Next, while running the polyester film 11 along the circumferential side of the cylindrical can 26 at a running speed of 2 m/min, the gas introduction pipe 2 attached to the processing tank 24 is moved.
8, methane monomer gas is introduced at a flow rate of 50 scc-, and the gas pressure is set to 0000 Torr to the electrode 29 at 13.
A high frequency of 56 MHz is applied at a power density of 0.6 w/cd, and at the same time an accelerating voltage of 2 K is applied by the electron gun 31 in the differential pumping tank 30 disposed adjacent to the lower end of the processing tank 24.
V, an electron current of 50 mA, electrons are scanned and irradiated to the area where the carbon film is being formed on the polyester film 11 to form a protective film layer made of carbon with a thickness of 180 mA.
It was formed on a ferromagnetic thin film layer containing spinel ferrite.

しかる後、所定の巾に裁断して第4図に示す磁気テープ
Bをつくった。なお、第5図中32は電極29に高周波
を印加するための高周波電源、33および34はそれぞ
れ処理槽24および差動排気槽30を排気するための排
気系である。
Thereafter, it was cut to a predetermined width to produce magnetic tape B shown in FIG. In FIG. 5, 32 is a high frequency power source for applying high frequency to the electrode 29, and 33 and 34 are exhaust systems for evacuating the processing tank 24 and the differential exhaust tank 30, respectively.

実施例6 実施例5で用いたプラズマ処理装置の電極29に代えて
、電磁石を組み込んだターゲットホルダーとグラファイ
トを設置した。次いで、ポリエステルフィルム11を2
m/111i1で走行させ、メタンを50secm導入
してガス圧を0.01 )−ルとし、0.6w/cdの
電力密度で高周波を印加することに代え、ポリエステル
フィルム11を0.5m/minで走行させ、アルゴン
ガスを203CCI11の流量で導入してガス圧をo、
oos  トールとし、4w/aJの電力密度で高周波
を印加して、マグネトロンスパッタリングを行った以外
は、実施例5と同様にして厚さ130人のカーボンから
なる保護膜層を形成し、磁気テープBをつくった。
Example 6 In place of the electrode 29 of the plasma processing apparatus used in Example 5, a target holder incorporating an electromagnet and graphite were installed. Next, the polyester film 11 is
m/111i1, methane was introduced for 50 sec to set the gas pressure to 0.01 ) -l, and instead of applying high frequency at a power density of 0.6 w/cd, the polyester film 11 was heated at 0.5 m/min. Argon gas was introduced at a flow rate of 203CCI11 and the gas pressure was set to o,
A protective film layer made of carbon having a thickness of 130 mm was formed in the same manner as in Example 5, except that high frequency was applied at a power density of 4 W/aJ and magnetron sputtering was performed. I made it.

比較例1 実施例1における強磁性薄膜層の形成において、純度が
99.9原子%の鉄に代えてCo −N i合金(原子
比80:20)をステンレスからなる電極4上にターゲ
ットとしてセットした以外は、実施例1と同様にして強
磁性薄膜層を形成し、さらに保護膜層を形成して磁気デ
ィスクをつくった。得られた磁気ディスクの強磁性薄膜
層を、透過電子線回折により調べた結果、H3P品のC
oNiとNaC1型のCo (Ni)0の混合であった
Comparative Example 1 In the formation of the ferromagnetic thin film layer in Example 1, a Co-Ni alloy (atomic ratio 80:20) was set as a target on the electrode 4 made of stainless steel instead of iron with a purity of 99.9 at%. Except for the above, a ferromagnetic thin film layer was formed in the same manner as in Example 1, and a protective film layer was further formed to produce a magnetic disk. As a result of examining the ferromagnetic thin film layer of the obtained magnetic disk by transmission electron diffraction, it was found that the C of the H3P product was
It was a mixture of oNi and NaCl type Co (Ni)0.

比較例2 実施例3における強磁性薄膜層の形成において、純度が
99.9原子%の鉄に代えてCo−Ni合金(原子比8
0:20)を強磁性材蒸発源16にセラ1した以外は、
実施例3と同様にして強磁性薄膜層を形成し、さらに保
護膜層を形成して磁気テープをつくった。得られた磁気
テープの強磁性薄膜層を、透過電子線回折により調べた
結果、H3P品のCoN iとNaC1型のCo (N
i)Oの混合であった。
Comparative Example 2 In the formation of the ferromagnetic thin film layer in Example 3, Co-Ni alloy (atomic ratio 8
0:20) was used as the ferromagnetic material evaporation source 16.
A ferromagnetic thin film layer was formed in the same manner as in Example 3, and a protective film layer was further formed to produce a magnetic tape. The ferromagnetic thin film layer of the obtained magnetic tape was examined by transmission electron diffraction, and it was found that CoN i of H3P product and Co(N
i) It was a mixture of O.

比較例3 実施例1において、カーボンからなる保護膜層の形成を
省いた以外は、実施例1と同様にして磁気ディスクをつ
くった。
Comparative Example 3 A magnetic disk was produced in the same manner as in Example 1, except that the formation of the protective film layer made of carbon was omitted.

比較例4 実施例3において、カーボンからなる保護膜層の形成を
省いた以外は、実施例3と同様にして磁気テープをつく
った。
Comparative Example 4 A magnetic tape was produced in the same manner as in Example 3, except that the formation of the protective film layer made of carbon was omitted.

各実施例および比較例で得られた磁気ディスクおよび磁
気テープについて、耐食性および耐久性を試験した。耐
食性試験は、得られた磁気ディスクおよび磁気テープを
、35℃、75%RHで、302  lppm  S 
H2S  0.5ppm  、、 NO2lppm  
の雰囲気下に20時間放置し、放置後の飽和磁化を測定
して放置前の飽和磁化からの劣化率を測定、算出して行
った。また耐久性試験は、VH3型VTRを用いて、出
力が初期値より6dB低下するまでのスーチル時間を測
定して行った。
The magnetic disks and magnetic tapes obtained in each Example and Comparative Example were tested for corrosion resistance and durability. Corrosion resistance tests were conducted on the obtained magnetic disks and magnetic tapes at 35° C. and 75% RH at 302 lppm S.
H2S 0.5ppm, NO2lppm
The sample was left in an atmosphere for 20 hours, the saturation magnetization after being left was measured, and the rate of deterioration from the saturation magnetization before being left was measured and calculated. The durability test was conducted using a VH3 type VTR and measuring the time required for the output to drop by 6 dB from the initial value.

下記第1表はその結果である。Table 1 below shows the results.

第1表 〔発明の効果〕 上記第1表から明らかなように、この発明で得られた磁
気ディスクおよび磁気テープ(実施例1ないし6)は、
比較例工ないし4で得られた磁気ディスクおよび磁気テ
ープに比し、劣化率が小さくて、スチル時間が長く、こ
のことからこの発明によって得られる磁気記録媒体は、
耐久性および耐食性が一段と向上されていることがわか
る。
Table 1 [Effects of the Invention] As is clear from Table 1 above, the magnetic disks and magnetic tapes (Examples 1 to 6) obtained by the present invention are as follows:
Compared to the magnetic disks and magnetic tapes obtained in Comparative Examples No. 4 to 4, the deterioration rate is lower and the still time is longer. Therefore, the magnetic recording medium obtained by the present invention has a lower deterioration rate and a longer still time.
It can be seen that the durability and corrosion resistance are further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明において保護膜層を形成する際に使用
するスパッタ処理装置の一例を示す概略断面図、第2図
はこの発明で得られた磁気ディスクの部分拡大断面図、
第3図はこの発明で使用する真空蒸着兼スパッタ処理装
置の一例を示す概略断面図、第4図はこの発明で得られ
た磁気テープの部分拡大断面図、第5図はこの発明で保
護15f層を形成する際に使用すプラズマ処理装置の一
例を示す概略断面図である。 1・・・アルミニウム円盤(基体)、11・・・ポリエ
ステルフィルム(基体)、9.22・・・強磁性薄膜層
、10.23・・・保護膜層、A・・・磁気ディスク(
磁気記録媒体)B・・・磁気テープ(磁気記録媒体)第
1図 第3図
FIG. 1 is a schematic cross-sectional view showing an example of a sputter processing apparatus used in forming a protective film layer in the present invention, and FIG. 2 is a partially enlarged cross-sectional view of a magnetic disk obtained by the present invention.
FIG. 3 is a schematic sectional view showing an example of the vacuum evaporation and sputtering processing apparatus used in the present invention, FIG. 4 is a partially enlarged sectional view of the magnetic tape obtained by the present invention, and FIG. 5 is a protected 15f FIG. 2 is a schematic cross-sectional view showing an example of a plasma processing apparatus used when forming a layer. DESCRIPTION OF SYMBOLS 1... Aluminum disk (substrate), 11... Polyester film (substrate), 9.22... Ferromagnetic thin film layer, 10.23... Protective film layer, A... Magnetic disk (
Magnetic recording medium) B...Magnetic tape (magnetic recording medium) Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、基体上にスピネルフェライトを含む強磁性薄膜層を
少なくとも一層以上形成し、この強磁性薄膜層上にカー
ボンからなる保護膜層を設けたことを特徴とする磁気記
録媒体。
1. A magnetic recording medium characterized in that at least one ferromagnetic thin film layer containing spinel ferrite is formed on a substrate, and a protective film layer made of carbon is provided on the ferromagnetic thin film layer.
JP1678787A 1987-01-26 1987-01-26 Magnetic recording medium Pending JPS63183609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1678787A JPS63183609A (en) 1987-01-26 1987-01-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1678787A JPS63183609A (en) 1987-01-26 1987-01-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63183609A true JPS63183609A (en) 1988-07-29

Family

ID=11925889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1678787A Pending JPS63183609A (en) 1987-01-26 1987-01-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63183609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287837A (en) * 2007-05-21 2008-11-27 Univ Of Tsukuba Magnetic recording medium using antiferromagnetic inter-layer coupling magnetic film, and magnetic storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287837A (en) * 2007-05-21 2008-11-27 Univ Of Tsukuba Magnetic recording medium using antiferromagnetic inter-layer coupling magnetic film, and magnetic storage device

Similar Documents

Publication Publication Date Title
US4565734A (en) Magnetic recording medium
JPH0546014B2 (en)
JP2761859B2 (en) Magnetic recording media
US4994321A (en) Perpendicular magnetic recording medium and the method for preparing the same
JPS63183609A (en) Magnetic recording medium
US4828919A (en) Magnetic recording medium and process for preparing the same
JPS63183608A (en) Magnetic recording medium
US5068144A (en) Perpendicular magnetic recording medium and method for producing the same
JP2959274B2 (en) Magnetic recording medium, method of manufacturing the same, and sliding member
JP2883334B2 (en) Manufacturing method of magnetic recording medium
JPS61276124A (en) Production of vertical magnetic recording medium
JP2597685B2 (en) Magnetic recording media
JPS63197026A (en) Magnetic recording medium
JPS59157828A (en) Magnetic recording medium
JP2874419B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPS6122430A (en) Production of magnetic recording medium
JPS6194239A (en) Preparation of magnetic recording medium
JPH0320813B2 (en)
JPH0624055B2 (en) Perpendicular magnetic recording medium
JPH061550B2 (en) Method of manufacturing magnetic recording medium
JPS61271624A (en) Production of magnetic recording medium
JPH02216610A (en) Magnetic recording medium and its production
JPS61278026A (en) Production of magnetic recording medium
JPS62175926A (en) Vertical magnetic recording medium and its production
JPH03134819A (en) Magnetic recording medium and its production