JPH05198592A - ポリシリコン上にケイ化物を形成するための改良された方法 - Google Patents

ポリシリコン上にケイ化物を形成するための改良された方法

Info

Publication number
JPH05198592A
JPH05198592A JP4224491A JP22449192A JPH05198592A JP H05198592 A JPH05198592 A JP H05198592A JP 4224491 A JP4224491 A JP 4224491A JP 22449192 A JP22449192 A JP 22449192A JP H05198592 A JPH05198592 A JP H05198592A
Authority
JP
Japan
Prior art keywords
layer
polysilicon
deposited
silicide
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4224491A
Other languages
English (en)
Inventor
Sailesh Chittipeddi
チッティペッディ サレー
Pradip K Roy
クマー ロイ プラディップ
Ankineedu Velaga
ヴェラガ アンキニーデュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
American Telephone and Telegraph Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Telephone and Telegraph Co Inc filed Critical American Telephone and Telegraph Co Inc
Publication of JPH05198592A publication Critical patent/JPH05198592A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer

Abstract

(57)【要約】 【構成】 集積回路はドーピングしたポリシリコン/ケ
イ化物(「ポリサイド」)ゲート電極を含む。このドー
ピングしたポリシリコン層は副層(41、42、43、
44)からなる。副層は、一般的に堆積速度を始めとす
るケイ素堆積条件を変化させるとともに、ドーピング剤
濃度を減少させることにより形成される。次いで、ドー
ピングしたポリシリコン層の上部に金属ケイ化物層(4
5)が形成される。 【効果】 応力が調整される結果、構造の均一性及び平
面性が改良される。その上、副層により、高エネルギー
ソース/ドレインドーピング剤注入の際に起こるチャネ
リング効果が低減する。これらの効果により、ゲート電
極の積み重ね高さを減少させ、非常に小さな(サブミク
ロンの)デバイス構造を改良することができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、堆積させたシリコン層
上にケイ化物層を形成することを含む、半導体デバイス
を製造するための技術に関する。
【0002】
【従来の技術】集積回路(IC)の製造では、ケイ化物
導体層を形成することが一般的となっている。ケイ化物
は、耐火金属と堆積させたポリシリコンの形態であるこ
とができるケイ素からなる化合物である。一般的に使用
され、または提案されている耐火金属には、とりわけチ
タン、タンタル、タングステン、モリブデン及びコバル
トがある。その様な金属ケイ化物層は導電性が比較的高
く、リソグラフィーによりパターン形成すると、電界効
果トランジスター用のゲート電極、並びに集積回路の各
種回路素子間を接続するための、「ランナー」と呼ばれ
る導体パターンとして機能することができる。
【0003】例えば図1を参照すれば、代表的なMOS
構造はp型シリコン基体101を含む。(CMOS I
Cの場合、区域101はp−tubでよい)基体中にn
チャネルトランジスターが形成され、ソース/ドレイン
n+ドーピング領域103及び104を含み、その上に
ケイ化物層106及び107がそれぞれ形成される。ゲ
ート電極はゲート酸化物110の上にある、ドーピング
されたポリシリコン層109及びケイ化物層108から
なる。ゲート側壁は、「軽度ドーピングドレイン」(L
DD)構造における様に、スペーサー129及び130
により覆われていてもよい。さらに、ゲート電極を形成
しているのと同一の導電層が電界酸化物区域120の上
に延び、ドーピングしたポリシリコン層123及びケイ
化物層122からなるランナーを形成することができ
る。ドーピングされたポリシリコン層及びケイ化物層の
この組合せは、本技術分野では「ポリサイド」構造と呼
ばれることが多い。バイポーラデバイス及び光学デバイ
スについては、ケイ化物層の各種の他の用途が知られて
いる。
【0004】集積回路素子の水平方向寸法が小さくなる
につれて、各種の回路構造の高さも小さくする必要があ
る。例えば、ポリサイドゲート電極の高さは、堆積させ
たポリシリコン層109及びその上に形成されたケイ化
物層108の厚さを含む。水平方向寸法(例えばゲート
の長さ)が1マイクロメーター以下に縮小されると、一
般にポリサイド構造のいわゆる「積み重ね高さ」(d
1)を1ミクロン以下、好ましくは0.5ミクロン以下
に減少させる必要がある。これは、比較的厚い層のエッ
チングに関連する問題を少なくするため、並びにその上
に配される回路素子の形成の障害となる過度の段差を防
ぐために必要である。しかし、ゲート電極の積み重ね高
さが減少するにつれて、ケイ化物形成の際にゲート電極
と、隣接するソース/ドレイン電極との間で短絡が起こ
る可能性が増大する。さらに、ポリシリコン層とケイ化
物層との間の界面における重大な問題が観察されてい
る。これらの問題には、ある場合、ケイ化物層の直接的
な短絡や剥離が含まれている。その上、積み重ね高さが
小さい場合、ゲートの平面性が低下し、層108に関し
て示される理想的な平面ではなく、実際には表面が凹面
になる。
【0005】我々は、ケイ化物導体を含む半導体デバイ
スを製造するための改良された方法を発明した。堆積条
件を変えながらシリコン層を堆積させて副層を形成し、
同時に底部から最上部に向けてドーピング濃度を低下さ
せてゆく。次いでこの多層シリコンの上に、一般的に
は、耐火金属を堆積させ、その金属をシリコンと反応さ
せることにより、ケイ化物層を形成する。多層シリコン
は一般的には堆積させたポリシリコンであるが、一層以
上のアモルファスシリコン副層を含むことができる。こ
の副層により応力調整するための界面が提供される。そ
の上、これら副層は所望により異なった粒径または組織
を有することができる。
【0006】ドーピングしたポリシリコン/ケイ化物層
状導体を含む半導体デバイスを形成するための改良され
た方法を詳細に説明する。図2を参照すれば、ポリシリ
コン導体層の堆積速度を時間の関数として変化させる。
この場合、堆積ポリシリコンの4つの副層を製造する2
つの周期的なサイクルを示す。しかし、サイクルの数、
したがって副層の数は、どの様な所望の数でもよい。堆
積順序は低堆積速度(DL )から始まり、次に高堆積速
度(DH )が続き、これが第一サイクルを構成する。こ
の順序は追加サイクルにより続行される。各サイクルの
低堆積速度部分は図2では同じ速度として示してある
が、これらの値は実際はサイクル毎に変えることができ
る。同様に、高堆積速度部分もサイクル毎に変えること
ができる。堆積速度は、一般的に、堆積工程中に圧力又
はガス流量のいずれか、あるいはその双方を変えること
により変化させることができる。温度を含む他のファク
ターも必要であれば堆積速度を変えるのに使用できる。
堆積中のこれらの変化により、ここでは「多層形成」と
もいう堆積シリコンの副層形成がなされ、その際隣接す
る副層間に界面が形成される。この副層形成によりポリ
シリコン層内で応力調整がなされ、ケイ化物形成を改良
することができる。また、イオン注入種によるポリシリ
コン層を介したチャネリングを減少せしめるなどの、他
の有利な効果も得られる。
【0007】堆積速度のサイクル変化に加えて、本発明
では、順次堆積させる副層に対して、堆積させたポリシ
リコンのドーピング剤濃度を減少させる。すなわち、図
3を参照すれば、最初の副層に対するドーピング剤濃度
が最も高く、副層2、3及び4に対して濃度が減少して
いく。我々は、このことが最も軽度ドーピングした(ま
たはドーピングしていない)副層を、堆積させたポリシ
リコンの最上部に形成されるケイ化物層と接触させて設
けることにより、改良された界面特性を好ましくもたら
すことを発見した。その上、最初に堆積させた(すなわ
ち下側の)副層における比較的高いドーピング水準によ
り、最終ポリシリコン層中に低い抵抗を生ぜしめるのに
十分なドーピングを与える。一般的には、ドーピング剤
濃度は様々な単調な順序で減少させることができる。例
えば、2つの(またはそれより多くの)隣接する副層に
対して濃度を等しくし、その後に減少させることができ
る。さらに、一つ以上の最上部の副層をドーピング剤な
しに(すなわちドーピングせずに)形成することができ
る。ドーピングしたポリシリコン副層の堆積に続く各種
の高温処理工程(ケイ化物層の形成工程を含む)によ
り、ポリシリコン層中にドーピング剤を再分布させるこ
とができるので、最終的な分布は一般的に堆積時よりも
均一になる。
【0008】最終工程として、堆積させたポリシリコン
層の上にケイ化物層を形成する。これは、堆積させたポ
リシリコンの上に耐火金属(例えばチタンまたはタング
ステン)を直接堆積させ、高温に加熱し、その耐火金属
を下にあるポリシリコンと反応させてケイ化物を形成す
ることにより達成することができる。その場合、堆積さ
せたポリシリコンの最上部が消費されてケイ化物を形成
する。あるいは、金属(例えばタンタル、タングステン
またはモリブデン)とポリシリコンを共堆積させてケイ
化物層を形成する方法も知られいる。その場合、その前
に堆積させたポリシリコンは実質的に消費されない場合
がある。得られる構造を図4に図式的に示すが、ここ
で、第1〜第4ポリシリコン副層(41〜44)は二酸
化ケイ素層40上に堆積したものとして示されており、
その最上部にケイ化物層45を示す。各界面は、接する
副層間の線46、47及び48により示されている。こ
れらの界面は、異なった欠陥状態、組織または相転移を
有する副層間の境界を形成している。例えば、隣接する
各副層は異なった結晶化度を有することができる。以下
に、実施例により上記の製法をさらに詳細に説明する。
【0009】
【実施例】シリコン基体上の二酸化ケイ素ゲート誘電層
上に、ポリシリコンを低圧化学気相堆積(LPCVD)
技術により堆積させた。この堆積は、620oCの温度に
おいてシラン(SiH4 )を熱分解することにより行な
った。堆積速度は図2に示す様に、毎分10オングスト
ロームの低速度(DL )から毎分100オングストロー
ムの高速度(DH )まで、合計4半サイクルにわたって
変化させた。堆積速度差(Δ)は、CVD反応器中の圧
力を0.4トルから1.3トルに変化させることにより
得た。ポリシリコンの厚さは合計で4500オングスト
ローム(450ナノメートル)に達した。堆積の際に、
窒素キャリヤーガスで希釈したPH3ガスをシラン雰囲
気に加えることにより、ポリシリコンをその場でドーピ
ングした。ドーピング剤濃度は図3に示す様に減少さ
せ、第1の(最下)副層に対して0.8乃至0.9重量
%の範囲内であり、さらに最後の(最上)副層に対して
0.3乃至0重量%の範囲に減少させた。次に、スパッ
タリングにより700乃至1000オングストローム厚
のチタン層を堆積させた。次いで、窒素雰囲気中で2つ
の加熱工程における急速熱アニーリングによりケイ化物
を形成した。第一加熱工程では、構造体を600乃至6
40oCに1乃至2分間加熱した。次いで、未反応チタン
をエッチングにより除去した。第二加熱工程では、この
構造体を800乃至900oCに10乃至60秒間加熱し
た。これにより、約4000オングストローム厚のドー
ピングしたポリシリコン層の上に約800乃至1200
オングストローム厚の低抵抗二ケイ化物層が形成され
た。
【0010】ポリシリコン層とケイ化物層との間の一体
性は、多数の試料について非常に良好であり、ポリサイ
ド構造全体の面積抵抗は、大部分がケイ化物層のため
に、0乃至5Ω/□という低い値を維持していた。さら
に、多くの試料に対する試験により、このポリサイドゲ
ート構造を有する電界効果トランジスターのしきい値電
圧は、従来技術により製造したトランジスターと比較し
てより一定であることが分かった。このコンシステンシ
ーの改良は、明らかにポリシリコン層内への金属ケイ化
物浸透(spiking) の低下、あるいはポリシリコン層に
関連する仕事関数に影響を与える、ポリシリコン層内の
応力低下によるものである。本発明の技術により製造し
たポリシリコン層の応力特性を、従来技術により製造し
たポリシリコン層(及び単結晶シリコン)と比較するた
めに、X線回折試験を行なった。Si(220)及びS
i(311)線のピークプロフィールを測定した。本発
明に係る構造は、従来のポリシリコンのピークと単結晶
シリコンのピークとの中間のピークを有することが分か
った。したがって、本発明に係る構造における応力は従
来のポリシリコンのそれよりもはるかに小さかった。
【0011】また、本発明の技術により製造した構造体
について、ケイ化チタン/ポリシリコン界面特性を研究
した。これらの特性を、ポリシリコンを一つの連続層
(すなわち堆積条件の変化による副層はない)に堆積さ
せた従来のケイ化チタン/ポリシリコン構造と比較し
た。両構造とも厚さは同等で、約3800オングストロ
ーム(380ナノメートル)であった。第一の比較で
は、各構造の収束抵抗(spreading resistance)プロフ
ィールを行なった。第二の比較では、各構造のSIMS
(表面映像質量分析,Surface Imaging Mass Spectrosc
opy) 濃度深度プロフィール形成を行なった。これらの
技術はどちらも構造内の深度の関数として、ポリシリコ
ン内の(リンドーピング剤の)有効キャリヤー濃度の指
針を与える。この比較により、本発明の技術の使用によ
り、はるかに鮮明なケイ化物/ポリシリコン界面を有す
る、より浅く、より均一なケイ化チタン層が得られるこ
とが分かった。その上、本発明の技術により製造される
構造体の平面性は、従来技術により製造される構造体の
平面性と比較して著しく改良されている。これは、複数
の副層により応力が減少するためであると考えられる。
【0012】上記の結果は、本発明の技術を使用するこ
とにより、ケイ化物の一体性を損なうことなく、ポリシ
リコン/ケイ化物ゲートの積み重ね高さを実質的に減少
させることができることを示している。特に、本発明の
技術は、ポリシリコン/ケイ化物の積み重ね高さを、従
来技術により得られる高さよりも低い、3500オング
ストローム(350ナノメートル)以下に減少させるの
にとりわけ有利である。この技術により、半ミクロン以
下のデバイスに望ましい2500オングストローム(2
50ナノメートル)以下の積み重ね高さも可能である。
しかし、この技術は、上記のチャネル形成効果を低減さ
せる場合の様に、積み重ね高さが比較的大きい場合にも
有利である。
【0013】本発明の堆積シリコンを「ポリシリコン」
として上に説明したが、副層の幾つか、またはすべてを
アモルファスシリコンの形態で堆積させることもでき
る。アモルファスシリコンの使用は、ポリシリコンと比
べて比較的平滑な表面を得るのに有利である。しかし、
堆積工程に続く通常のIC製造順序の一部である、加熱
工程は、核形成及びシリコン粒子の成長を引き起こし、
それによってアモルファスシリコンはポリシリコンに転
換される。あるいは、またはその上に、堆積層のいくつ
かが、他の層と比較して異なったシリコン粒子径を有す
るポリシリコンになることがある。例えば、最上表面を
より平滑にしてケイ化物形成を改良するために、最初に
堆積させた(下側の)副層と比較して、後に堆積させる
(上側)副層には粒子径のより小さなポリシリコンを堆
積させるのが望ましい場合がある。本技術分野において
知られているように、シリコン粒子の径は、堆積温度が
低い程一般に減少し、約570oC以下の堆積温度におい
ては堆積シリコンがは非晶質になる。
【図面の簡単な説明】
【図1】ポリサイド構造を含む代表的な集積回路部分の
断面図である。
【図2】時間の関数としてのポリシリコン堆積の定期的
な変化を示す説明図である。
【図3】ポリシリコン副層のドーピング剤濃度の減少を
示す説明図である。
【図4】ポリシリコン副層とその上のケイ化物層を示す
説明図である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 サレー チッティペッディ アメリカ合衆国 18052 ペンシルヴァニ ア,ホワイトホール,アルトー ドライヴ −シー8 1580 (72)発明者 プラディップ クマー ロイ アメリカ合衆国 18103 ペンシルヴァニ ア,アレンタウン,リヴァーベンド ロー ド 2102 (72)発明者 アンキニーデュ ヴェラガ アメリカ合衆国 18103 ペンシルヴァニ ア,アレンタウン,サレイ ドライヴ 3705

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 (1)半導体基体(101)上にゲート
    誘電層(110)を形成する工程、及び (2)該ゲート誘電層上に、ドーピングしたシリコン層
    (109)及びその上に配された金属ケイ化物層(10
    8)からなるゲート電極を形成する工程からなる半導体
    デバイスの製造方法であって、 前記ゲート電極形成工程が、 (3)複数のシリコン副層(41、42、43、44)
    を堆積させる工程であって、該各副層のうち少なくとも
    数層がドーピング剤を含み、該ドーピング剤の濃度が最
    下部副層から最上部副層に向かって減少するよう堆積さ
    せる工程、及び (4)前記金属ケイ化物層(45)を形成する工程を含
    むことを特徴とする方法。
  2. 【請求項2】 前記ゲート電極の厚さが1ミクロン以下
    である請求項1の方法。
  3. 【請求項3】 前記金属ケイ化物が、ケイ化チタン、ケ
    イ化タンタル、ケイ化タングステン、ケイ化モリブデ
    ン、及びケイ化コバルトからなる群より選択される請求
    項1の方法。
  4. 【請求項4】 前記金属ケイ化物がケイ化チタンである
    請求項1の方法。
  5. 【請求項5】 前記シリコン副層のうち少なくとも一層
    をポリシリコンの形態で堆積させる請求項1の方法。
  6. 【請求項6】 前記シリコン副層のうち少なくとも一層
    をアモルファスシリコンの形態で堆積させる請求項1の
    方法。
  7. 【請求項7】 前記のドーピングされたシリコン層及び
    金属ケイ化物層の積み重ね高さが350ナノメートル以
    下である請求項1の方法。
  8. 【請求項8】 前記のドーピングされたシリコン層及び
    金属ケイ化物層の積み重ね高さが250ナノメートル以
    下である請求項1の方法。
JP4224491A 1991-08-26 1992-08-25 ポリシリコン上にケイ化物を形成するための改良された方法 Pending JPH05198592A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/749,762 US5147820A (en) 1991-08-26 1991-08-26 Silicide formation on polysilicon
US749762 1991-08-26

Publications (1)

Publication Number Publication Date
JPH05198592A true JPH05198592A (ja) 1993-08-06

Family

ID=25015085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4224491A Pending JPH05198592A (ja) 1991-08-26 1992-08-25 ポリシリコン上にケイ化物を形成するための改良された方法

Country Status (5)

Country Link
US (1) US5147820A (ja)
EP (1) EP0529952A1 (ja)
JP (1) JPH05198592A (ja)
KR (1) KR970010148B1 (ja)
SG (1) SG44467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068027A1 (ja) * 2004-12-20 2006-06-29 Fujitsu Limited 半導体装置およびその製造方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444302A (en) * 1992-12-25 1995-08-22 Hitachi, Ltd. Semiconductor device including multi-layer conductive thin film of polycrystalline material
US5389576A (en) * 1992-12-28 1995-02-14 Motorola, Inc. Method of processing a polycide structure
US5350698A (en) * 1993-05-03 1994-09-27 United Microelectronics Corporation Multilayer polysilicon gate self-align process for VLSI CMOS device
US5422311A (en) * 1993-05-03 1995-06-06 Hyundai Electronics Industries Co., Ltd. Method for manufacturing a conductor layer in a semiconductor device
KR0135166B1 (ko) * 1993-07-20 1998-04-25 문정환 반도체장치의 게이트 형성방법
JP3029235B2 (ja) * 1993-12-29 2000-04-04 現代電子産業株式会社 半導体素子の電荷貯蔵電極形成方法
JP3045946B2 (ja) * 1994-05-09 2000-05-29 インターナショナル・ビジネス・マシーンズ・コーポレイション 半導体デバイスの製造方法
US5641708A (en) * 1994-06-07 1997-06-24 Sgs-Thomson Microelectronics, Inc. Method for fabricating conductive structures in integrated circuits
US5523259A (en) * 1994-12-05 1996-06-04 At&T Corp. Method of forming metal layers formed as a composite of sub-layers using Ti texture control layer
US5652156A (en) * 1995-04-10 1997-07-29 Taiwan Semiconductor Manufacturing Company Ltd. Layered polysilicon deposition method
EP0746027A3 (en) * 1995-05-03 1998-04-01 Applied Materials, Inc. Polysilicon/tungsten silicide multilayer composite formed on an integrated circuit structure, and improved method of making same
US6703672B1 (en) * 1995-09-29 2004-03-09 Intel Corporation Polysilicon/amorphous silicon composite gate electrode
US5893747A (en) * 1995-10-07 1999-04-13 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a polysilicon film of a semiconductor device
US5849629A (en) * 1995-10-31 1998-12-15 International Business Machines Corporation Method of forming a low stress polycide conductors on a semiconductor chip
US5981364A (en) * 1995-12-06 1999-11-09 Advanced Micro Devices, Inc. Method of forming a silicon gate to produce silicon devices with improved performance
US5665611A (en) * 1996-01-31 1997-09-09 Micron Technology, Inc. Method of forming a thin film transistor using fluorine passivation
US5767004A (en) * 1996-04-22 1998-06-16 Chartered Semiconductor Manufacturing, Ltd. Method for forming a low impurity diffusion polysilicon layer
KR100250744B1 (ko) * 1996-06-21 2000-05-01 김영환 반도체 소자의 폴리사이드층 형성 방법
US6098304A (en) * 1996-07-26 2000-08-08 Advanced Micro Devices, Inc. Apparatus for reducing delamination within a polycide structure
US5981367A (en) 1996-10-17 1999-11-09 Micron Technology, Inc. Method for making an access transistor
US6335280B1 (en) * 1997-01-13 2002-01-01 Asm America, Inc. Tungsten silicide deposition process
US6174806B1 (en) * 1997-01-28 2001-01-16 Micron Technology, Inc. High pressure anneals of integrated circuit structures
US6479373B2 (en) * 1997-02-20 2002-11-12 Infineon Technologies Ag Method of structuring layers with a polysilicon layer and an overlying metal or metal silicide layer using a three step etching process with fluorine, chlorine, bromine containing gases
DE19706783A1 (de) * 1997-02-20 1998-08-27 Siemens Ag Verfahren zur Herstellung dotierter Polysiliciumschichten und -schichtstrukturen und Verfahren zum Strukturieren von Schichten und Schichtstrukturen, welche Polysiliciumschichten umfassen
JP3635843B2 (ja) 1997-02-25 2005-04-06 東京エレクトロン株式会社 膜積層構造及びその形成方法
US5851891A (en) * 1997-04-21 1998-12-22 Advanced Micro Devices, Inc. IGFET method of forming with silicide contact on ultra-thin gate
JPH10308454A (ja) * 1997-05-02 1998-11-17 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP3090201B2 (ja) 1997-06-04 2000-09-18 日本電気株式会社 多結晶シリコン膜及び半導体装置
US6406952B2 (en) * 1997-07-14 2002-06-18 Agere Systems Guardian Corp. Process for device fabrication
US5946599A (en) * 1997-07-24 1999-08-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing a semiconductor IC device
DE19742972A1 (de) * 1997-09-29 1999-04-08 Siemens Ag Verfahren zur Ausbildung eines niederohmigen Leitbahnbereichs auf einem Halbleitersubstrat
JP3754234B2 (ja) 1998-04-28 2006-03-08 インターナショナル・ビジネス・マシーンズ・コーポレーション ゲート構造側壁の酸化膜の形成方法
US6011289A (en) * 1998-09-16 2000-01-04 Advanced Micro Devices, Inc. Metal oxide stack for flash memory application
US6140187A (en) * 1998-12-02 2000-10-31 Lucent Technologies Inc. Process for forming metal oxide semiconductors including an in situ furnace gate stack with varying silicon nitride deposition rate
US6440829B1 (en) 1998-12-30 2002-08-27 Agere Systems Guardian Corp. N-profile engineering at the poly/gate oxide and gate oxide/SI interfaces through NH3 annealing of a layered poly/amorphous-silicon structure
US6313021B1 (en) 1999-01-15 2001-11-06 Agere Systems Guardian Corp. PMOS device having a layered silicon gate for improved silicide integrity and enhanced boron penetration resistance
US6162711A (en) * 1999-01-15 2000-12-19 Lucent Technologies, Inc. In-situ boron doped polysilicon with dual layer and dual grain structure for use in integrated circuits manufacturing
US6566181B2 (en) 1999-02-26 2003-05-20 Agere Systems Inc. Process for the fabrication of dual gate structures for CMOS devices
US6294807B1 (en) 1999-02-26 2001-09-25 Agere Systems Guardian Corp. Semiconductor device structure including a tantalum pentoxide layer sandwiched between silicon nitride layers
US20050136633A1 (en) * 2003-12-18 2005-06-23 Taylor William J.Jr. Blocking layer for silicide uniformity in a semiconductor transistor
US8124515B2 (en) * 2009-05-20 2012-02-28 Globalfoundries Inc. Gate etch optimization through silicon dopant profile change
US8277556B2 (en) * 2009-06-05 2012-10-02 W. R. Grace & Co.-Conn. Articles made from cementitious foam and slurry
WO2011139466A1 (en) 2010-04-28 2011-11-10 W.R. Grace & Co.-Conn. Waterproofing membrane
KR102595229B1 (ko) 2018-12-28 2023-10-30 삼성전자주식회사 도전성 부재에 관한 검출 회로를 포함하는 전자 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378628A (en) * 1981-08-27 1983-04-05 Bell Telephone Laboratories, Incorporated Cobalt silicide metallization for semiconductor integrated circuits
JPH0638496B2 (ja) * 1983-06-27 1994-05-18 日本電気株式会社 半導体装置
US4631804A (en) * 1984-12-10 1986-12-30 At&T Bell Laboratories Technique for reducing substrate warpage springback using a polysilicon subsurface strained layer
US4742020A (en) * 1985-02-01 1988-05-03 American Telephone And Telegraph Company, At&T Bell Laboratories Multilayering process for stress accommodation in deposited polysilicon
JPS62115776A (ja) * 1985-11-15 1987-05-27 Nec Corp 半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068027A1 (ja) * 2004-12-20 2006-06-29 Fujitsu Limited 半導体装置およびその製造方法

Also Published As

Publication number Publication date
SG44467A1 (en) 1997-12-19
EP0529952A1 (en) 1993-03-03
KR930005121A (ko) 1993-03-23
US5147820A (en) 1992-09-15
KR970010148B1 (ko) 1997-06-21

Similar Documents

Publication Publication Date Title
JPH05198592A (ja) ポリシリコン上にケイ化物を形成するための改良された方法
CN1048820C (zh) 多层非晶硅的制造方法
US6210813B1 (en) Forming metal silicide resistant to subsequent thermal processing
US6830838B2 (en) Chemical vapor deposition of titanium
JPH05109637A (ja) 半導体薄膜の形成方法および半導体装置の製造方法
US5907784A (en) Method of making multi-layer gate structure with different stoichiometry silicide layers
US6294442B1 (en) Method for the formation of a polysilicon layer with a controlled, small silicon grain size during semiconductor device fabrication
US5756392A (en) Method of formation of polycide in a semiconductor IC device
US7875939B2 (en) Semiconductor device including an ohmic layer
US20050048766A1 (en) Method for fabricating a conductive plug in integrated circuit
KR100456315B1 (ko) 반도체소자의 게이트전극 형성방법
KR100267000B1 (ko) 반도체 기판의 표면상에 전도성 라인을 형성하는 방법
US6433434B1 (en) Apparatus having a titanium alloy layer
US6194295B1 (en) Production of a refractory metal by chemical vapor deposition of a bilayer-stacked tungsten metal
US20080286921A1 (en) Methods of forming silicides of different thicknesses on different structures
JPH1167688A (ja) シリサイド材料とその薄膜およびシリサイド薄膜の製造方法
JP3379754B2 (ja) 接触抵抗を減ずる半導体の構造とその形成方法
US5946599A (en) Method of manufacturing a semiconductor IC device
US6171947B1 (en) Method of reducing incidence of stress-induced voiding in semiconductor interconnect lines
US6586320B2 (en) Graded/stepped silicide process to improve mos transistor
EP1164630A2 (en) Graded/stepped silicide process to improve MOS transistor
US6323098B1 (en) Manufacturing method of a semiconductor device
JPH0335523A (ja) 半導体装置の配線の形成方法
Joung et al. The effect of variation of the WF6 flow rate on the contact resistance in the DCS-based WSix deposition
JPH1070124A (ja) 半導体素子の導電配線形成方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010813