JPS6194239A - Preparation of magnetic recording medium - Google Patents

Preparation of magnetic recording medium

Info

Publication number
JPS6194239A
JPS6194239A JP21692284A JP21692284A JPS6194239A JP S6194239 A JPS6194239 A JP S6194239A JP 21692284 A JP21692284 A JP 21692284A JP 21692284 A JP21692284 A JP 21692284A JP S6194239 A JPS6194239 A JP S6194239A
Authority
JP
Japan
Prior art keywords
magnetic
scan
recording medium
electron beam
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21692284A
Other languages
Japanese (ja)
Other versions
JPH0341898B2 (en
Inventor
Ryuji Shirahata
龍司 白幡
Akio Yanai
矢内 明郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP21692284A priority Critical patent/JPS6194239A/en
Priority to US06/788,177 priority patent/US4604293A/en
Publication of JPS6194239A publication Critical patent/JPS6194239A/en
Publication of JPH0341898B2 publication Critical patent/JPH0341898B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve a magnetic characteristic by using at least two electron beams to scan an electron beam scan area on an evaporation source for magnetic material set in parallel to the width direction of a nonmagnetic substrate, and making the scan frequencies of both electron beams different in phase. CONSTITUTION:A scan area 19 is formed approximately in parallel to the width direction of a tape type nonmagnetic substrate 12 which moves along the surface of a cooling can 11. The electron beams 17 and 18 delivered from electronic guns 15 and 16 have scan frequencies set at different phases. These beams are controlled so as not to irradiate the same part of the area 19 at a time. The phase of the electron beam is shifted by 360 deg./n when the number of beams irradiating the area 19 is set at (n). Then the moving speed of the substrate 12 is set at upsilon(m/min) together with the scan width of the area 19 set at omega(m) respectively. Under such conditions, the scan frequency of the electron beam is set at 2omegaupsilon/n(Hz) or more. A magnetic recording medium thus produced excels in magnetic characteristic and also can be used as an excellent magnetic record ing medium of a vapor-deposited thin film type.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は移動する高分子成形物などのテープ状非磁性基
体に磁性薄膜を真空蒸着法により形成せしめて磁気記録
媒体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a magnetic recording medium by forming a magnetic thin film on a tape-shaped nonmagnetic substrate such as a moving polymer molded article by vacuum deposition.

さらに磁気特性および電磁変換特性の改良された磁気記
録媒体の製造方法に関する。
Furthermore, the present invention relates to a method of manufacturing a magnetic recording medium with improved magnetic properties and electromagnetic conversion properties.

〔従来技術〕[Prior art]

従来より磁気記録媒体としては、非磁性基体上にr−F
e203s  Coをドープしたr−Fe203、Fe
5Oa、CoをドープしたFl!304% r−Fe2
0sとFe3O4のベルトライド化合物、coをドープ
したベルト2イド化合物、CrO2等の酸化物磁性粉末
あるいはl’e、Co、Ni  等を主成分とする合金
磁性粉末等の粉末磁性材料を塩化ビニル−酢酸ビニル共
重合体、スチレン−ブタジェン共重合体、エポキシ樹脂
、ポリウレタン樹脂等の有機バインダー中に分散せしめ
、塗布、乾燥させる塗布型のものが広く使用されてきて
いる。
Conventionally, as a magnetic recording medium, r-F
e203s Co-doped r-Fe203, Fe
Fl doped with 5Oa, Co! 304% r-Fe2
Powder magnetic materials such as bertolide compounds of 0s and Fe3O4, co-doped belt 2ide compounds, oxide magnetic powders such as CrO2, or alloy magnetic powders whose main components are l'e, Co, Ni, etc., are made of vinyl chloride. Coating-type materials have been widely used, in which they are dispersed in an organic binder such as vinyl acetate copolymer, styrene-butadiene copolymer, epoxy resin, or polyurethane resin, coated, and dried.

近年高密度磁気記録への要求の高tbと共に、真空蒸着
、ス/@ツタリング、イオンプレーテング等の方法によ
シ形成される強磁性金属薄膜はバインダーを使用しない
、いわゆる金属薄膜型の磁気記録媒体として注目を浴び
ておシ実用化へのM力p+伶σa九き21亀5゜ 従来の塗布型の磁気記録媒体では主として飽和磁化の小
さい金属酸化物を磁性材料として使用していると共に、
′磁性層中の磁性材料の体積含有率が30〜ZOSにす
ぎないため高出力高密度記録媒体としては限界になって
きている。さらにその製造工程も複雑で溶剤回収あるい
は公害防止のための大“きな付帯設備を必要とするとい
う欠点を有している。金属薄膜型磁気記録媒体では酸化
物磁性材料より大きな飽和磁化を有する強磁性金属を有
機バインダーの如き非磁性物質を介在させぬ状態で極め
て薄い薄膜として形成できるという利点を有する。高密
度磁気記録化につれて記録再生磁気ヘッドのギャップ長
も7.0μmを切る時代になっているが、それに伴って
磁気記録層への記録深さも浅くなる傾向があり、磁性膜
の厚み全部が磁気信号の記録に利用され得る金属薄膜型
磁気記録媒体は高出力高密度記録媒体として極めてすぐ
れている。金属薄膜型磁気記録媒体のうちでも膜の形成
を真空蒸着によシ行なう方法は膜の形成速度の速いこと
、製造工程が簡単であることあるいは排液処理の必要と
しないドライプロセスであること等の利点を有する。中
でも特に磁性金属の蒸発ビームを非磁性基体表面に対し
斜めに入射させて蒸着する斜方入射真空蒸着法は工程お
よび装置機構がともに比較的簡単であると同時に良好な
磁気特性を有する膜が得られるため実用化上すぐれてい
る。
In recent years, with the demand for high tb for high-density magnetic recording, ferromagnetic metal thin films formed by methods such as vacuum evaporation, sputtering, and ion plating have become so-called metal thin-film type magnetic recording that does not use a binder. It has attracted attention as a medium and has been put into practical use. Conventional coating-type magnetic recording media mainly use metal oxides with low saturation magnetization as magnetic materials.
'Since the volume content of the magnetic material in the magnetic layer is only 30 to ZOS, it has reached its limit as a high-output, high-density recording medium. Furthermore, the manufacturing process is complicated and requires large incidental equipment for solvent recovery and pollution prevention.Metal thin film magnetic recording media have a larger saturation magnetization than oxide magnetic materials. It has the advantage of being able to form extremely thin films of ferromagnetic metals without intervening non-magnetic substances such as organic binders.With the trend toward higher density magnetic recording, the gap length of recording/reproducing magnetic heads is now less than 7.0 μm. However, the recording depth in the magnetic recording layer also tends to become shallower, and metal thin film magnetic recording media, in which the entire thickness of the magnetic film can be used to record magnetic signals, are extremely difficult to use as high-power, high-density recording media. Among metal thin film magnetic recording media, the method of forming a film by vacuum evaporation has the advantages of a fast film formation speed, a simple manufacturing process, and a dry process that does not require drainage treatment. Among these, the oblique incidence vacuum evaporation method, in which the evaporation beam of a magnetic metal is incident obliquely on the surface of a non-magnetic substrate, is relatively simple in terms of process and equipment structure. This method is excellent in practical use because a film with good magnetic properties can be obtained.

テープ状非磁性基体に蒸着によシ磁性薄膜を形成せしめ
て磁気テープを製造する際には、特開昭j@−/920
0号、特開昭j3−17706号に示されているように
移動するテープ状非磁性基体上に電子ビームの照射加熱
により蒸発せしめられた磁性材料の蒸気流を差し向は蒸
着する方法が用いられる。このようにして製造される蒸
着型磁気記録媒体は従来の塗布型磁気記録媒体に比し高
出力が得られることからJ’mmVTR用磁気テープあ
るいはディジタルオーデオ用磁気テープとして極めて有
望である。蒸着型の磁気記録媒体においてはノイズを低
下させS/Nをさらに改良するために磁性材料の蒸着の
際に酸素等の酸化性ガスを導入する方法が取られている
が、これKよると磁気特性、特K(dH)max  が
低下するために改良が望まれていた。さらに従来の電子
ビーム加熱法による蒸着型磁気記録媒体ではビデオ信号
等の特に高周波信号の記録再生波のエンベロープが充分
でなくこれに関する改良も望まれていた。
When manufacturing a magnetic tape by forming a magnetic thin film on a tape-shaped non-magnetic substrate by vapor deposition, the method disclosed in Japanese Patent Application Laid-Open No.
No. 0, JP-A-3-17706, a method is used in which a vapor flow of a magnetic material evaporated by irradiation and heating with an electron beam is directly deposited on a moving tape-shaped nonmagnetic substrate. It will be done. The vapor-deposited magnetic recording medium produced in this manner has a higher output than conventional coating-type magnetic recording media, and is therefore extremely promising as a magnetic tape for J'mm VTRs or a magnetic tape for digital audio. In vapor deposition type magnetic recording media, a method is used in which oxidizing gas such as oxygen is introduced during vapor deposition of magnetic material in order to reduce noise and further improve S/N. Since the characteristics, especially K(dH)max, have deteriorated, improvements have been desired. Further, in the conventional evaporation type magnetic recording medium using the electron beam heating method, the envelope of the recording/reproducing wave especially for high frequency signals such as video signals is insufficient, and improvements in this regard have been desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の欠点を改良した蒸着法忙よる磁
性薄膜型磁気記録媒体、9すなわち磁気特性、特にCΦ
   の改良された磁性薄膜型磁ax 気記録媒体の製造方法を提供することにある。さらに本
発明の目的は電磁変換特性、特に再生信号のエンベロー
プのすぐれた蒸着法による磁性薄膜型磁気記録媒体の製
造方法を提供することにある。
The object of the present invention is to provide a magnetic thin film type magnetic recording medium using a vapor deposition method that improves the above-mentioned drawbacks.
An object of the present invention is to provide a method for manufacturing an improved magnetic thin film type magnetic ax recording medium. A further object of the present invention is to provide a method for manufacturing a magnetic thin film type magnetic recording medium using a vapor deposition method that has excellent electromagnetic conversion characteristics, particularly the envelope of a reproduced signal.

〔発明の構成〕[Structure of the invention]

本発明は真空雰囲気において連続して移動するテープ状
非磁性基体に、電子ビームの走査加熱により蒸発せしめ
られた磁性材料の蒸気を差し向は該非磁性基体上に蒸着
磁性薄膜を形成せしめて磁気記録媒体を製造する方法に
おいて、該非磁性基体幅方向と略平行な磁性材料蒸発源
上の電子ビーム走査域を少なくとも一個の電子ビームに
て走査すると共に、各電子ビームの走査周波数の位相を
異なるようKすることを特徴とする磁気記録媒体の製造
方法に関する。
In the present invention, a magnetic thin film is deposited on a tape-shaped non-magnetic substrate that moves continuously in a vacuum atmosphere, and the vapor of a magnetic material evaporated by scanning heating with an electron beam is directed onto the non-magnetic substrate to form a magnetic thin film. In a method for manufacturing a medium, an electron beam scanning area on a magnetic material evaporation source that is substantially parallel to the width direction of the non-magnetic substrate is scanned with at least one electron beam, and the phase of the scanning frequency of each electron beam is set to be different from K. The present invention relates to a method of manufacturing a magnetic recording medium, characterized in that:

第1図は本発明による磁気記録媒体製造方法を実施する
ための装置の一例を示している。適当な真空排気系を備
えてなる真空槽(図示せず)内に配設されたシリンダー
状冷却キャン//に沿ってテープ状非磁性基体/コが搬
送される。冷却キャン//の下方には磁性材料/3を加
熱蒸発させるためのルツボ/4tが配置されており、磁
性材料/3は2個の電子銃/!、/1からの電子ビーム
/7、/♂の照射により加熱される。加熱蒸発された磁
性材料の蒸気流は冷却キャン//の表面に沿って移動す
るテープ状差体/コの表面に達し蒸着磁性薄膜が形成さ
れる。2個の電子銃/!、/にからの電子ビーム/7、
/Iはルツボ/4を内の磁性材料/3の走査域/夕を走
査照射するように設計されている。走査域/りは冷却キ
ャンl/の表面に沿って移動するテープ状非磁性体7.
2の幅方向に略平行になっている。2個の電子銃/j1
 /6からの電子ビーム/7、//はその走査周波数の
位相が異なるように設定されておシ、−個の電子ビーム
/2、/rは走査域/りの同一個所を同時には照射しな
いようになっている。走査域を照射する電子ビームの個
数をnとした時、電子ビームノ位相は°360’  だ
けずらすようにするのが特に好ましい。さらにテープ状
非磁性基体/コの移動速度をυ(m/分)とし、走査域
/りの走査幅をω(m)とした時、電子ビームの走査周
波数をコωυ n (Hz)以上、特に好ましくは−V(Hz)以上と
することが好ましい。本発明者らは電子ビーム走査によ
る蒸着について種々検討の結果、少なくとも一個の電子
ビームを位相をずらして走査せしめて製造された磁気記
録媒体は磁気特性がすぐれると共に電磁変換特性にすぐ
れた蒸着磁性薄膜型磁気記録媒体であることを見出し、
本発明にいたった。
FIG. 1 shows an example of an apparatus for carrying out the method of manufacturing a magnetic recording medium according to the present invention. A tape-shaped nonmagnetic substrate is conveyed along a cylindrical cooling can disposed in a vacuum chamber (not shown) equipped with a suitable evacuation system. A crucible /4t for heating and vaporizing the magnetic material /3 is placed below the cooling can //, and the magnetic material /3 is equipped with two electron guns /! , /1 are heated by irradiation with electron beams /7, /♂. The vapor flow of the heated and evaporated magnetic material reaches the surface of the tape-shaped differential member moving along the surface of the cooling can, forming a deposited magnetic thin film. 2 electron guns/! , /electron beam from /7,
/I is designed to scan and irradiate the scanning area /3 of the magnetic material /3 inside the crucible /4. 7. The scanning area is a tape-shaped non-magnetic material that moves along the surface of the cooling can.
It is approximately parallel to the width direction of 2. 2 electron guns/j1
The electron beams /7, // from /6 are set so that the phases of their scanning frequencies are different, and the - electron beams /2, /r do not simultaneously irradiate the same part of the scanning area /2. It looks like this. It is particularly preferred that the phases of the electron beams are shifted by 360', where n is the number of electron beams irradiating the scanning area. Furthermore, when the moving speed of the tape-shaped non-magnetic substrate is υ (m/min) and the scanning width of the scanning area is ω (m), the scanning frequency of the electron beam is ωυ n (Hz) or more, Particularly preferably, it is -V (Hz) or higher. As a result of various studies on vapor deposition by electron beam scanning, the present inventors found that a magnetic recording medium manufactured by scanning at least one electron beam with a shifted phase has excellent magnetic properties and has excellent electromagnetic conversion properties. Discovered that it was a thin film magnetic recording medium,
This led to the present invention.

本発明の方法によって磁気記録媒体を製造する場合、磁
性薄膜を形成させるだめの強磁性金属としてはFe5C
o、Ni等の金属あるいはFe−CへFe−Ni、Co
−Ni、Fe−Co−Ni、Fe−Rh、Fe−Cu、
Fe−8i、Co−Cu、Co−Au、Co−Y、Co
−La、Co−Pr、Co−Gd。
When manufacturing a magnetic recording medium by the method of the present invention, the ferromagnetic metal used to form the magnetic thin film is Fe5C.
o, metals such as Ni or Fe-C to Fe-Ni, Co
-Ni, Fe-Co-Ni, Fe-Rh, Fe-Cu,
Fe-8i, Co-Cu, Co-Au, Co-Y, Co
-La, Co-Pr, Co-Gd.

Co−8m、Co−PL、Co−8i、Co−Mn。Co-8m, Co-PL, Co-8i, Co-Mn.

Co−PXNi−CuSMn−Bi、Mn−5b。Co-PXNi-CuSMn-Bi, Mn-5b.

Mn−A、CFe−Cr5Co−Cr、Ni−Cr。Mn-A, CFe-Cr5Co-Cr, Ni-Cr.

Fe−P、N1−PXCo−Ni−P、Co−N1−B
、Co−Ni−Ag、Co−Ni−Cr、Fe−Co−
Cr、 Fe−Co −Ni −Cr、 Co −Ni
 −Zn、Co−N1−W、Fe−Co−N1−P等の
ような強磁性合金が用いられる。磁性膜の厚さは、磁気
記録媒体として充分な出力を与え得る厚さおよび高密度
記録の充分室なえる薄さを必要とすることから一般には
0.02μmから!、θμm1好ましくはθ、Ojpm
から2.0μmである。
Fe-P, N1-PXCo-Ni-P, Co-N1-B
, Co-Ni-Ag, Co-Ni-Cr, Fe-Co-
Cr, Fe-Co-Ni-Cr, Co-Ni
Ferromagnetic alloys such as -Zn, Co-N1-W, Fe-Co-N1-P, etc. are used. The thickness of the magnetic film is generally from 0.02 μm because it needs to be thick enough to provide sufficient output as a magnetic recording medium and thin enough to provide sufficient space for high-density recording! , θμm1 preferably θ, Ojpm
2.0 μm.

なお蒸着時に02 % C02、N2、N Hs、スチ
レン等のガスを導入して磁性薄膜中にO,N、 C等の
元素を含有させるようにしてもいい。
Note that a gas such as 02% CO2, N2, NHs, or styrene may be introduced during vapor deposition to cause elements such as O, N, and C to be contained in the magnetic thin film.

テープ状非磁性基体としてはポリエチレンテレフタレー
ト、ポリイミド、ポリアミド、ポリ塩化ビニル、三酢酸
セルロース、ポリカーボネート、ホリエチレンナフタレ
ート、ホリフエエレンサルファイドのようなゾシスチツ
クベース、あるいはAlXAl!合金、Ti、Ti合金
、ステンレス鋼のような金属帯が用いられる。
Examples of tape-shaped nonmagnetic substrates include polyethylene terephthalate, polyimide, polyamide, polyvinyl chloride, cellulose triacetate, polycarbonate, polyethylene naphthalate, polyethylene sulfide, and other zoystic bases, or AlXAl! Metal strips such as alloys, Ti, Ti alloys, stainless steel are used.

ルツボ/4tから蒸発された磁性材料/3を補給するた
めに線状、粒状、帯状、棒状の磁性材料をルツボ/4t
に上、下あるいは横から連続的あるいは断続的に供給す
るような機構を設けてもよい。
To replenish the evaporated magnetic material/3 from the crucible/4t, place linear, granular, band-shaped, and rod-shaped magnetic materials into the crucible/4t.
A mechanism may be provided for supplying water continuously or intermittently from above, below or from the side.

さらに磁性材料の蒸気流をテープ状基板面に斜めに入射
させる斜方入射真空蒸着法による場合には入射角を30
°〜りOoの範囲にするのが好ましい。
Furthermore, when using the oblique incidence vacuum evaporation method in which the vapor flow of the magnetic material is obliquely incident on the surface of the tape-shaped substrate, the incident angle is set to 30.
It is preferable to set it in the range of ° to 00.

さらに本発明においてテープ状非磁性基体上に有機ある
いは無機物よりなる下地層を設けてもよい。磁性薄膜を
多層化したり、各磁性膜間に有機あるいは無機物よシな
る中間層を設けてもよい。
Furthermore, in the present invention, an underlayer made of an organic or inorganic material may be provided on the tape-shaped nonmagnetic substrate. The magnetic thin films may be multilayered, or an intermediate layer made of organic or inorganic material may be provided between each magnetic film.

また磁性膜上に有機あるいは無機物よシなる保護層を設
けてもよい。
Further, a protective layer made of organic or inorganic material may be provided on the magnetic film.

〔実施例〕〔Example〕

次に実施例をもって本発明を具体的に説明するが本発明
はこれらに限定されるものではない。
EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例/ 第7図に示す装置を用いて72μm厚のポリエチレンテ
レフタレートフィルム上に強磁性薄膜を形成し磁気記録
媒体を作製した。磁性金属材料としてはCo−Ni (
Ni 2i重量%)をルツボにチャージし、それぞれ加
速電圧J j kVの一個の電子銃よりの電子ビーム照
射により加熱蒸発させた。
Example/A ferromagnetic thin film was formed on a 72 μm thick polyethylene terephthalate film using the apparatus shown in FIG. 7 to produce a magnetic recording medium. Co-Ni (
Ni 2i (wt%) was charged in a crucible and heated and evaporated by electron beam irradiation from one electron gun at an acceleration voltage of J j kV.

電子ビームの走査幅はθ、jm、走査周波数は30Hz
、ポリエチレンテレフタレートフィルムの移動速度は1
0m7分とした。蒸着の際は、蒸気流の近傍に酸素を導
入して、真空度が/、♂X70”−’Torrとなるよ
うIICL、膜厚0−/Jpmの磁性薄膜を形成せしめ
て磁気テープを作製した。
The scanning width of the electron beam is θ, jm, and the scanning frequency is 30Hz.
, the moving speed of polyethylene terephthalate film is 1
0m7 minutes. During vapor deposition, oxygen was introduced near the vapor flow, and a magnetic thin film was formed with IICL and a film thickness of 0-/Jpm so that the degree of vacuum was /,♂X70''-'Torr, and a magnetic tape was manufactured. .

電子銃/!のみを使用して得た磁気テープをサンプル/
とし、電子銃/gのみを使用して得た磁気テープをサン
プルコとした。さらに2個の電子銃/j、/lの両方を
使用し、走査周波数の位相差をそれぞれθ°、90°、
/100として得られた磁気テープをサンプルj、g、
jとした。
Electron gun/! Sample magnetic tape obtained using chisel/
A magnetic tape obtained using only an electron gun/g was used as a sample. Furthermore, both of the two electron guns /j and /l are used, and the phase difference of the scanning frequency is set to θ°, 90°, and 90°, respectively.
/100 magnetic tapes were used as samples j, g,
I made it j.

こうして得た磁気テープの磁気特性B−H曲線で00躬
   値およびテープとヘッド相対速ax 度が3.7J−m7秒なるVTRでjMHzの信号を記
録し再生した時のエンベロープ特性を測定したところ下
表のようであった。
We measured the magnetic characteristic B-H curve of the magnetic tape obtained in this way, and the envelope characteristics when a jMHz signal was recorded and played back with a VTR with a tape and head relative speed of 3.7 J-m7 seconds. It was as shown in the table below.

@(1)B−H特性は振動型マグネトメーターにて外部
磁場j 000 Ce印加によシ測定し、(dH)ma
x  は相対値として求めた。
@(1) B-H characteristics were measured using a vibrating magnetometer by applying an external magnetic field j 000 Ce, (dH) ma
x was determined as a relative value.

(2)  エンベロープは次の!段階評価によシ判定し
た。
(2) The envelope is next! Judgment was made on a graded basis.

◎ 非常に良い  O良 い Δ普通 X悪い ×× 非常に悪い このように位相の異なる2個の電子ビームによシ磁性金
属材料を走査加熱蒸発させることにより得られる磁気テ
ープは(:H)maエ 値が向上し、すぐれたエンベロ
ープ特性を示すことが確かめられた。
◎ Very Good O Good Δ Average It was confirmed that the D value was improved and excellent envelope characteristics were exhibited.

実施例λ 実施例/と同様の装置において、電子銃を3個設置した
装置によシ、lコ、!μm厚のポリイミドフィルム上K
CoCr (Cr : jw t To )よ構成る強
磁性薄膜を形成せしめ磁気記録媒体を作製した。真空度
/、jX10−8TorrKてCo−Crを蒸着せしめ
膜厚O,コ!μmとなるよう磁性薄膜を形成した。電子
ビームの走査幅は082m。
Example λ In a device similar to Example/, three electron guns are installed. K on μm thick polyimide film
A magnetic recording medium was manufactured by forming a ferromagnetic thin film composed of CoCr (Cr: jw t To ). Vacuum degree/, jX10-8 TorrK and film thickness O, Co! A magnetic thin film was formed to have a thickness of μm. The scanning width of the electron beam is 082 m.

走査周波数はj)Hz、ポリイミドフィルムの移動速度
はl0m1分とした。7個の電子ビームのみを使用して
得た磁気テープをサンプル4とし、3個の電子銃を全て
使用し走査周波数の位相値をo O1Δ00、/20°
として得られた磁気テープをそれぞれサンプルク、11
 タとした。これらのサンプルについて実施例/と同様
にして7max値およびエンベロープ特性を測定したと
ころ下表のようであった。
The scanning frequency was j)Hz, and the moving speed of the polyimide film was 10 ml/min. Sample 4 is a magnetic tape obtained using only seven electron beams, and the phase value of the scanning frequency is o O1Δ00, /20° using all three electron guns.
The magnetic tapes obtained as
It was ta. The 7max value and envelope characteristics of these samples were measured in the same manner as in Example, and the results were as shown in the table below.

このように3個の電子ビームの走査周波数の位相を異な
らせて得た蒸着型磁気テープは(脣H)max値が向上
し、すぐれたエンベロープ特性を示すことが確かめられ
た。
It was confirmed that the vapor-deposited magnetic tape obtained by changing the phases of the scanning frequencies of the three electron beams in this way has an improved (H)max value and exhibits excellent envelope characteristics.

〔発明の効果〕〔Effect of the invention〕

本発明の蒸着法による磁気記録媒体の製造方法によれば
磁気特性および電磁変換特性の改良された磁気記録媒体
を得ることができるものである。
According to the method of manufacturing a magnetic recording medium using the vapor deposition method of the present invention, it is possible to obtain a magnetic recording medium with improved magnetic characteristics and electromagnetic conversion characteristics.

高密度記録に際しては記録波長が小さくなると自己減磁
損失が増すためけす Hmax  値の大なるこ とが必要となるが本発明の方法によるとこの目的に合っ
た磁気記録媒体を製造することができる。
In high-density recording, as the recording wavelength becomes smaller, the self-demagnetization loss increases, so it is necessary to increase the value of Hmax. According to the method of the present invention, a magnetic recording medium suitable for this purpose can be manufactured.

さらにすぐれたVTR再生画像を得るにはエンベロープ
のすぐれることが必要であるが、本発明によればエンベ
ロープの改良された磁性薄膜型磁気記録媒体を得ること
ができる。
In order to obtain even better VTR reproduced images, it is necessary to have an excellent envelope, and according to the present invention, it is possible to obtain a magnetic thin film type magnetic recording medium with an improved envelope.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は本発明による磁気記録媒体を製造する方法を実
施するための装置例を示している。 l/ニジリンダ−状冷却キャン lλ:テープ状非磁性基体 /3:磁性材料 /ダニM発源ルツボ /!、lご:電子銃 /7、//:電子ビーム /り:走査域
FIG. 7 shows an example of an apparatus for implementing the method of manufacturing a magnetic recording medium according to the present invention. l/Rainbow cylinder-shaped cooling can lλ: Tape-shaped non-magnetic substrate/3: Magnetic material/Mite M source crucible/! , lgo:electron gun/7, //:electron beam/ri:scanning area

Claims (1)

【特許請求の範囲】[Claims] 真空雰囲気において連続して移動するテープ状非磁性基
体上に、電子ビームの走査加熱により蒸発せしめられた
磁性材料の蒸気流を差し向け、該非磁性基体上に蒸着磁
性薄膜を形成せしめて磁気記録媒体を製造する方法にお
いて、該非磁性基体幅方向と略平行な磁性材料蒸発源上
の電子ビーム走査域を少なくとも2個の電子ビームにて
走査すると共に、各電子ビームの走査周波数の位相を異
なるようにすることを特徴とする磁気記録媒体の製造方
法。
A vapor flow of a magnetic material evaporated by scanning heating of an electron beam is directed onto a tape-shaped nonmagnetic substrate that moves continuously in a vacuum atmosphere, and a magnetic thin film is formed on the nonmagnetic substrate to form a magnetic recording medium. In the method of manufacturing the non-magnetic substrate, an electron beam scanning area on a magnetic material evaporation source substantially parallel to the width direction of the non-magnetic substrate is scanned by at least two electron beams, and the scanning frequency of each electron beam is set to have a different phase. A method of manufacturing a magnetic recording medium, characterized in that:
JP21692284A 1984-10-16 1984-10-16 Preparation of magnetic recording medium Granted JPS6194239A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21692284A JPS6194239A (en) 1984-10-16 1984-10-16 Preparation of magnetic recording medium
US06/788,177 US4604293A (en) 1984-10-16 1985-10-16 Process for producing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21692284A JPS6194239A (en) 1984-10-16 1984-10-16 Preparation of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6194239A true JPS6194239A (en) 1986-05-13
JPH0341898B2 JPH0341898B2 (en) 1991-06-25

Family

ID=16696026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21692284A Granted JPS6194239A (en) 1984-10-16 1984-10-16 Preparation of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6194239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302208A (en) * 1992-02-08 1994-04-12 Leybold Aktiengesellschaft Vacuum coating installation
WO1997040206A1 (en) * 1996-04-22 1997-10-30 Toyo Metallizing Co., Ltd. Device and method for continuous vapor-deposition on film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302208A (en) * 1992-02-08 1994-04-12 Leybold Aktiengesellschaft Vacuum coating installation
WO1997040206A1 (en) * 1996-04-22 1997-10-30 Toyo Metallizing Co., Ltd. Device and method for continuous vapor-deposition on film

Also Published As

Publication number Publication date
JPH0341898B2 (en) 1991-06-25

Similar Documents

Publication Publication Date Title
JPS5883328A (en) Magnetic recording medium
JP2999446B2 (en) Magnetic recording medium and magnetic recording / reproducing system
US4604293A (en) Process for producing magnetic recording medium
JP4385235B2 (en) Magnetic recording medium and magnetic recording / reproducing system
US5496620A (en) Magnetic recording medium
JPS6194239A (en) Preparation of magnetic recording medium
JPH0546013B2 (en)
JPS6194240A (en) Preparation of magnetic recording medium
US4526131A (en) Magnetic recording medium manufacturing apparatus
JPS5841442A (en) Manufacture of magnetic recording medium
JPH0418371B2 (en)
JP2004326888A (en) Magnetic recording medium
JP2970219B2 (en) Magnetic recording medium and manufacturing method thereof
JPH0381202B2 (en)
JPH0142046B2 (en)
JPH0432019A (en) Magnetic recording medium
JPH01269211A (en) Magnetic head
JPS62162222A (en) Vertical magnetic recording medium and its production
JPH10228619A (en) Magnetic recording medium and magnetic recording method
JP2001143236A (en) Magnetic recording medium and its manufacturing method
JPS6111919A (en) Magnetic recording medium
JPS6037528B2 (en) Manufacturing method for magnetic recording media
JPH01319119A (en) Magnetic recording medium
JPH10162342A (en) Magnetic recording medium
JPS63183608A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees