JPH04566B2 - - Google Patents

Info

Publication number
JPH04566B2
JPH04566B2 JP58245935A JP24593583A JPH04566B2 JP H04566 B2 JPH04566 B2 JP H04566B2 JP 58245935 A JP58245935 A JP 58245935A JP 24593583 A JP24593583 A JP 24593583A JP H04566 B2 JPH04566 B2 JP H04566B2
Authority
JP
Japan
Prior art keywords
barium titanate
firing
pad material
based semiconductor
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58245935A
Other languages
Japanese (ja)
Other versions
JPS60142502A (en
Inventor
Yukihiro Kato
Hideo Kamya
Kyoshi Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58245935A priority Critical patent/JPS60142502A/en
Publication of JPS60142502A publication Critical patent/JPS60142502A/en
Publication of JPH04566B2 publication Critical patent/JPH04566B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業の利用分野及び発明の目的 本発明はPTC素子の素材であるチタン酸バリ
ウム系半導体磁器の焼成方法であつて、その目的
とする処は焼成時に使用するパツド材を改良する
ことによつて焼成を伴なう特性のバラツキを大巾
に低減する方法を提供することにある。
[Detailed Description of the Invention] Industrial Field of Application and Purpose of the Invention The present invention is a method for firing barium titanate-based semiconductor porcelain, which is a material for PTC elements, and its object is to provide a method for firing pad material used during firing. It is an object of the present invention to provide a method that can significantly reduce the variation in properties that accompanies firing through improvement.

従来技術 チタン酸バリウム系半導体磁器は定温加熱用ヒ
ーターとして広く用いられている。
Prior Art Barium titanate-based semiconductor porcelain is widely used as a heater for constant temperature heating.

チタン酸バリウム系半導体磁器は、一般に第1
図の如き製造工程によつて製造されている。そし
て前記工程中焼成工程は磁器の特性を大きく左右
する。
Barium titanate-based semiconductor porcelain is generally
It is manufactured by the manufacturing process shown in the figure. The firing step during the process greatly influences the characteristics of the porcelain.

前記焼成工程は、チタン酸バリウム系半導体の
成形体と焼成容器との間にパツド材をはさんで焼
成するもので、このパツド材にジルコニア粉末が
用いられている。このジルコニア粉末は、他のパ
ツド材に比べて、チタン酸バリウム系半導体磁器
との反応性が小さい。
In the firing process, a pad material is sandwiched between a barium titanate-based semiconductor molded body and a firing container, and zirconia powder is used for this pad material. This zirconia powder has less reactivity with barium titanate semiconductor ceramics than other pad materials.

しかし、近年PTC素子の特性の要求精度の高
まりから、焼成工程におけるチタン酸バリウム系
半導体磁器とジルコニア粉末との反応を無視する
ことができず、従つて新たなパツド材の開発が要
望されている。
However, in recent years, due to the increasing precision required for the characteristics of PTC elements, it is no longer possible to ignore the reaction between barium titanate semiconductor porcelain and zirconia powder during the firing process, and there is therefore a demand for the development of new pad materials. .

本発明の構成 チタン酸バリウム系半導体磁器の焼成に当り、
ジルコニア粉末に、チタン酸バリウム系半導体磁
器の中間物たる仮焼粉末20〜80重量%を混合し、
900〜1000℃で1〜2時間焼成した粉末をパツド
材として焼成することを特徴とするチタン酸バリ
ウム系半導体磁器の焼成方法である。
Structure of the present invention In firing barium titanate-based semiconductor porcelain,
zirconia powder is mixed with 20 to 80% by weight of calcined powder, which is an intermediate for barium titanate semiconductor porcelain.
This is a method for firing barium titanate-based semiconductor porcelain, which is characterized in that powder fired at 900 to 1000°C for 1 to 2 hours is used as a pad material.

作用効果 ジルコニア粉末(100〜200メツシユ)に、チタ
ン酸バリウム系半導体磁器の中間原料である仮焼
粉末20〜80重量%配合する。この仮焼粉末は第1
図に示された製造工程の常法による仮焼工程
(1000〜1250℃)によつて得られたもので、ジル
コニア粉末と均一混合するためジルコニア粉末と
同様の粒径に粉砕したものを1時間以上乾式混合
する。
Effect: 20 to 80% by weight of calcined powder, which is an intermediate raw material for barium titanate-based semiconductor porcelain, is blended with zirconia powder (100 to 200 mesh). This calcined powder
It was obtained through the conventional calcination process (1000 to 1250℃) of the manufacturing process shown in the figure, and was ground to the same particle size as the zirconia powder in order to uniformly mix it with the zirconia powder. Dry mix above.

つぎに、前記混合物を900〜1000℃で、1〜2
時間焼成し、粉砕してパツド材とする。
Next, the mixture was heated at 900 to 1000°C for 1 to 2 hours.
It is fired for a period of time and crushed to make pad material.

前記パツド材を焼成容器に投入し、該パツド材
上にチタン酸バリウムの成形体を載置するか又は
成形体をパツド材中に埋め込んで焼成する。この
場合の焼成は従来公知の方法によつて焼成すれば
よい。
The pad material is placed in a firing container, and a molded body of barium titanate is placed on the pad material or the molded body is embedded in the pad material and fired. In this case, firing may be performed by a conventionally known method.

前記の如きパツド材を用いて焼成されたチタン
酸バリウム系半導体磁器は、PTC素子としての
特性、特に突入電流値は後述実施例に示すように
バラツキは小さく、従つて安定したものとして得
られる。
The barium titanate-based semiconductor porcelain fired using the pad material as described above has small variations in characteristics as a PTC element, particularly the inrush current value, as shown in Examples below, and is therefore stable.

また、本発明でパツド材に混合される仮焼粉末
は、チタン酸バリウム系半導体磁器の中間体であ
るから、何等別箇の原料を使用する必要がなく、
またその焼成工程も従来と全く同様に処理でき、
従つてPTC素子の特性のバラツキの小さい安定
した製品を簡単、かつ廉価に得ることができる。
Furthermore, since the calcined powder mixed into the pad material in the present invention is an intermediate for barium titanate-based semiconductor porcelain, there is no need to use any separate raw materials.
In addition, the firing process can be performed in exactly the same way as before.
Therefore, a stable product with small variations in PTC element characteristics can be easily and inexpensively obtained.

実施例 出発原料として市販の高純度製品BaCO3
La2O3,TiO2,Mn(NO32を、0.998:0.018:
1.00:0.02(モル比)の割合で秤量し、ゴム内張
りのポツトミルにメノウ玉石と共に投入して粉
砕、混合した後乾燥し、1100℃で1時間仮焼し
た。
Examples Commercially available high purity product BaCO 3 as starting material,
La 2 O 3 , TiO 2 , Mn(NO 3 ) 2 , 0.998: 0.018:
The mixture was weighed at a ratio of 1.00:0.02 (mole ratio), put into a rubber-lined pot mill together with agate boulders, crushed, mixed, dried, and calcined at 1100°C for 1 hour.

前述仮焼粉末の一部を100〜200メツシユのジル
コニア粉末に対し0〜90重量%の範囲で配合し、
乾式で1時間以上混合し、さらに900〜1000℃で、
1〜2時間焼成し、粉砕してパツド材を得た。
A part of the above-mentioned calcined powder is blended in a range of 0 to 90% by weight to 100 to 200 meshes of zirconia powder,
Dry mix for over 1 hour, then at 900-1000℃.
It was fired for 1 to 2 hours and crushed to obtain a pad material.

他方、前記仮焼粉末を再びメノウ玉石と共にポ
ツトミルに投入して粉砕、乾燥し、乾燥原料に、
バインダーとしてPVA(ポリビニルアルコール)
約5重量%を添加し造粒後、油圧プレスで1ト
ン/cm2の圧力で直径13mm、厚さ2mmの円板の成形
体を得た。
On the other hand, the calcined powder is again put into a pot mill together with agate boulders, pulverized, and dried to obtain a dry raw material.
PVA (polyvinyl alcohol) as binder
After about 5% by weight was added and granulated, a disc shaped body with a diameter of 13 mm and a thickness of 2 mm was obtained using a hydraulic press at a pressure of 1 ton/cm 2 .

この成形体を前述によつて得られたパツド材上
に載置し、アルミナ製容器中で200℃/1時間の
昇温速度で電気炉中で昇温し、1300℃で1時間焼
成した後、150℃/1時間の降温速度で冷却した
後、第2図のように前記成形体1両面にニツケル
電極2を取付けてPTC素子を得た。
This compact was placed on the pad material obtained as described above, heated in an electric furnace at a heating rate of 200°C/1 hour in an alumina container, and fired at 1300°C for 1 hour. After cooling at a temperature decreasing rate of 150° C./1 hour, nickel electrodes 2 were attached to both sides of the molded body 1 as shown in FIG. 2 to obtain a PTC element.

このPTC素子にDC12Vの電圧を印加し、電流
値の経時変化を求める。第3図はその概略を示し
たものであつて、このときの最大電流値Pを突入
電流値と称し、素子の重要特性である。第4図は
パツド材中のチタン酸バリウム仮焼粉末を50重量
%配合した場合の突入電流値の分布を示したもの
である。尚、第5図は比較のために従来のパツド
材(ジルコニア粉末)を用いて前記実施例と同様
にしてPTC素子とし、これにDC12Vの電圧を印
加した場合の突入電流値の分布を求めたものであ
る。
A voltage of DC12V is applied to this PTC element, and the change in current value over time is determined. FIG. 3 schematically shows this, and the maximum current value P at this time is called the rush current value, and is an important characteristic of the element. FIG. 4 shows the distribution of rush current values when 50% by weight of barium titanate calcined powder is mixed in the pad material. For comparison, Fig. 5 shows a PTC element made of a conventional pad material (zirconia powder) in the same manner as in the previous example, and the distribution of inrush current values obtained when a voltage of DC12V was applied to this element. It is something.

第4図及び第5図の比較から明らかなように、
本発明の方法で得られたPTC素子の突入電流値
のバラツキは6n-1(標準偏差)が従来品に比較し
て小さくなつていることが認められる。
As is clear from the comparison between Figures 4 and 5,
It is recognized that the variation in the rush current value of the PTC element obtained by the method of the present invention is smaller than that of the conventional product by 6n -1 (standard deviation).

また、第6図はパツド材中のチタン酸バリウム
仮焼粉末の配合率に対する突入電流値を示したも
のであるが、該仮焼粉末の配合が20〜80重量%に
於て突入電流値のバラツキは小さく、20重量%以
下及び80重量%以上では何れもバラツキが大き
く、特に80重量%以上ではパツド材自体の焼結が
顕著で実用的ではなかつた。
Furthermore, Figure 6 shows the inrush current value with respect to the blending ratio of barium titanate calcined powder in the pad material. The variation was small, but the variation was large at 20% by weight or less and above 80% by weight, and especially at 80% by weight or more, the pad material itself was sintered, making it impractical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はPTC素子の製造工程のフローシート、
第2図はPTC素子の断面図、第3図はPTC素子
の電流値の経時変化のグラフ、第4図は本発明に
よつて得られた製品の突入電流値の分布図、第5
図は従来法による製品の同様分布図、第6図は仮
焼粉末の混合割合に対する突入電流値のグラフで
ある。 1:成形体、2:電極。
Figure 1 is a flow sheet of the PTC element manufacturing process.
Figure 2 is a cross-sectional view of the PTC element, Figure 3 is a graph of the change in current value of the PTC element over time, Figure 4 is a distribution diagram of the rush current value of the product obtained by the present invention, and Figure 5 is a graph of the change in current value of the PTC element over time.
The figure is a similar distribution diagram for products produced by the conventional method, and FIG. 6 is a graph of the rush current value versus the mixing ratio of calcined powder. 1: molded body, 2: electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン酸バリウム系半導体磁器の焼成に当
り、ジルコニア粉末に、チタン酸バリウム系半導
体磁器の中間物たるチタン酸バリウムの仮焼粉を
20〜80重量%混合し、900〜1000℃で1〜2時間
焼成した粉末をパツド材として焼成することを特
徴とするチタン酸バリウム系半導体磁器の焼成方
法。
1. When firing barium titanate-based semiconductor porcelain, calcined barium titanate powder, which is an intermediate for barium titanate-based semiconductor porcelain, is added to zirconia powder.
A method for firing barium titanate-based semiconductor porcelain, which comprises firing a powder mixed with 20 to 80% by weight and fired at 900 to 1000°C for 1 to 2 hours as a pad material.
JP58245935A 1983-12-29 1983-12-29 Method of baking barium titanate semiconductor porcelain Granted JPS60142502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58245935A JPS60142502A (en) 1983-12-29 1983-12-29 Method of baking barium titanate semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58245935A JPS60142502A (en) 1983-12-29 1983-12-29 Method of baking barium titanate semiconductor porcelain

Publications (2)

Publication Number Publication Date
JPS60142502A JPS60142502A (en) 1985-07-27
JPH04566B2 true JPH04566B2 (en) 1992-01-08

Family

ID=17141044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58245935A Granted JPS60142502A (en) 1983-12-29 1983-12-29 Method of baking barium titanate semiconductor porcelain

Country Status (1)

Country Link
JP (1) JPS60142502A (en)

Also Published As

Publication number Publication date
JPS60142502A (en) 1985-07-27

Similar Documents

Publication Publication Date Title
US3044968A (en) Positive temperature coefficient thermistor materials
JPH0339028B2 (en)
JPH04566B2 (en)
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH07206519A (en) Piezoelectric ceramic
JPH118103A (en) Wide range type thermistor element
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JP3196516B2 (en) Positive thermistor
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH02197181A (en) Ferroelectric porcelain body
JP2000103675A (en) Production of pyroelectric ceramic composition
JPH01234360A (en) Production of ceramic material containing lead
JPH04280861A (en) Composition for barium titanate-based semiconductor porcelain and barium titanate-based semiconductor porcelain using the same composition
JPH0369175A (en) Piezoelectric ceramic composition
JPH0548173A (en) Manufacture of piezoelectric material ceramics
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JPS6121966A (en) Low temperature sintering method for dielectric ceramic composition
JP2917335B2 (en) Manufacturing method of ceramic electronic components
JPH0684605A (en) Positive characteristic thermister and production thereof
JPH07211512A (en) Positive temperature coefficient thermistor
JPH01234359A (en) Production of ceramic material containing lead
JPH05175007A (en) Manufacture of semiconductor porcelain component
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor