JPH07297009A - Positive temperature coefficient thermistor and manufacturing method thereof - Google Patents

Positive temperature coefficient thermistor and manufacturing method thereof

Info

Publication number
JPH07297009A
JPH07297009A JP6089584A JP8958494A JPH07297009A JP H07297009 A JPH07297009 A JP H07297009A JP 6089584 A JP6089584 A JP 6089584A JP 8958494 A JP8958494 A JP 8958494A JP H07297009 A JPH07297009 A JP H07297009A
Authority
JP
Japan
Prior art keywords
composition
temperature coefficient
positive temperature
thermistor
coefficient thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6089584A
Other languages
Japanese (ja)
Inventor
Taiji Goto
泰司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6089584A priority Critical patent/JPH07297009A/en
Publication of JPH07297009A publication Critical patent/JPH07297009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a positive temperature coefficient thermistor especially in high resistance temperature coefficient and wider resistance fluctuation width out of the electric characteristics thereof within the positive temperature coefficient thermistor having positive resistance temperature characteristics used as a heating element and a switching element. CONSTITUTION:Within the positive temperature coefficient thermistor, the thermistor is formed of a composition A comprising fine amount of semiconductor element Si, Mn, Al added thereto as the principal component of barium titanate, another composition B represented by BaTinO2n+1 (n=2, 3, 4) is added in the ratio of 0.1-4.0mol% to 1mol% of the composition A and then electrode is to be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は抵抗温度係数および抵抗
変化幅の大きな正特性サーミスタとその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor having a large resistance temperature coefficient and a large resistance change width, and a method for manufacturing the thermistor.

【0002】[0002]

【従来の技術】チタン酸バリウムにY,La,Ce等の
希土類元素或いはNb,Ta等の遷移金属を微量添加す
ると半導体化し、そのキュリー点付近の温度で正の抵抗
温度特性(Positive Temperature Coefficient;PTC
特性)を示すことは従来より広く知られている。そのP
TC特性を利用して、過電流保護用素子、温度制御用素
子、モータ起動用素子、ヒータ用素子といったさまざま
な用途に応用されてきている。
2. Description of the Related Art A small amount of a rare earth element such as Y, La or Ce or a transition metal such as Nb or Ta is added to barium titanate to become a semiconductor, and a positive temperature coefficient (Positive Temperature Coefficient; PTC
It is widely known in the past to exhibit the characteristics. That P
Utilizing the TC characteristics, it has been applied to various applications such as an overcurrent protection element, a temperature control element, a motor starting element, and a heater element.

【0003】一方、このような正特性サーミスタの製造
方法としては以下に記すものが一般的である。まず配合
された原料をボールミルやディスパーミルなどを用いて
混合し、フィルタープレス、ドラムドライヤー等で脱
水、乾燥した後、これらの混合粉末を仮焼する。次にこ
の仮焼粉末をボールミル等で粉砕し、ポリビニルアルコ
ール等の結合剤を加えスラリー状にしたものをスプレー
ドライヤー等により造粒し、所望の形状に成形する。さ
らに、この成形体を通常、空気中1300〜1400℃
の高温で本焼成を行い、得られた焼結体に電極を塗布
し、正特性サーミスタとするものである。
On the other hand, as a method of manufacturing such a positive temperature coefficient thermistor, the following method is generally used. First, the blended raw materials are mixed using a ball mill, a disper mill or the like, dehydrated and dried with a filter press, a drum dryer or the like, and then these mixed powders are calcined. Next, the calcined powder is pulverized by a ball mill or the like, a binder such as polyvinyl alcohol is added to form a slurry, and the slurry is granulated by a spray dryer or the like to form a desired shape. Furthermore, this molded body is usually placed in the air at 1300 to 1400 ° C.
The main firing is performed at a high temperature, and electrodes are applied to the obtained sintered body to form a positive temperature coefficient thermistor.

【0004】[0004]

【発明が解決しようとする課題】このような正特性サー
ミスタに要求される特性には、大電流制御、耐電圧、発
熱量等の観点から、大きく分けて(1)低抵抗化(2)
高キュリー点化がある。
The characteristics required of such a positive temperature coefficient thermistor are roughly classified into (1) low resistance (2) from the viewpoint of large current control, withstand voltage, heat generation amount and the like.
There is a high Curie point.

【0005】しかし、これらを満足させようとすると次
に示すような課題があるため、なかなか実用化されてい
ない。
However, if it is attempted to satisfy these, there are the following problems, so that they have not been put to practical use.

【0006】(1)低抵抗化の問題点 一般的な固相反応による合成方法では、室温比抵抗は現
在のところ5Ωcm程度が限界である。しかし、ゾル・ゲ
ル法等の液相反応や有機系材料による正特性サーミスタ
では1Ωcm以下のものも得られているが、コストあるい
は量産性の面から実用化は困難となっている。このよう
な低抵抗素子における最大の課題は、耐電圧の低下であ
る。これはPTC特性における抵抗温度係数あるいは抵
抗変化幅が低抵抗化とともに低下することに起因してい
る。
(1) Problems of low resistance In a general synthesis method by solid-phase reaction, the room temperature resistivity is currently limited to about 5 Ωcm. However, although a liquid crystal reaction such as the sol-gel method or a positive temperature coefficient thermistor made of an organic material has been obtained at 1 Ωcm or less, it is difficult to put it into practical use in terms of cost or mass productivity. The biggest problem in such a low resistance element is a decrease in withstand voltage. This is because the temperature coefficient of resistance or the range of resistance change in the PTC characteristic decreases as the resistance decreases.

【0007】(2)高キュリー点化の問題点 正特性サーミスタにおける高キュリー点化は、現在のと
ころそのシフターとしてPbを用いるのが一般的であ
る。従って高キュリー点化における問題点はこのPbに
絡んだ問題としてクローズアップされる。具体的には、
焼成時のPbの蒸発による組成ずれが起こり特性のバラ
ツキが大きくなったり、焼結が難しいため、機械的な強
度が十分に得られない等の問題が発生する。
(2) Problem of High Curie Point For increasing the Curie point in a positive temperature coefficient thermistor, it is general to use Pb as a shifter at the present time. Therefore, the problem in increasing the Curie point is highlighted as a problem related to Pb. In particular,
There is a problem in that compositional deviation due to evaporation of Pb during firing causes a large variation in characteristics, and because sintering is difficult, mechanical strength cannot be sufficiently obtained.

【0008】このような中、実用化されている高キュリ
ー点は300℃前後である。以上、正特性サーミスタに
おける大きな2つの問題点を示したが、本発明では特
に、上記(1)の低抵抗化に対する問題点として記した
抵抗温度係数と抵抗変化幅の大きな正特性サーミスタを
得ることを目的としたものである。これらは特に消磁用
や過電流防止用に使用する場合にはその突入電流を減少
させるなどの効果が得られるものである。
Under these circumstances, the high Curie point that has been put to practical use is around 300 ° C. The two major problems of the positive temperature coefficient thermistor have been described above. In particular, the present invention provides a positive temperature coefficient thermistor having a large resistance temperature coefficient and a large resistance change width, which is described as a problem for reducing the resistance in the above (1). It is intended for. Especially when these are used for degaussing or for preventing overcurrent, the effect of reducing the inrush current can be obtained.

【0009】[0009]

【課題を解決するための手段】上記目的達成の手段につ
いて説明する。
Means for achieving the above object will be described.

【0010】まず本発明のサーミスタ素子の組成は、チ
タン酸バリウムからなる主成分と、半導体化元素とし
て、Y,La,Sm等の希土類元素あるいはNb,S
b,Biの酸化物のうち少なくとも1種類を含み、さら
にSiO2,MnO2,Al23が微量添加されてなる組
成物Aと、BaTin2n+1(n=2,3,4)で表さ
れる組成物Bとで構成されてなるものである。
First, the composition of the thermistor element of the present invention comprises a main component made of barium titanate and a rare earth element such as Y, La, Sm or Nb, S as a semiconductor element.
a composition A containing at least one kind of oxides of b and Bi and further added with a small amount of SiO 2 , MnO 2 , and Al 2 O 3 , and BaTi n O 2n + 1 (n = 2, 3, 4) ) And the composition B represented by this.

【0011】さらに、その製造方法においては、BaT
n2n+1以外の組成物を混合後、仮焼して得られた組
成物AとBaTin2n+1組成物Bを混合し、次に本焼
成してサーミスタ素子を得、その後サーミスタ素子表面
に電極を形成するものである。
Further, in the manufacturing method thereof, BaT
After mixing i n O 2n + 1 other than the composition, calcining a mixture of the resulting composition A and BaTi n O 2n + 1 composition B to obtain a thermistor element and then the main firing, then An electrode is formed on the surface of the thermistor element.

【0012】[0012]

【作用】上記構成により、PTC特性における抵抗温度
係数及び抵抗変化幅が大きく向上するが、その詳細なメ
カニズムは今のところ明らかではないが、以下のように
考えられる。
With the above structure, the temperature coefficient of resistance and the range of resistance change in the PTC characteristic are greatly improved. The detailed mechanism thereof is not clear at present, but it is considered as follows.

【0013】抵抗温度係数向上に関しては、前に述べた
結晶構造における正方晶系から立方晶系への相転移速度
を低下させるような化合物等の生成が抑制されたことに
起因すると考えられる。即ち、焼結途中で微量添加物成
分が粒界付近に移動すると、一般的に考えられているこ
とから、PTC特性の発現部である粒界付近での組成が
変化し、例えばBa2TiSi28等の化合物が生成さ
れ結晶構造を乱し、相転移を阻害すると思われる。そこ
で本発明ではBaTin2n+1成分を添加することによ
り、粒界付近での相転移阻害物質の生成や結晶構造の乱
れが抑制されるものと考えられる。
It is considered that the improvement of the temperature coefficient of resistance is due to the suppression of the production of a compound or the like which reduces the phase transition rate from the tetragonal system to the cubic system in the crystal structure described above. That is, when a trace amount of additive component moves to the vicinity of the grain boundary during sintering, it is generally considered that the composition near the grain boundary, which is a part where the PTC characteristics are expressed, changes, and for example, Ba 2 TiSi 2 It is considered that compounds such as O 8 are generated and disturb the crystal structure, thereby inhibiting the phase transition. Therefore by the present invention of adding BaTi n O 2n + 1 component is believed that turbulence generation and crystal structure of the phase transition inhibitor in the vicinity of the grain boundary is suppressed.

【0014】一方、抵抗変化幅は粒界でのポテンシャル
の障壁高さに依存するものと考えると、BaTin
2n+1成分を添加することにより、若干過剰になったTi
成分がアクセプター元素として働くため、焼成中粒界付
近に移動してきたMnやAl等との反応により酸素欠陥
が生成されホール濃度が高くなり電子濃度が下がった結
果、ポテンシャル障壁がより高くなり抵抗変化幅が大き
くなったと考えられる。さらに本発明の製造方法をとる
ことにより、粒界付近でより効果的にこれらの作用が起
こるものと思われる。
On the other hand, considering that the resistance change width depends on the potential barrier height at the grain boundary, BaTi n O
Ti slightly increased by adding 2n + 1 component
Since the component acts as an acceptor element, oxygen defects are generated by the reaction with Mn and Al that have moved to the vicinity of grain boundaries during firing, resulting in a higher hole concentration and a lower electron concentration, resulting in a higher potential barrier and a resistance change. It is considered that the width has increased. Furthermore, it is considered that these actions occur more effectively near the grain boundaries by using the production method of the present invention.

【0015】[0015]

【実施例】PTC特性の発現のメカニズムは、古くから
Heywangにより指摘されているように粒界でのポテンシ
ャル障壁に起因しているものと考えられている。
EXAMPLE The mechanism of expression of PTC characteristics has long been known.
As pointed out by Heywang, it is thought to be due to the potential barrier at the grain boundary.

【0016】それはキュリー点以上の温度において、ポ
テンシャル障壁が温度の上昇に伴い指数関数的に増大す
るとして説明している。その粒界抵抗は次式で示され
る。
It is explained that at temperatures above the Curie point, the potential barrier exponentially increases with increasing temperature. The grain boundary resistance is shown by the following equation.

【0017】ρ=ρ0exp(φ/kT)……(1) 但し、ρ0,k;定数 φ;ポテンシャル障壁の高さ T;絶対温度 さらに、このポテンシャル障壁の形成には粒界部分に吸
着している酸素が関与しているとしている。
Ρ = ρ 0 exp (φ / kT) (1) However, ρ 0 , k; constant φ; potential barrier height T; absolute temperature Further, in forming this potential barrier, a grain boundary portion is formed. The adsorbed oxygen is said to be involved.

【0018】一方、結晶構造的にはキュリー点以下では
正方晶系ペロブスカイト構造でありキュリー点以上では
立方晶系であることが確認されている。
On the other hand, it has been confirmed that the crystal structure is a tetragonal perovskite structure below the Curie point and a cubic system above the Curie point.

【0019】従って、抵抗温度係数および抵抗変化幅が
大きい正特性サーミスタを得るためには、正方晶系から
立方晶系への相転移速度が速いこと及び1粒界当たりの
ポテンシャル障壁の高さが大きいことが必要であると考
えられる。
Therefore, in order to obtain a positive temperature coefficient thermistor having a large resistance temperature coefficient and a large resistance change width, the phase transition rate from the tetragonal system to the cubic system is high and the height of the potential barrier per grain boundary is high. It seems necessary to be large.

【0020】このような観点にもとづき、組成面および
プロセス面において鋭意研究した結果、本発明に至った
ものである。
Based on such a viewpoint, the present invention has been achieved as a result of earnest research on the composition side and the process side.

【0021】以下本発明の実施例について説明する。 (実施例1)(Ba0.8Pb0.1Ca0.1)TiO3+0.
002Y23+0.03SiO2+0.0005MnO2
+0.01Al23の組成になるように、それぞれ原料
として炭酸バリウム(BaCO3)、酸化チタン(Ti
2)、酸化鉛(PbO)、炭酸カルシウム(CaC
3)、酸化イットリウム(Y23)、二酸化珪素(S
iO2)、二酸化マンガン(MnO2)、および酸化アル
ミニウム(Al23)を秤量し、さらに(表1)に示し
たようにBaTi25を秤量する。
Examples of the present invention will be described below. Example 1 (Ba 0.8 Pb 0.1 Ca 0.1 ) TiO 3 +0.
002Y 2 O 3 + 0.03SiO 2 +0.0005 MnO 2
In order to have a composition of + 0.01Al 2 O 3 , barium carbonate (BaCO 3 ) and titanium oxide (Ti
O 2 ), lead oxide (PbO), calcium carbonate (CaC
O 3 ), yttrium oxide (Y 2 O 3 ), silicon dioxide (S
iO 2 ), manganese dioxide (MnO 2 ), and aluminum oxide (Al 2 O 3 ) are weighed, and BaTi 2 O 5 is weighed as shown in (Table 1).

【0022】[0022]

【表1】 [Table 1]

【0023】次にこれらをボールミルにて湿式混合した
のち乾燥し、1100℃で2時間仮焼する。その後、こ
の仮焼した粉をボールミルにて湿式粉砕し乾燥する。
Next, these are wet mixed in a ball mill, dried and calcined at 1100 ° C. for 2 hours. Then, the calcined powder is wet pulverized with a ball mill and dried.

【0024】次に、この粉砕粉に結合剤としてポリビニ
ルアルコールを5%加え造粒し、80kg/cm2の圧力で
プレス成形した。この成形物を空気中で約1350℃に
て1時間焼成し、直径20mm、厚さ2.0mmの円板状の
焼結体を得た。さらに、この焼結体にNiメッキを施し
た後、銀ペーストを塗布、焼付し電極を形成し、正特性
サーミスタを得た。
Next, 5% of polyvinyl alcohol as a binder was added to this pulverized powder, and the mixture was granulated and press-molded at a pressure of 80 kg / cm 2 . This molded product was fired in air at about 1350 ° C. for 1 hour to obtain a disk-shaped sintered body having a diameter of 20 mm and a thickness of 2.0 mm. Further, this sintered body was plated with Ni, and then silver paste was applied and baked to form an electrode to obtain a positive temperature coefficient thermistor.

【0025】次に、このようにして得られた試料の各種
電気特性を測定する。その抵抗温度特性曲線により、常
温抵抗値(R25)、抵抗温度係数(α)、抵抗変化幅
(Ψ)を評価する。その結果を(表1)に示した。
Next, various electrical characteristics of the sample thus obtained are measured. From the resistance temperature characteristic curve, the room temperature resistance value (R 25 ), the resistance temperature coefficient (α), and the resistance change width (Ψ) are evaluated. The results are shown in (Table 1).

【0026】これらの結果より、本発明であるBaTi
25が含有添加された試料は、無添加の場合と比較し
て、常温抵抗値はほとんど変わらないが、抵抗温度係数
と抵抗変化幅に関しては大きく向上していることが認め
られる。
From these results, BaTi of the present invention
It is recognized that the sample added with 2 O 5 added has a room temperature resistance value which is almost the same as that of the case without addition, but the temperature coefficient of resistance and the range of resistance change are greatly improved.

【0027】(実施例2)実施例1と同様の原料を用い
て(Ba0.8Pb0.1Ca0.1)TiO3+0.002Y2
3+0.03SiO2+0.0005MnO2+0.0
1Al23の組成になるように各原料を秤量し、ボール
ミルにて湿式混合する。
Example 2 Using the same raw material as in Example 1, (Ba 0.8 Pb 0.1 Ca 0.1 ) TiO 3 + 0.002Y 2
O 3 +0.03 SiO 2 +0.0005 MnO 2 +0.0
Each raw material is weighed so as to have a composition of 1Al 2 O 3 and wet-mixed in a ball mill.

【0028】次に、この混合物を乾燥し、1100℃で
2時間仮焼した後、ボールミルにて湿式粉砕する(この
仮焼粉砕粒の粒径をDAとする)。さらに、この仮焼粉
砕粉とBaTi25(この粒径をDBとする)を同時に
湿式混合する。この時のBaTi25の添加量およびD
A/DB比を(表2)に示した通りにする。
Next, this mixture is dried, calcined at 1100 ° C. for 2 hours, and then wet pulverized by a ball mill (the particle size of the calcined pulverized particles is D A ). Further, the calcined pulverized powder and BaTi 2 O 5 (whose particle size is D B ) are simultaneously wet mixed. At this time, the addition amount of BaTi 2 O 5 and D
The A / D B ratio is as shown in (Table 2).

【0029】[0029]

【表2】 [Table 2]

【0030】その後の造粒以降の試料作製工程は実施例
1と同様とし、電気特性の評価も同様のものとし、その
結果を(表2)に示した。
The subsequent sample preparation process after granulation was the same as in Example 1, and the evaluation of electrical characteristics was also the same. The results are shown in (Table 2).

【0031】(表2)を見ると、DA/DB比が、2.0
以上のものは、PTC特性における抵抗温度特性と抵抗
変化幅が大幅に向上していることがわかる。
Looking at (Table 2), the D A / D B ratio is 2.0.
From the above, it can be seen that the resistance temperature characteristics and the resistance change width in the PTC characteristics are significantly improved.

【0032】なお、実施例1、実施例2において、仮焼
粉砕粉を製造する際、炭酸バリウム、酸化チタンを用い
たが、チタン酸バリウムの固溶体を用いたとしても同様
の効果が得られるものである。
In Example 1 and Example 2, barium carbonate and titanium oxide were used in the production of the calcined and ground powder, but the same effect can be obtained even if a solid solution of barium titanate is used. Is.

【0033】また、組成物Aの副成分として希土類酸化
物であるY23を添加した場合を示したが、このY23
の代りに他の希土類酸化物またはNb,Sb,Biの酸
化物あるいはY23を含むこれらの酸化物を組合わせて
添加しても同様の効果が得られるものである。
Further, although the case of adding Y 2 O 3 is a rare earth oxide as a sub-component of the composition A, the Y 2 O 3
The same effect can be obtained by adding other rare earth oxides, oxides of Nb, Sb, Bi, or these oxides containing Y 2 O 3 in combination instead of.

【0034】さらに、組成物BとしてBaTin2n+1
のn=2の場合のみを示したが、n=3,4の場合ある
いはn=2,3,4の組み合わせの場合でも同様の効果
が得られるものである。
Further, as composition B, BaTi n O 2n + 1
Although only the case of n = 2 is shown, the same effect can be obtained in the case of n = 3, 4 or the combination of n = 2, 3, 4.

【0035】[0035]

【発明の効果】以上、詳述したように、本発明はPTC
特性における初期的な電気特性を変化させることなく、
その抵抗温度係数および抵抗変化幅を大きく向上させる
ことができるものである。また本発明の正特性サーミス
タをブラウン管の消磁回路や過電流防止等のために用い
た場合、その突入電流を減少させることができる。
As described above in detail, the present invention is a PTC.
Without changing the initial electrical characteristics of the characteristics
The temperature coefficient of resistance and the range of resistance change can be greatly improved. Further, when the positive temperature coefficient thermistor of the present invention is used for a degaussing circuit of a cathode ray tube or for preventing overcurrent, the inrush current can be reduced.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 サーミスタ素子と、このサーミスタ素子
表面に設けた少なくとも一対の電極とを備え、前記サー
ミスタ素子は、チタン酸バリウムからなる主成分に、副
成分として、希土類元素あるいはNb,Sb,Biの酸
化物のうち少なくとも一種類以上と、SiO2,Mn
2,Al23とを添加含有した組成物Aと、BaTin
2n+1(n=2,3,4)で表される組成物Bとからな
る正特性サーミスタ。
1. A thermistor element and at least a pair of electrodes provided on the surface of the thermistor element, wherein the thermistor element comprises a barium titanate main component as a main component and a rare earth element or Nb, Sb, Bi as a secondary component. At least one of the above oxides and SiO 2 , Mn
Composition A containing O 2 and Al 2 O 3 added, and BaTi n
A positive temperature coefficient thermistor comprising the composition B represented by O 2n + 1 (n = 2, 3, 4).
【請求項2】 組成物Bの含有量が、組成物Aの1mol
に対して、0.1〜4.0mol%である請求項1記載の
正特性サーミスタ。
2. The content of the composition B is 1 mol of the composition A.
The positive temperature coefficient thermistor according to claim 1, which is 0.1 to 4.0 mol%.
【請求項3】 チタン酸バリウムからなる主成分に、副
成分として、希土類元素あるいはNb,Sb,Biの酸
化物のうち少なくとも一種類以上と、SiO2,Mn
2,Al23とを添加混合後、仮焼して組成物Aを
得、次に前記組成物AにBaTin2n+1(n=2,
3,4)で表される組成物Bを混合し、その後本焼成し
てサーミスタ素子を形成し、前記サーミスタ素子表面に
電極を設ける正特性サーミスタの製造方法。
3. A main component composed of barium titanate, and at least one or more of rare earth elements or oxides of Nb, Sb, Bi as secondary components, and SiO 2 , Mn.
O 2, Al 2 O 3 and after addition of mixed, calcined to obtain a composition A, then BaTi the composition A n O 2n + 1 (n = 2,
A method for producing a positive temperature coefficient thermistor in which the composition B represented by 3, 4) is mixed, and then main-baked to form a thermistor element, and electrodes are provided on the surface of the thermistor element.
【請求項4】 組成物Aの粉体の平均粒径(DA)と組
成物Bの粉体の平均粒径(DB)の粒径比DA/DB
2.0以上となる組成物Aと組成物Bを用いた請求項3
記載の正特性サーミスタの製造方法。
4. The particle size ratio D A / D B of the average particle size (D A ) of the powder of composition A and the average particle size (D B ) of the powder of composition B is 2.0 or more. Composition 3 and composition B are used.
A method for manufacturing the described positive temperature coefficient thermistor.
JP6089584A 1994-04-27 1994-04-27 Positive temperature coefficient thermistor and manufacturing method thereof Pending JPH07297009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6089584A JPH07297009A (en) 1994-04-27 1994-04-27 Positive temperature coefficient thermistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6089584A JPH07297009A (en) 1994-04-27 1994-04-27 Positive temperature coefficient thermistor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH07297009A true JPH07297009A (en) 1995-11-10

Family

ID=13974840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6089584A Pending JPH07297009A (en) 1994-04-27 1994-04-27 Positive temperature coefficient thermistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07297009A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937692A1 (en) * 1997-09-05 1999-08-25 TDK Corporation Barium titanate-base semiconductor ceramic
EP0961299A1 (en) * 1997-09-05 1999-12-01 TDK Corporation Method of producing semiconductor ceramic having positive temperature coefficient
US6071842A (en) * 1997-09-05 2000-06-06 Tdk Corporation Barium titanate-based semiconductor ceramic
JP2011006266A (en) * 2009-06-23 2011-01-13 Shimane Univ METHOD OF MANUFACTURING BaTi2O5 TYPE FERROELECTRIC CERAMIC
JP2012197200A (en) * 2011-03-22 2012-10-18 Seiko Instruments Inc PRECURSOR POWDER OF BaTi2O5 BASED COMPOSITE OXIDE, METHOD FOR MANUFACTURING PRECURSOR POWDER OF BaTi2O5 BASED COMPOSITE OXIDE, AND METHOD FOR MANUFACTURING BaTi2O5 BASED COMPOSITE OXIDE

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937692A1 (en) * 1997-09-05 1999-08-25 TDK Corporation Barium titanate-base semiconductor ceramic
EP0961299A1 (en) * 1997-09-05 1999-12-01 TDK Corporation Method of producing semiconductor ceramic having positive temperature coefficient
US6071842A (en) * 1997-09-05 2000-06-06 Tdk Corporation Barium titanate-based semiconductor ceramic
EP0961299A4 (en) * 1997-09-05 2000-07-05 Tdk Corp Method of producing semiconductor ceramic having positive temperature coefficient
US6221800B1 (en) 1997-09-05 2001-04-24 Tdk Corporation Method of producing PTC semiconducting ceramic
EP0937692A4 (en) * 1997-09-05 2003-05-14 Tdk Corp Barium titanate-base semiconductor ceramic
JP2011006266A (en) * 2009-06-23 2011-01-13 Shimane Univ METHOD OF MANUFACTURING BaTi2O5 TYPE FERROELECTRIC CERAMIC
JP2012197200A (en) * 2011-03-22 2012-10-18 Seiko Instruments Inc PRECURSOR POWDER OF BaTi2O5 BASED COMPOSITE OXIDE, METHOD FOR MANUFACTURING PRECURSOR POWDER OF BaTi2O5 BASED COMPOSITE OXIDE, AND METHOD FOR MANUFACTURING BaTi2O5 BASED COMPOSITE OXIDE

Similar Documents

Publication Publication Date Title
US4384989A (en) Semiconductive barium titanate
KR101361358B1 (en) Semiconductor ceramic composition and method for producing the same
JP4080576B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JPH075363B2 (en) PTC porcelain composition and method for producing the same
US6071842A (en) Barium titanate-based semiconductor ceramic
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP3039511B2 (en) Semiconductor ceramic and semiconductor ceramic element
JP4058140B2 (en) Barium titanate semiconductor porcelain
JP4217337B2 (en) Manufacturing method of semiconductor porcelain
JP2000264726A (en) Semiconductor porcelain
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JP3699195B2 (en) Positive characteristic semiconductor porcelain and manufacturing method thereof
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JPH1092605A (en) Manufacture of positive temperature thermistor
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JP4367803B2 (en) Semiconductor porcelain and thermistor using the same
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPH10135006A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH1072254A (en) Production of barium titanate-base semiconductor porcelain
JPH10212161A (en) Thermistor material having positive characteristic and its production
JPH08191002A (en) Barium titanate system semiconductor ceramics and its manufacturing method
JPH1112033A (en) Barium lead titanate-based semiconductor ceramic composition