JPH05306121A - チタン酸バリウム系磁器原料粉末の製造方法 - Google Patents

チタン酸バリウム系磁器原料粉末の製造方法

Info

Publication number
JPH05306121A
JPH05306121A JP4111027A JP11102792A JPH05306121A JP H05306121 A JPH05306121 A JP H05306121A JP 4111027 A JP4111027 A JP 4111027A JP 11102792 A JP11102792 A JP 11102792A JP H05306121 A JPH05306121 A JP H05306121A
Authority
JP
Japan
Prior art keywords
water
oil
product
barium
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4111027A
Other languages
English (en)
Inventor
Yuriko Tsukioka
百合子 月岡
Kazumi Okabe
参省 岡部
Yukio Hamachi
幸生 浜地
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4111027A priority Critical patent/JPH05306121A/ja
Publication of JPH05306121A publication Critical patent/JPH05306121A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

(57)【要約】 【目的】 一次粒子が微細で、凝集が緩やかで成形性に
優れたチタン酸バリウム系磁器原料粉末を得ること。 【構成】 少なくともバリウムを含むアルカリ土金属の
水溶性水酸化物と苛性アルカリの熱水溶液を撹拌しなが
らチタンアルコキシド及び他の金属アルコキシド又はそ
の水溶液と反応させ、反応生成物を水洗して苛性アルカ
リを除去した後、分散媒として油を加えて乳化させ、生
成したW/Oエマルジョンを凍結させて前記油を反応生
成物から分離した後、該反応生成物を凍結乾燥させる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はチタン酸バリウム系磁器
原料粉末の製造方法、特に、セラミック電子部品の誘電
体材料として有用なチタン酸バリウム系誘電体磁器原料
粉末の製造方法に関するものである。
【0002】
【従来の技術】一般に、チタン酸バリウム系磁器原料粉
末の製造方法としては、(1)炭酸バリウムと酸化チタン
の粉末を混合粉砕し、1200℃程度の温度で仮焼した
後、機械的粉砕により微細化する伝統的な乾式法、及び
(2)苛性アルカリの存在下、水酸化バリウムとチタン酸
テトライソプロピルとを加水分解反応させ、生成したス
ラリーを水洗後、直接蒸発乾燥させるか、あるいは水洗
したスラリーをアルコール等の有機溶剤で洗浄してから
蒸発乾燥させた後、塊を破砕し整粒する湿式法が採用さ
れている。また、粉末生成物の整粒法としては、一旦ス
ラリーとした原料粉末を噴霧乾燥して顆粒状に造粒する
方法が広く実用化されている。
【0003】
【発明が解決しようとする課題】しかしながら、前記乾
式法では、粒径が粗く、表面活性の低い原料粉末しか得
られず、焼結性が悪いという問題がある。しかも、添加
物を加えた場合、ミクロ的に均一に分散させることがで
きず、添加物が偏析して均一な組成の磁器が得られずセ
ラミック電子部品の特性にバラツキが多いという問題が
ある。また、粒子を微細化するため機械的粉砕を行う必
要があるため、粉砕機の摩耗による不純物の混入を生じ
易いという問題もある。
【0004】他方、(2)の湿式法は、液相反応により非
常に微細な粒子を生成することができるが、粒子が微細
であるため反って乾燥工程で強固な凝集を生じ易く、熱
処理によって凝集体が直径数ミクロンの粗い一次粒子に
成長してしまい、高密度で焼結性の良い成形体が得難く
なるという問題がある。
【0005】また、噴霧乾燥により造粒された顆粒は球
状を呈し、型内における流動性が高く充填密度も高い
が、顆粒は乾燥に際して有機質結合剤による一次粒子の
凝集によって形成されたものであるため、本質的に固
く、プレス成型に際して潰れ難く、高密度の成形体を得
るのが困難であるという問題がある。
【0006】従って、本発明は、一次粒子が微細で、一
次粒子の凝集が緩やかで、成形性に優れたチタン酸バリ
ウム系磁器原料粉末を得ることを目的とするものであ
る。
【0007】
【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、少なくともバリウムを含むア
ルカリ土金属の水溶性水酸化物と苛性アルカリの熱水溶
液を撹拌しながらチタンアルコキシド及び他の金属アル
コキシド又はその水溶液と反応させ、反応生成物を水洗
して苛性アルカリを除去した後、分散媒として油を加え
て乳化させ、生成したW/Oエマルジョンを凍結させて
前記油を反応生成物から分離した後、該反応生成物を凍
結乾燥させるようにしたものである。
【0008】アルカリ土金属の水溶生水酸化物として
は、水酸化バリウム以外に水酸化カルシウム及び水酸化
ストロンチウムが代表的なものとして挙げられるが、こ
れらに限定されるものではない。
【0009】ペロブスカイト構造を有するチタン酸バリ
ウム系誘電体磁器のBサイトの一部を構成するチタン以
外の元素としては、ジルコニウム及び錫が代表的なもの
として挙げられ、これらの元素のアルコキシドとして
は、任意のものを使用できるが、アルコキシ基の炭素数
が15以下、好ましくは、8以下のものが望ましい。代
表的なものとしては、チタンアルコキシドを例にする
と、チタン イソブトキシド(Ti(OC49)4)、チタン
イソプロポキシド(Ti(OC37)4)、ジブトキシージト
リエタノールーアミネートチタン、ジブトキシ−ジ(2-
(ヒドロキシエチルアミノ)エトキシ)チタン(Ti(C49
O)2・〔N(C24OH)2(C24O)〕2)などが挙げられ
るが、これらに限定されるものではない。
【0010】W/Oエマルジョンを生成させるための油
は、反復使用できるため水と溶解しない有機液体であれ
ば任意のものを使用できるが、エマルジョンの分散質、
即ち、水を含み球状の顆粒となった反応生成物をー5℃
以下の温度で凍結させた際、液状を保つものが好適であ
り、代表的なものとしては、軽油などが挙げられる。
【0011】
【作用】水酸化バリウムを単独で若しくは他のアルカリ
土金属の水溶性水酸化物と併用し、苛性アルカリと共に
溶解させて得た熱水溶液に、チタンアルコキシド及び他
の金属アルコキシド又はその水溶液を添加して加水分解
反応させると、ペロブスカイト型構造を有し非常に微細
なチタン酸バリウム系複合酸化物粉末粒子を含むスラリ
ーが生成し、これを水洗して苛性アルカリを除去したの
ち、油と混合撹拌すると、水を含む複合酸化物粉末粒子
の球状構造体が油中に分散したW/Oエマルジョンが生
成する。このエマルジョンを油が凍結せずに液状を保つ
温度で凍結させると、エマルジョンを解消して凍結した
球状構造体と油とに分離し、これをふるいに通して油を
除去した後、冷凍乾燥させると、一次粒子同士の凝集性
が低く流動性に優れた顆粒状原料粉末が得られる。
【0012】
【実施例1】水酸化バリウム8水和物78.09g、1
2Nの水酸化ナトリウム溶液84ml、ポリビニルアルコ
ール10gを80℃の温水750mlに溶解させた水溶液
と、チタン酸テトライソプロピル75.00mlをイソプ
ロパノールで希釈して750mlとした溶液とを静止型撹
拌装置に、その二つの送液口から各々1000ml/min
の流速で同時に送液して両溶液を混合させた後、窒素雰
囲気下に設置した開放容器内に流入させる。さらに、こ
の開放容器を介して生成物が静止型撹拌装置内を200
0ml/minの流速で循環するように5時間送液を継続さ
せる。この時、開放容器及び撹拌装置を外部からヒータ
で加熱し、反応液の温度を90℃以上に保持させる。反
応終了後、生成物を脱水し、水洗、濾過を濾液のpHが
9以下になるまで繰り返した後、水を加えて生成物のス
ラリーの粘度を約4ポアズに調整した。
【0013】得られた水系の生成物スラリーを軽油25
00mlに加え、静止型撹拌装置内を循環させて乳化分散
させ、水を含む生成物のスラリーが球状となって油中に
分散したW/Oエマルジョンとした。このエマルジョン
を軽油が凍結せず液状を保つ−15℃の温度に維持した
冷凍庫にいれて球状生成物を凍結させ、これを350メ
ッシュのふるいに通して軽油を除去し、これを5時間冷
凍乾燥させて球状の原料粉末を得た。この顆粒状原料粉
末をX線回折分析を行ったところ、ペロブスカイト単相
であった。
【0014】
【実施例2】水酸化バリウム8水和物63.78g、水酸
化ストロンチウム23.44g、12Nの水酸化ナトリウ
ム溶液84ml、ポリビニルアルコール10gを80℃の
温水750mlに溶解させた水溶液と、テトラ−i−プロ
ポキシチタニウム70.00ml、テトラ−i−プロポキシ
ジルコニウム9.03g、テトラ−i−プロポキシ錫9.
79gをイソプロパノールで希釈して750mlとした溶
液とを静止型撹拌装置に、その二つの送液口から各々1
000ml/minの流速で同時に送液して両溶液を混合さ
せた後、窒素雰囲気下に設置した開放容器内に流出させ
る。さらに、この開放容器を介して生成物が静止型撹拌
装置内を2000ml/minの流速で循環するように5時
間送液を継続させる。この時、開放容器及び撹拌装置を
外部からヒータで加熱し、反応液の温度を90℃以上に
保持させる。反応終了後、生成物を脱水し、水洗、濾過
を濾液のpHが9以下になるまで繰り返した後、水を加
えて生成物のスラリーの粘度を約4ポアズに調整した。
【0015】得られた水系の生成物スラリーを軽油25
00mlに加え、実施例1と同様にして球状の原料粉末を
得た。この顆粒状原料粉末をX線回折分析を行ったとこ
ろ、ペロブスカイト単相であり、その組成は(Ba0.696
Sr0.304)(Ti0.810Zr0.095Sn0.095)O3であった。
【0016】
【比較例1】水酸化バリウム8水和物63.78g、水酸
化ストロンチウム23.44g及び12Nの水酸化ナトリ
ウム溶液84mlを80℃の温水750mlに溶解させて得
た熱水溶液に、テトラ−i−プロポキシチタニウム70.
00ml、テトラ−i−プロポキシジルコニウム9.63g
及びテトラ−i−プロポキシ錫10.44gをイソプロパ
ノールで希釈して得た溶液を滴下して加水分解反応さ
せ、生成物を濾別、水洗した後、イソプロパノールで洗
浄し、蒸発乾燥させた後、塊を破砕して整粒して顆粒状
の原料粉末を得た。
【0017】
【比較例2】炭酸バリウム、炭酸ストロンチウム、酸化
チタン、酸化ジルコニウム及び酸化錫を実施例2のもの
と同組成になるように配合し、ボールミルで混合粉砕し
た後、1350℃の温度で仮焼した後、粉砕して仮焼粉
末を得た。実施例2、比較例1、2で得た各粉末につい
て、窒素吸着法により比表面積(SS)を測定する一方、
X線回折で(111)面の回折ピークの半値幅を測定し
た。それらの結果を表1に示す。
【0018】
【表1】 SS SSからの 回折ピーク 回折ピーク半値幅 粒径換算値 半値幅 からの粒径換算値 (m2/g) (μm) (rad) (μm) 実施例2 58.8 0.017 0.0092 0.016 比較例1 16.0 0.063 0.0054 0.027 比較例2 3.4 0.29 0.0005 0.3
【0019】表1に示す結果から、本発明に係る実施例
のものは、比表面積(SS)及び回折ピークからの一次粒
子径換算値が良く一致していることから、凝集が生じ難
く分散性が良好であり、しかも、粒径換算値が0.01
6〜0.017μmと非常に微細であることが判る。こ
れに対して、比較例1のものは、回折ピークからの粒径
換算値よりSSからの粒径換算値が2.3倍大きく、一
次粒子の凝集が生じており、また、比較例2のものは凝
集は生じてはいないが、粉砕後でも粒径が約0.3μm
と極めて大きいことが判る。
【0020】他方、前記実施例2及び比較例1で得た各
粉末を乳鉢で軽く破砕し、500℃/minで昇温し87
5℃で2時間粉末を熱処理した後、窒素吸着法により比
表面積(SS)を測定したところ、表2に示す結果が得ら
れた。
【0021】
【表2】
【0022】表2に示す結果から、本発明方法により得
た粉末を軽く破砕して得た粉末は、熱処理によって急激
な粒子成長が生じ難いのに対し、比較例1のものは比表
面積が急激に低下していることから、一次粒子が強固に
凝集しているため、乳鉢で凝集体を十分に破砕すること
ができず、粒子成長を生じ易いことが判る。さらに、前
記実施例2、比較例1、2で得た各粉末に微量の水を含
ませた後、2000kg/cm2の加圧下でプレス成型し
て直径10mm、厚さ1.5mmのディスク型の成形体を
得、これを空気中1300℃まで10℃/minの速度で
昇温させ、熱膨張測定装置で焼結に伴う収縮が開始する
温度を測定した。その結果を表3に示す。
【0023】
【表3】 実施例2 比較例1 比較例2 収縮開始温度(℃) 1020 1070 1140
【0024】表3に示す結果から明らかなように、本発
明方法による粉末を使用した場合には、焼結が開始する
温度が他のいづれの方法による粉末を使用した場合より
低温であった。
【0025】
【発明の効果】以上説明したように、本発明によれば、
少なくともバリウムを含むアルカリ土金属の水溶性水酸
化物と苛性アルカリの熱水溶液を撹拌しながら、それに
チタンアルコキシド及び他の金属アルコキシド又はその
水溶液を添加して加水分解反応を生じさせるため、局部
的に反応物の濃度が高くなることがなく、従って、生成
物の一次粒子が非常に微細であり、しかも、撹拌機の摩
耗による不純物の混入が少ない反応生成物を得ることが
できる。
【0026】また、反応生成物に分散媒として油を加え
て乳化させ、生成したW/Oエマルジョンを凍結させて
前記油を反応生成物から分離した後、凍結乾燥させるた
め、従来の蒸発乾燥又は噴霧乾燥で得られる強固に凝集
した粒子とは異なり、一次粒子が緩やかに結びあった球
状の顆粒粉末を得ることができ、分散性に優れた原料粉
末を得ることができる。従って、本発明方法によれば、
凝集性が低く潰れ易く、流動性に優れた球状の顆粒を製
造できるので、プレス成型を行う際の充填密度を高める
ことができ、一次粒子が微細なことと相まってち密な成
形体を得ることができ、しかも、焼成温度を下げること
ができる。
【0027】さらに、顆粒を構成する一次粒子の凝集性
が低いため、容易に破砕することができ、破砕によって
得られた粒子が分散性に優れ、粉末を熱処理する工程に
おける粒子成長が抑制され、結晶粒子の微細な磁器を得
ることができる。しかも、破砕による不純物が混入する
こともないなど優れた効果を奏する。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂部 行雄 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 少なくともバリウムを含むアルカリ土金
    属の水溶性水酸化物と苛性アルカリの熱水溶液を撹拌し
    ながらチタンアルコキシド及び他の金属アルコキシド又
    はその水溶液と反応させ、反応生成物を水洗して苛性ア
    ルカリを除去した後、分散媒として油を加えて乳化さ
    せ、生成したW/Oエマルジョンを凍結させて前記油を
    反応生成物から分離した後、該反応生成物を凍結乾燥さ
    せることを特徴とするチタン酸バリウム系磁器原料粉末
    の製造方法。
JP4111027A 1992-04-30 1992-04-30 チタン酸バリウム系磁器原料粉末の製造方法 Pending JPH05306121A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111027A JPH05306121A (ja) 1992-04-30 1992-04-30 チタン酸バリウム系磁器原料粉末の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111027A JPH05306121A (ja) 1992-04-30 1992-04-30 チタン酸バリウム系磁器原料粉末の製造方法

Publications (1)

Publication Number Publication Date
JPH05306121A true JPH05306121A (ja) 1993-11-19

Family

ID=14550544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111027A Pending JPH05306121A (ja) 1992-04-30 1992-04-30 チタン酸バリウム系磁器原料粉末の製造方法

Country Status (1)

Country Link
JP (1) JPH05306121A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554571A (en) * 1994-10-03 1996-09-10 Murata Manufacturing Co., Ltd. Production of dielectric ceramic material powder
WO1998039269A1 (de) * 1997-03-06 1998-09-11 Siemens Aktiengesellschaft Verfahren zur herstellung einer perowskitkeramik mit definiertem gefüge
WO1999059919A1 (fr) * 1998-05-20 1999-11-25 Toho Titanium Co., Ltd. Procede de production d'une poudre de titanate de baryum

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554571A (en) * 1994-10-03 1996-09-10 Murata Manufacturing Co., Ltd. Production of dielectric ceramic material powder
WO1998039269A1 (de) * 1997-03-06 1998-09-11 Siemens Aktiengesellschaft Verfahren zur herstellung einer perowskitkeramik mit definiertem gefüge
WO1999059919A1 (fr) * 1998-05-20 1999-11-25 Toho Titanium Co., Ltd. Procede de production d'une poudre de titanate de baryum
US6352681B1 (en) 1998-05-20 2002-03-05 Toho Titanium Co., Ltd. Method for producing barium titanate powder

Similar Documents

Publication Publication Date Title
DE102005033392B4 (de) Nanokristalline Sinterkörper auf Basis von Alpha-Aluminiumoxyd, Verfahren zu Herstellung sowie ihre Verwendung
CN101238068B (zh) 制备纳米结晶的α-Al2O3的方法
JPH05345611A (ja) ナノサイズのαアルミナ粒子とその製造方法
KR101317546B1 (ko) 산화 인듐 분말 및 그 제조 방법
JPH10182150A (ja) Itoの原料粉と焼結体およびそれらの製造方法
JPH08277159A (ja) 焼結α−Al2O3物体を製造するための方法及びそれらの使用
JPH013008A (ja) 易解砕性アルミナの製造方法
US4627966A (en) Formation of fine particle sinterable ceramic powders
JPH06171931A (ja) α−アルミナ粉末の製造方法
CN110035976A (zh) 高强度且导热率低的氧化锌烧结体制作用氧化锌粉末
KR100360118B1 (ko) 옥살레이트법에 의한 티탄산바륨계 산화물 분말 제조방법
JPWO2003097527A1 (ja) 粒子状窒化アルミニウム及びその製造方法
JPH05306121A (ja) チタン酸バリウム系磁器原料粉末の製造方法
US3702882A (en) Process for the preparation of fine sized magnesium aluminate spinel
JPS60210508A (ja) 焼結可能なセラミツク微粉末の製造方法
US6461584B1 (en) Process of making α-alumina powder
JP2002356328A (ja) 酸化ニオブスラリー、酸化ニオブ粉末およびそれらの製造方法
JP4045178B2 (ja) 酸化タンタルスラリー、酸化タンタル粉末およびそれらの製造方法
JP3665083B2 (ja) セラミックス粉末スラリー及びセラミックス顆粒の製造方法
JP3251972B2 (ja) 転動造粒用ジルコニア粉末凝集体
CN112028622B (zh) 一种将硬团聚大颗粒BaTiO3转变为纳米及亚微米级颗粒的方法
JPH0574529B2 (ja)
CN116789168A (zh) 一种固相合成钛酸钡粉体的方法
JPH05147924A (ja) アルミナ・シリカ系粉末の製造方法
JPH03174355A (ja) 混合・粉砕用球状磁器及びこれを用いるチタン酸塩系セラミック原料の混合・粉砕方法