JPS59144048A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS59144048A
JPS59144048A JP1868883A JP1868883A JPS59144048A JP S59144048 A JPS59144048 A JP S59144048A JP 1868883 A JP1868883 A JP 1868883A JP 1868883 A JP1868883 A JP 1868883A JP S59144048 A JPS59144048 A JP S59144048A
Authority
JP
Japan
Prior art keywords
substrate
base material
angle
vapor
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1868883A
Other languages
Japanese (ja)
Other versions
JPH057766B2 (en
Inventor
Kazuhiko Nakamura
一彦 中村
Hideaki Matsuyama
秀昭 松山
Kiyotaka Kuroda
清隆 黒田
Hiroyuki Sagawa
佐川 広行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1868883A priority Critical patent/JPS59144048A/en
Publication of JPS59144048A publication Critical patent/JPS59144048A/en
Publication of JPH057766B2 publication Critical patent/JPH057766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve a reaction factor with oxygen as well as a vapor deposition factor to secure a high coercive force by ejecting gaseous oxygen in parallel to the traveling direction of a base material set at a position where a magnetic metal (alloy) is vapor deposited with ejection onto the base material at a minimum incident angle or directly to the base material. CONSTITUTION:A magnetic metal 6 of Co, etc. is vapor deposited to a nonmagnetic base material 2 from a vapor source 7 while moving the material 2 to a take-up roll 5 from a feed roll 3 along a guide roll 4 within a vacuum tank 1. In this case, the gaseous oxygen is ejected to the position where the minimum incident angle theta of vapor deposition is set in parallel to the traveling direction (an arrow mark) of the material 2 or toward the material 2. The high coercive force is obtained when the gaseous oxygen ejection direction is set at an angle alpha=0 deg. in oppositely parallel to the traveling direction of the material 2 or at a plus angle alpha=0-60 deg. toward the material 2. In particular, the highest coercive force is obtained to the flow rate of gaseous oxygen at 0 deg. angle.

Description

【発明の詳細な説明】 この発明は磁気記録媒体の製造方法に関するものであり
、更に詳細には、酸素雰囲気中において、適当な磁性金
属または合金などの蒸着物質を非磁性基材に蒸着させて
得られる薄膜型の磁気記録媒体の製造方法に関するもの
であって、特に磁気記録媒体の保磁力を向上させること
を目的とするも、(1)′ のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium, and more specifically, the present invention relates to a method for manufacturing a magnetic recording medium, and more specifically, a method for producing a magnetic recording medium by depositing a deposition material such as a suitable magnetic metal or alloy on a non-magnetic base material in an oxygen atmosphere. This invention relates to a method for manufacturing the resulting thin-film magnetic recording medium, and is particularly aimed at improving the coercive force of the magnetic recording medium.

従来、蒸着装置内の酸素分圧を他の気体の分圧よりも高
くした酸素雰囲気中で磁性金属または合金を非磁性基材
に蒸着させることによって、得られる磁気テープの保磁
力を向上させることが可能であるとの報告がある。しか
し、この方法では、酸素の分圧を大きくすると、蒸着物
質の自由行程が短くなり十分な蒸着効率が得られないか
または全く蒸着されないという欠点がある。また蒸着物
質が酸素によって散乱される方向もランダムになり不都
合である。更に、この方法では、斜方蒸着において、蒸
着物質の入射角が小さく、シたがって蒸着率の大きい領
域に優先的に酸素を導入することができず実用的ではな
い。
Conventionally, the coercive force of the resulting magnetic tape is improved by depositing a magnetic metal or alloy onto a non-magnetic base material in an oxygen atmosphere in which the partial pressure of oxygen in a deposition apparatus is higher than that of other gases. There are reports that this is possible. However, this method has the disadvantage that when the partial pressure of oxygen is increased, the free path of the deposited material becomes shorter, resulting in insufficient deposition efficiency or no deposition at all. Further, the directions in which the vapor deposited material is scattered by oxygen are also random, which is disadvantageous. Furthermore, this method is not practical in oblique evaporation because the angle of incidence of the evaporation substance is small and therefore oxygen cannot be preferentially introduced into regions where the evaporation rate is high.

そこで、この発明は、従来の方法における欠点を大巾に
改善することができる方法であって、特に、従来のもの
に比べて格段に保磁力が向上した磁気記録媒体を得るこ
とができる方法を提供するものである。
Therefore, the present invention provides a method that can greatly improve the shortcomings of the conventional methods, and in particular, a method that can obtain a magnetic recording medium with significantly improved coercive force compared to the conventional methods. This is what we provide.

この発明によれば、磁気記録媒体の製造方法は、(2) 酸素雰囲気中において蒸着物質を一定範囲の入射角をも
って非磁性基材上に吹き付けて蒸着させることによって
強磁性体薄膜を形成させることからなる方法であって、
蒸着物質を非磁性基材に吹き付けて蒸着させる領域にお
いて、前記基材へ蒸着物質が最低入射角で蒸着される位
置における基材の走行方向と平行もしくは基材向きに酸
素ガスを導入するようにして蒸着を行なうことからなっ
ている。
According to the present invention, a method for manufacturing a magnetic recording medium includes (2) forming a ferromagnetic thin film by spraying and depositing a deposition substance onto a non-magnetic substrate at an incident angle within a certain range in an oxygen atmosphere; A method comprising:
In a region where the vapor deposition substance is sprayed onto the non-magnetic substrate to be vapor-deposited, oxygen gas is introduced parallel to the running direction of the substrate or toward the substrate at a position where the vapor deposition substance is vapor-deposited onto the substrate at the lowest incident angle. The process consists of performing vapor deposition.

この発明において使用される蒸着物質とは、磁気記録媒
体の強磁性薄膜を形成しうるものであれば何れでもよく
、例えば、Fe5Co、 Nl  などの金属あるいは
Fe −Co合金、Fe −N1合金、Co−Ni −
Fe −B合金などの合金からなる強磁性体などが列挙
できる。蒸着物質は、電熱線、電子線などを用いて加熱
し蒸発させて非磁性基材上に蒸着される。この蒸着物質
を非磁性基材上へ蒸着させるための入射角(のけ、斜方
蒸着できる入射角であればよく、好ましくは約60°な
いし90°になるようにするのがよい。また蒸着物質は
まず入射角の大きい領域で非磁性基材上に蒸着され、そ
の基材の移動に従って入射角が小さくなる領域で蒸着さ
れるようにするのが好ましい。なお、使用できる非磁性
基材としては、磁気記録媒体を製造するのに従来使用さ
れているものであれば何れも使用できる。かかる非磁性
基材としては、例えば、ポリエチレンテレフタレートな
どのポリエステル、ポリプロピレンなどのポリオレフィ
ン、セルローストリアセテート、セルロースジアセテー
トなどのセルロース誘導体、ポリカーボネート、ポリ塩
化ビニル、ポリイミドなどの高分子物質などが挙げられ
る。
The deposition material used in the present invention may be any material that can form a ferromagnetic thin film of a magnetic recording medium, such as metals such as Fe5Co and Nl, Fe-Co alloy, Fe-N1 alloy, Co -Ni-
Examples include ferromagnetic materials made of alloys such as Fe-B alloys. The deposition material is heated and evaporated using a heating wire, an electron beam, or the like, and then deposited on the nonmagnetic substrate. The incident angle for vapor depositing this vapor deposition material onto a non-magnetic substrate (any incident angle that allows for oblique vapor deposition is sufficient, preferably approximately 60° to 90°. It is preferable that the substance is first deposited on a non-magnetic substrate in a region where the incident angle is large, and then deposited in a region where the incident angle decreases as the substrate moves. Any material conventionally used for manufacturing magnetic recording media can be used. Examples of such non-magnetic substrates include polyesters such as polyethylene terephthalate, polyolefins such as polypropylene, cellulose triacetate, and cellulose diacetate. Examples include cellulose derivatives such as acetate, and polymeric substances such as polycarbonate, polyvinyl chloride, and polyimide.

この発明において、蒸着物質を非磁性基材上に蒸着させ
る領域(以下、「蒸着領域」という)とは、前述したよ
うに、斜方蒸着ができる一定範囲の入射角(θ)lこよ
ってその蒸着物質が非磁性基材上に蒸着されて強磁性薄
膜が形成されつる領域に=lh毒→礪→壬意味する。本
発明によれば、この領域において、前記基材へ蒸着物質
が最低入射角で蒸着される位置における基材の走行方向
と平行もしくは基材向きに酸素ガスが導入される。酸素
ガス導入のための方法としては、蒸着領域において、基
材へ蒸着物質が最低入射角で蒸着される位置において、
蒸着物質が基材番こ付着するのを妨げない位置番と酸素
ガス吹出機構を設ければよい。この酸素ガス吹出機構は
、酸素ガス流の方向が基材の走行方向と平行もしくは基
材向きになるようにガス吹出口を調節できるようにする
のがよい。本明細書においては、酸素ガス流の方向(角
度α)は、基材の走行方向と平行(α=0°)もしくは
基材向きに60°までの角度であることが好ましい。
In this invention, the area where the vapor deposition substance is vapor deposited on the non-magnetic base material (hereinafter referred to as the "evaporation area") is defined as a certain range of incidence angle (θ)l that allows oblique vapor deposition, and thus A deposited material is deposited on a non-magnetic substrate to form a ferromagnetic thin film in a region where = lh poison→礪→壬 means. According to the present invention, in this region, oxygen gas is introduced parallel to the running direction of the substrate or toward the substrate at a position where the vapor deposition substance is deposited onto the substrate at the lowest incident angle. As a method for introducing oxygen gas, in the evaporation region, at a position where the evaporation substance is evaporated onto the base material at the lowest incident angle,
It is only necessary to provide a position that does not prevent the deposition substance from adhering to the base material and an oxygen gas blowing mechanism. This oxygen gas blowing mechanism is preferably configured such that the gas blowing port can be adjusted so that the direction of the oxygen gas flow is parallel to the traveling direction of the substrate or directed toward the substrate. In this specification, the direction of the oxygen gas flow (angle α) is preferably parallel to the running direction of the substrate (α=0°) or at an angle of up to 60° toward the substrate.

この発明に係る方法によれば、非磁性基材上の蒸着領域
において、優先的に酸素分圧を高くしながら、蒸着物質
の蒸発粒子の自由行程を短かくすることなく、蒸着効率
を上げることができる。また、斜方蒸着において、蒸着
物質の蒸発粒子の少ない部分から多い部分に移るに従っ
て酸素の量を多くして行くことができ、蒸着物質と酸素
との反応率が上昇し、この反応により蒸着物質の結晶の
大きさが小さくなるために結晶異方性により保磁力が著
しく向上するものと思われる。更にまた、実際の入射角
が見掛けの入射角よりも大きな蒸発粒子が現われること
により保磁力の向上に寄与していることも考えられる。
According to the method of the present invention, it is possible to increase the vapor deposition efficiency while preferentially increasing the oxygen partial pressure in the vapor deposition region on the non-magnetic substrate without shortening the free path of the evaporated particles of the vapor deposition material. Can be done. In addition, in oblique evaporation, the amount of oxygen can be increased as the amount of evaporated particles of the evaporated material moves from a part with fewer evaporated particles to an area with more. The coercive force is thought to be significantly improved due to the crystal anisotropy as the size of the crystal becomes smaller. Furthermore, it is also conceivable that the appearance of evaporated particles whose actual angle of incidence is larger than the apparent angle of incidence contributes to the improvement of the coercive force.

以下、この発明を図面を参照して説明する。Hereinafter, the present invention will be explained with reference to the drawings.

第1図は、この発明を実施するための装置の一例を示す
ものである。所定の真空に1例えば約1x 10”−5
Thrr以下にした真空槽(1)に、蒸着物質を蒸着さ
せる非磁性基材(2)が、繰出しローラ(3)から案内
ローラ(4)を介して巻取りローラ(5)に巻取られる
ように配置されている。真空槽(1)の下部に設けた6
などの蒸着物質(6)を電熱線、電子線などの加熱手段
(7)によって加熱して蒸発させ、非磁性基材(2)の
表面に所定の入射角(ので蒸着させて強磁性薄膜を形成
できるようになっている。真空槽(1)は排気系Uυに
よって所定の真空度に維持される。なお、所定の入射角
を確保するために、遮蔽部(8)を設けて、非磁性基材
の表面に蒸着物質の蒸発粒子が不要部分に直接入射しな
いようにする。また、ノズル(9)を有するパイプ11
を真空槽(1)内に配設して、基材へ蒸着物質が最低入
射角で蒸着される位置における基材の走行方向と平行も
しくは基材方向に酸素ガスを導入するように構成されて
いる。本明細書では、前記の通り酸素ガス流の方向(角
度α)は、基材の走行方向と平行でかつ逆向きの場合が
α=0°であり、基材向きの方向が十の角度であり、ざ
ら番こ基材と反対側の向きの方向を−の角度とする。
FIG. 1 shows an example of an apparatus for carrying out the invention. 1 for a given vacuum e.g. about 1x 10"-5
A non-magnetic base material (2) on which a deposition substance is to be deposited is wound onto a take-up roller (5) from a feeding roller (3) via a guide roller (4) in a vacuum chamber (1) whose temperature is below Thrr. It is located in 6 installed at the bottom of the vacuum chamber (1)
A ferromagnetic thin film is formed by heating and evaporating the vapor deposition substance (6) with a heating means (7) such as a heating wire or an electron beam, and depositing it on the surface of the non-magnetic base material (2) at a predetermined angle of incidence. The vacuum chamber (1) is maintained at a predetermined degree of vacuum by the exhaust system Uυ.In addition, in order to ensure a predetermined angle of incidence, a shielding part (8) is provided to prevent non-magnetic The evaporated particles of the evaporated substance are prevented from directly entering unnecessary parts on the surface of the base material.In addition, the pipe 11 having the nozzle (9)
is arranged in a vacuum chamber (1), and is configured to introduce oxygen gas parallel to the running direction of the substrate or in the direction of the substrate at a position where the vapor deposition substance is deposited onto the substrate at the lowest incident angle. There is. In this specification, as mentioned above, the direction of the oxygen gas flow (angle α) is α = 0° when it is parallel to and opposite to the running direction of the base material, and when the direction facing the base material is an angle of 10. Yes, the direction opposite to the rough board base material is the - angle.

以下、この発明を実施例により説明する。This invention will be explained below with reference to Examples.

真空度5×10″” Thrrに維持した第1図に示す
ような真空槽を用いて、ポリエチレンテレフタレートフ
ィルム上に、入射角θを50°ないし90°にして蒸着
層厚が800ないし900AになるようにGを蒸着した
。この場合、第1図に示すようなノズルから酸素ガス流
を、100crrL3/分と400crrL5/分の間
の種々の割合で、0が最低入射角で蒸着される位置にお
いて基材の走行方向と平行かつ逆向き(α=0°)ない
しα=90°の角度で導入して、磁気テープを作成した
@ また、比較例として、α=−60°とした以外は前記実
施例と同様にして磁気テープを作成した。
Using a vacuum chamber as shown in Figure 1 maintained at a vacuum level of 5 x 10'' Thrr, a vapor deposited layer is deposited on a polyethylene terephthalate film at an incident angle θ of 50° to 90° to a thickness of 800 to 900 A. G was deposited in the same way. In this case, the oxygen gas flow is applied from a nozzle as shown in Figure 1 at various rates between 100crrL3/min and 400crrL5/min, parallel to the running direction of the substrate at the position where 0 is deposited at the lowest angle of incidence. A magnetic tape was prepared by introducing the magnetic tape in the opposite direction (α = 0°) or at an angle of α = 90°. I made a tape.

また、別の比較例として、酸素ガス流を全く導入しない
以外は前記実陶例と同様にして磁気テープを作成した。
In addition, as another comparative example, a magnetic tape was prepared in the same manner as in the actual ceramic example, except that no oxygen gas flow was introduced.

これらの磁気テープについて保磁力を測定して得られた
結果を第3図ζこ示す。この図から明らかなように、α
=01〜60°の方向で酸素ガス流を導入した場合に高
い保磁力を有する磁気テープが得られ、特にα=0″の
場合に、各酸素ガスの流量に対して最も高い保磁力が得
られる。αが−の角度
The results obtained by measuring the coercive force of these magnetic tapes are shown in FIG. As is clear from this figure, α
A magnetic tape with a high coercive force is obtained when the oxygen gas flow is introduced in the direction of = 01 to 60°, and especially when α = 0'', the highest coercive force is obtained for each oxygen gas flow rate. The angle where α is −

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に適用できる装置の一例を示す概略
断面図、第2図は酸素ガス流の導入の方向を示す角度の
説明図、第6図は酸素ガス流の導入角度と酸素ガスの流
量を変えた場合に得られる磁気テープの保磁力を示すグ
ラフである。 なお、図面に用いられている符号において、(1)・・
・・・・・・・・・・・・・真空槽(2)・・・・・・
・・・・・・・・・非磁性基材(6)・・・・・・・・
・・・・・・・蒸着物質(8)・・・・・・・・・・・
・・・・遮蔽部(9)・・・・・・・・・・・・・・・
ノズルθ ・・・・・・・・・・・・・・・入射角α 
・・・・・・・・・・・・・・・ 酸素ガス流の方向(
角度)である。 代理人 上屋 勝 l  常包芳男 l  杉浦俊貴 第1図
Fig. 1 is a schematic sectional view showing an example of a device applicable to the present invention, Fig. 2 is an explanatory diagram of the angle showing the direction of introduction of the oxygen gas flow, and Fig. 6 is an illustration of the introduction angle of the oxygen gas flow and the oxygen gas flow. 3 is a graph showing the coercive force of the magnetic tape obtained when the flow rate of the magnetic tape is changed. In addition, in the symbols used in the drawings, (1)...
・・・・・・・・・・・・Vacuum chamber (2)・・・・・・
......Nonmagnetic base material (6)...
・・・・・・Vapour-deposited substance (8)・・・・・・・・・・・・
・・・・Shielding part (9)・・・・・・・・・・・・・・・
Nozzle θ ・・・・・・・・・・・・Incidence angle α
・・・・・・・・・・・・・・・ Direction of oxygen gas flow (
angle). Agent Masaru Ueya Yoshio Tsuneko Toshiki Sugiura Figure 1

Claims (1)

【特許請求の範囲】[Claims] 酸素雰囲気中において蒸着物質を一定範囲の入射角をも
って非磁性基材上に吹き付けて蒸着させることによって
強磁性体薄膜を形成させることからなる磁気記録媒体の
製造方法であって、蒸着物質を非磁性基材に吹き付けて
蒸着させる領域において、前記基材へ蒸着物質が最低入
射角で蒸着される位置における基材の走行方向と平行も
しくは基材向きに酸素ガスを導入することを特徴とする
磁気記録媒体の製造方法。
A method for producing a magnetic recording medium comprising forming a ferromagnetic thin film by spraying and depositing a vapor deposited material onto a non-magnetic base material at an incident angle within a certain range in an oxygen atmosphere, the method comprising: Magnetic recording characterized by introducing oxygen gas parallel to the traveling direction of the substrate or toward the substrate at a position where the vapor deposition substance is vapor-deposited onto the substrate at the lowest incident angle in a region where the vapor deposition substance is sprayed onto the substrate. Method of manufacturing media.
JP1868883A 1983-02-07 1983-02-07 Production of magnetic recording medium Granted JPS59144048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1868883A JPS59144048A (en) 1983-02-07 1983-02-07 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1868883A JPS59144048A (en) 1983-02-07 1983-02-07 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS59144048A true JPS59144048A (en) 1984-08-17
JPH057766B2 JPH057766B2 (en) 1993-01-29

Family

ID=11978549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1868883A Granted JPS59144048A (en) 1983-02-07 1983-02-07 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59144048A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155375A (en) * 1981-03-20 1982-09-25 Matsushita Electric Ind Co Ltd Vacuum evaporation apparatus
JPS5837843A (en) * 1981-08-31 1983-03-05 Sony Corp Production of magnetic recording medium
JPS5841439A (en) * 1981-09-01 1983-03-10 Matsushita Electric Ind Co Ltd Magnetic recording medium and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155375A (en) * 1981-03-20 1982-09-25 Matsushita Electric Ind Co Ltd Vacuum evaporation apparatus
JPS5837843A (en) * 1981-08-31 1983-03-05 Sony Corp Production of magnetic recording medium
JPS5841439A (en) * 1981-09-01 1983-03-10 Matsushita Electric Ind Co Ltd Magnetic recording medium and its manufacture

Also Published As

Publication number Publication date
JPH057766B2 (en) 1993-01-29

Similar Documents

Publication Publication Date Title
EP0151445B1 (en) Production of magnetic recording medium
JPS59144048A (en) Production of magnetic recording medium
JPH06150289A (en) Magnetic recording medium and its manufacture
JPS5837843A (en) Production of magnetic recording medium
JPS6139234A (en) Thin film forming device
JPS5860432A (en) Manufacture of magnetic recording medium
JPH083902B2 (en) Method for manufacturing thin film magnetic recording medium
JPS59157847A (en) Metallic thin film type magnetic recording medium
JPS60157728A (en) Production of magnetic recording medium
JPH10251841A (en) Vacuum film deposition device
JPH053052B2 (en)
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPH1088327A (en) Thin coating forming device
JPS57156031A (en) Formation of thin film and vacuum deposition device
JPH0121534B2 (en)
JPS5916144A (en) Production for magnetic recording medium
JPS58105433A (en) Producing device of magnetic recording medium
JPH0714161A (en) Production of magnetic recording medium
JPH0757260A (en) Device for producing magnetic recording medium
JPH06333225A (en) Thin film magnetic recording medium
JPH10251842A (en) Vacuum film deposition device
JPH0413769B2 (en)
JPS60160027A (en) Magnetic recording medium
JPH117627A (en) Magnetic recording medium and its method and device of manufacturing
JPS61214136A (en) Method and apparatus for producing magnetic recording medium