JPH1072254A - Production of barium titanate-base semiconductor porcelain - Google Patents

Production of barium titanate-base semiconductor porcelain

Info

Publication number
JPH1072254A
JPH1072254A JP8247085A JP24708596A JPH1072254A JP H1072254 A JPH1072254 A JP H1072254A JP 8247085 A JP8247085 A JP 8247085A JP 24708596 A JP24708596 A JP 24708596A JP H1072254 A JPH1072254 A JP H1072254A
Authority
JP
Japan
Prior art keywords
resistance
porcelain
barium titanate
semiconductor porcelain
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8247085A
Other languages
Japanese (ja)
Inventor
Hirotaka Kubota
弘貴 久保田
Takayuki Ochi
貴之 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP8247085A priority Critical patent/JPH1072254A/en
Publication of JPH1072254A publication Critical patent/JPH1072254A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain semiconductor porcelain having superior electrical characteristics by using TiO2 having a specified BET specific surface area as one of starting materials and imparting a compsn. represented by a prescribed formula. SOLUTION: Starting materials such as BaCO3 , SrCO3 , Pb3 O4 , Y(NO3 )3 .6H2 O, Mn(NO3 )3 .6H2 O, SiO2 and TiO2 having 4-50m<2> /g BET specific surface area are blended to prepare a slurry of the compds. contg. elements in a ratio represented by the formula (where Z is Y or La as a semiconductor forming agent, 0.05<=x<=0.40, 0.05<=y<=0.40, 0.25<=x+y<=0.48, 0.990<=A/B<=1.000, 0.001<=p<0.002, 0.05<=q/p<=0.15 and 0.003<=r$0.03). The slurry is mixed with an ammonia buffer, dehydrated, dried and calcined at about 1,100 deg.C. The resultant calcined powder is dispersed in water to prepare a slurry again, a binder is added and they are granulated, press-compacted and fired at about 1,320 deg.C to obtain the objective BaTiO3 -base semiconductor porcelain having low specific resistance at room temp. and positive resistance-temp. characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、室温比抵抗の低
い、正の抵抗温度特性を有するチタン酸バリウム系半導
体磁器の製造方法に関する。
The present invention relates to a method for producing a barium titanate-based semiconductor porcelain having a low room temperature specific resistance and a positive resistance-temperature characteristic.

【0002】[0002]

【従来の技術】チタン酸バリウムに、微量の稀土類元素
あるいはNb,Sbなどの元素を添加することにより、
正の抵抗温度特性を有する半導体磁器が得られることは
知られている。さらに、Mn,Siを微量添加すること
により、抵抗温度特性における抵抗温度係数を上昇させ
ることができることも知られている。
2. Description of the Related Art By adding a trace amount of rare earth elements or elements such as Nb and Sb to barium titanate,
It is known that a semiconductor porcelain having a positive resistance temperature characteristic can be obtained. Furthermore, it is also known that the addition of a small amount of Mn and Si can increase the temperature coefficient of resistance in the resistance temperature characteristics.

【0003】このような正の抵抗温度特性を有する半導
体磁器は、電流制限、温度検知、定温度発熱体等に使用
されているが、一般に、電流制限の用途に用いられるチ
タン酸バリウム系半導体磁器の特性としては、室温での
比抵抗〔ρ〕が小さいこと、耐電圧〔V〕が高いこと、
抵抗温度係数〔α〕が大きいことなどがあげられる。つ
まり、小型軽薄化した低抵抗素子を得るために、電流制
限用半導体磁器の特性として、室温比抵抗が小さく、か
つ、耐電圧が高い半導体磁器が要求される。
Semiconductor porcelains having such a positive resistance-temperature characteristic are used for current limiting, temperature detection, constant temperature heating elements, etc., but barium titanate-based semiconductor porcelains generally used for current limiting are used. The characteristics are that the resistivity [ρ] at room temperature is small, the withstand voltage [V] is high,
For example, the resistance temperature coefficient [α] is large. In other words, in order to obtain a small, light, and low-resistance element, the current-limiting semiconductor porcelain is required to have a low room-temperature specific resistance and a high withstand voltage.

【0004】このため、比抵抗−耐電圧特性向上の目的
で半導体磁器組成物における各構成元素の比率が検討さ
れている(特開昭55−134901号公報、特公昭6
3−28324号公報など)。また、上記特性向上のた
めに、出発原料として粒径0.1〜0.6μmの酸化チ
タン粉末を用いたり(特開平5−294625号公
報)、湿式共沈法で調製したチタン酸塩粉末を用いる
(特公平5−59068号公報など)など、種々の検討
が行われている。
For this reason, the ratio of each constituent element in a semiconductor porcelain composition has been studied for the purpose of improving the specific resistance-withstand voltage characteristics (JP-A-55-134901;
3-28324). Further, in order to improve the above characteristics, a titanium oxide powder having a particle size of 0.1 to 0.6 μm may be used as a starting material (JP-A-5-294625), or a titanate powder prepared by a wet coprecipitation method may be used. Various studies have been made, such as the use (JP-B-5-59068).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
方法では、室温比抵抗を低くすると、それに伴い耐電圧
や抵抗温度係数が低下してしまう傾向があり、特に比抵
抗−耐電圧特性においてはまだ十分に満足できるものは
得られていない。例えば、最も低比抵抗のものでも、4
Ωcm、85V/mm、9%/℃と、特に低抵抗を要求
される電池向けや車載向けの電流制限の用途には不十分
である。
However, in the conventional method, when the specific resistance at room temperature is reduced, the withstand voltage and the temperature coefficient of resistance tend to decrease with the decrease of the room temperature specific resistance. No satisfactory one has been obtained. For example, even the one with the lowest specific resistance is 4
Ωcm, 85 V / mm, 9% / ° C., which is insufficient for current limiting applications for batteries and vehicles that require particularly low resistance.

【0006】[0006]

【課題を解決するための手段】本発明は、室温比抵抗が
十分低い値を有しながら、比抵抗−耐電圧特性が良好
で、かつ、抵抗温度係数の大きいチタン酸バリウム系半
導体磁器を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a barium titanate-based semiconductor porcelain which has a sufficiently low specific resistance at room temperature, a good specific resistance-withstand voltage characteristic, and a large temperature coefficient of resistance. Is what you do.

【0007】すなわち本発明の第1の要旨は、磁器組成
が、 (Ba1-x-y Srx Pby ) A TiB 3 +pZ+qM
n+rSiO2 (但し、Zは、Y,Laなどの稀土類元素およびNb,
Sbからなる群のうち少なくとも一種からなる半導体化
剤を示す)で表され、上記組成式における、x,y,
A,B,p,q,rで示された各構成元素の比率が、そ
れぞれ 0.05 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.40 0.25 ≦ x+y ≦ 0.48 0.990 ≦ A/B ≦ 1.000 0.001 ≦ p < 0.002 0.05 ≦ q/p ≦ 0.15 0.003 ≦ r ≦ 0.03 の範囲内である半導体磁器の製造において、出発原料の
一つとして酸化チタンを用い、その酸化チタンの比表面
積値が、BET比表面積値として4m2 /g以上50m
2 /g以下であることを特徴とするチタン酸バリウム系
半導体磁器の製造方法である。
Namely first aspect of the present invention, porcelain composition, (Ba 1-xy Sr x Pb y) A Ti B O 3 + pZ + qM
n + rSiO 2 (where Z is a rare earth element such as Y or La and Nb,
Sb represents a semiconducting agent consisting of at least one of the group consisting of Sb), and x, y, and
A, B, p, q, r, the ratios of the respective constituent elements are respectively 0.05 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.40 0.25 ≦ x + y ≦ 0.48 0. 990 ≦ A / B ≦ 1.000 0.001 ≦ p <0.002 0.05 ≦ q / p ≦ 0.15 0.003 ≦ r ≦ 0.03 A titanium oxide is used as one of the raw materials, and the specific surface area of the titanium oxide is 4 m 2 / g or more and 50 m or more as a BET specific surface area.
2 / g or less, a method for producing a barium titanate-based semiconductor ceramic.

【0008】そして、上記組成式における、x,y,
A,B,p,q,rで示された各構成元素それぞれの比
率を、さらに、 0.05 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.40 0.25 ≦ x+y ≦ 0.45 0.992 ≦ A/B ≦ 1.000 0.001 ≦ p ≦ 0.0018 0.05 ≦ q/p ≦ 0.10 0.005 ≦ r ≦ 0.03 の範囲内に設定することにより、より優れた電気的特性
を有する磁器が得られる。
In the above composition formula, x, y,
The ratio of each of the constituent elements represented by A, B, p, q, and r is further calculated as follows: 0.05 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.40 0.25 ≦ x + y ≦ 0.45 0.992 ≦ A / B ≦ 1.000 0.001 ≦ p ≦ 0.0018 0.05 ≦ q / p ≦ 0.10 0.005 ≦ r ≦ 0.03 A porcelain having excellent electrical properties is obtained.

【0009】また、本発明の第2の要旨は、上記組成の
半導体磁器の製造において、出発原料の混合に際し、半
導体化剤およびMn以外の各磁器構成成分については出
発原料としてそれらの酸化物または炭酸塩を用い、半導
体化剤およびMnについては出発原料としてそれらの水
溶性塩の水溶液を用い、これらの混合スラリーのpHを
弱塩基により8以上11以下に調整した後、混合処理を
行うことを特徴とするチタン酸バリウム系半導体磁器の
製造方法である。
A second gist of the present invention is that, in the production of a semiconductor porcelain having the above composition, when mixing the starting materials, each of the porcelain components other than the semiconducting agent and Mn is used as an oxide or oxide thereof as a starting material. Using a carbonate, an aqueous solution of a water-soluble salt thereof as a starting material for the semiconducting agent and Mn, adjusting the pH of the mixed slurry to 8 or more and 11 or less with a weak base, and then performing a mixing treatment. This is a method for producing a barium titanate-based semiconductor porcelain.

【0010】本発明を適用することにより、室温比抵抗
が5Ωcm以下で、耐電圧と室温比抵抗の比が25以上
であるとともに、抵抗温度係数と室温比抵抗の対数値と
の比が15以上である、という特性を有する磁器が得ら
れる。
By applying the present invention, the room temperature resistivity is 5 Ωcm or less, the ratio between the withstand voltage and the room temperature resistivity is 25 or more, and the ratio between the temperature coefficient of resistance and the logarithmic value of the room temperature resistivity is 15 or more. Is obtained.

【0011】以下、本発明について、具体的に述べる。
まず、半導体磁器の組成について説明する。チタン酸バ
リウム系半導体磁器にSrやPbを含有させると、チタ
ン酸バリウムのBaサイトと置換し、耐電圧特性や抵抗
温度係数が改善される。その適切な範囲は、それぞれチ
タン酸バリウムのTi原子に対し、Sr(組成式におけ
る元素比率:x)及びPb(組成式における元素比率:
y)ともに5原子%以上で、かつ、これらの和が25原
子%以上である。SrまたはPbのどちらかの置換量が
それぞれ5原子%未満だったり、SrとPbの置換量の
和が25原子%未満である場合には、得られる焼結体の
粒径が小さくなりにくく、結果として耐電圧と室温比抵
抗の比が25以下に低下するとともに、抵抗温度係数と
室温抵抗値の対数値の比が15以下に低下してしまい、
好ましくない。また、SrまたはPbのどちらかの置換
量がそれぞれ40原子%を越えたり、SrとPbの置換
量の和が48原子%を越えると、室温比抵抗が5Ωcm
を越えてしまうので好ましくない。なお、SrとPbの
置換量の和が25原子%以上45原子%以下の範囲内の
場合には、上記優れた電気特性に加え、さらに室温比抵
抗が低い磁器を得ることができる。
Hereinafter, the present invention will be specifically described.
First, the composition of the semiconductor porcelain will be described. When Sr or Pb is contained in the barium titanate-based semiconductor porcelain, it replaces the Ba site of barium titanate, and the withstand voltage characteristics and the temperature coefficient of resistance are improved. The appropriate ranges are Sr (element ratio in composition formula: x) and Pb (element ratio in composition formula:
y) Both are 5 atomic% or more, and their sum is 25 atomic% or more. When the substitution amount of either Sr or Pb is less than 5 atomic%, respectively, or when the sum of the substitution amounts of Sr and Pb is less than 25 atomic%, the particle size of the obtained sintered body is less likely to be small, As a result, the ratio between the withstand voltage and the room temperature specific resistance decreases to 25 or less, and the ratio of the logarithmic value of the resistance temperature coefficient and the room temperature resistance value decreases to 15 or less,
Not preferred. If the substitution amount of either Sr or Pb exceeds 40 atomic% or the sum of the substitution amounts of Sr and Pb exceeds 48 atomic%, the room temperature resistivity becomes 5 Ωcm.
Is not preferred. When the sum of the substitution amounts of Sr and Pb is in the range of 25 atomic% or more and 45 atomic% or less, it is possible to obtain a porcelain having a lower specific resistance at room temperature in addition to the above excellent electric characteristics.

【0012】半導体磁器組成物におけるチタン酸バリウ
ム部分、すなわち(Ba1-x-y Srx Pby ) A TiB
3 におけるAサイト構成成分(Ba1-x-y Srx Pb
y )とBサイト構成成分(Ti)との原子比(A/B
値)は、0.990以上1.000以下が好ましい。A
/B値が0.990未満の場合には、室温比抵抗が5Ω
cmを越えてしまい、また、A/B値が1.000を越
えると、耐電圧と室温比抵抗の比が25以下に低下する
とともに、抵抗温度係数と室温抵抗値の対数値の比が1
5以下に低下してしまうので、好ましくない。A/B値
が0.992以上1.000以下の範囲内の場合には、
上記優れた電気特性に加え、さらに室温比抵抗の低い磁
器を得ることができる。
[0012] Barium titanate portion of the semiconductor ceramic composition, i.e. (Ba 1-xy Sr x Pb y) A Ti B
A site component in O 3 (Ba 1-xy Sr x Pb
y ) and the atomic ratio (A / B) of the B site constituent (Ti)
Value) is preferably 0.990 or more and 1.000 or less. A
When the / B value is less than 0.990, the room temperature resistivity is 5Ω.
If the A / B value exceeds 1.000, the ratio between the withstand voltage and the room temperature specific resistance decreases to 25 or less, and the ratio of the logarithmic value between the resistance temperature coefficient and the room temperature resistance becomes 1
It is not preferable because it is reduced to 5 or less. When the A / B value is in the range of 0.992 or more and 1.000 or less,
In addition to the above excellent electrical characteristics, it is possible to obtain a porcelain having a lower specific resistance at room temperature.

【0013】チタン酸バリウム系磁器に対する半導体化
剤(組成式においてZで示した元素)としては、Y,L
aなどの稀土類元素およびNb,Sbから、少なくとも
一種以上を選択すればよい。その添加量(組成式におけ
る元素比率:p)としてはチタン酸バリウムのTi原子
に対し、0.1原子%以上0.20原子%未満が好まし
い。半導体化剤の添加量が、0.1原子%未満の場合に
は、比抵抗が5Ωcmを越えるとともに、耐電圧と室温
比抵抗の比が25以下に低下するとともに、抵抗温度係
数と室温抵抗値の対数値の比が15以下に低下してしま
う。また、0.20原子%以上では、室温比抵抗が5Ω
cmを越えてしまうため好ましくない。また、半導体化
剤の添加量が0.1原子%以上0.18原子%以下の範
囲内の場合には、上記優れた電気特性に加え、さらに室
温比抵抗の低い磁器を得ることができる。
As a semiconducting agent for the barium titanate-based porcelain (element represented by Z in the composition formula), Y, L
At least one or more elements may be selected from rare earth elements such as a and Nb and Sb. The addition amount (element ratio in the composition formula: p) is preferably 0.1 atomic% or more and less than 0.20 atomic% with respect to Ti atoms of barium titanate. When the amount of the semiconducting agent is less than 0.1 atomic%, the specific resistance exceeds 5 Ωcm, the ratio between the withstand voltage and the room temperature specific resistance decreases to 25 or less, and the temperature coefficient of resistance and the room temperature resistance value increase. Is reduced to 15 or less. At 0.20 atomic% or more, the room temperature specific resistance is 5Ω.
cm. When the addition amount of the semiconducting agent is in the range of 0.1 atomic% or more and 0.18 atomic% or less, a porcelain having a lower room temperature specific resistance can be obtained in addition to the above excellent electric characteristics.

【0014】Mnの添加量(組成式における元素比率:
q)については、上記半導体化剤の添加量に対し、5原
子%以上15原子%以下が好ましい。半導体化剤とMn
とは、焼結体の電気特性に相互に影響を及ぼしあうた
め、Mn量に対する半導体化剤の量の比(q/p)が
0.05未満の場合には、耐電圧と室温比抵抗の比が2
5以下に低下するとともに、抵抗温度係数と室温抵抗値
の対数値の比が15以下に低下してしまう。また、この
比が0.15を越えると室温比抵抗が5Ωcmを越えて
しまうため好ましくない。そして、この比が0.05以
上0.10以下の範囲内の場合には、上記優れた電気特
性に加え、さらに室温比抵抗の低い磁器を得ることがで
きる。
Addition amount of Mn (element ratio in composition formula:
Regarding q), the content is preferably 5 atomic% or more and 15 atomic% or less with respect to the addition amount of the above-described semiconductor agent. Semiconducting agent and Mn
Means that the electric properties of the sintered body are mutually affected, and when the ratio (q / p) of the amount of the semiconducting agent to the amount of Mn is less than 0.05, the withstand voltage and the room temperature resistivity are reduced. The ratio is 2
As the temperature decreases to 5 or less, the ratio of the logarithmic value of the temperature coefficient of resistance to the room temperature resistance decreases to 15 or less. If the ratio exceeds 0.15, the room temperature specific resistance exceeds 5 Ωcm, which is not preferable. When the ratio is in the range of 0.05 or more and 0.10 or less, it is possible to obtain a porcelain having a lower specific resistance at room temperature in addition to the above excellent electric characteristics.

【0015】SiO2 の添加量(組成式における元素比
率:r)は、チタン酸バリウムのTi原子に対し、0.
3原子%以上3.0原子%以下が好ましい。SiO2
が、0.3原子%未満の場合には、比抵抗が5Ωcmを
越えるとともに、耐電圧と室温比抵抗の比が25以下に
低下してしまう。また、3.0原子%を越えると抵抗温
度係数と室温比抵抗の対数値の比が15以下に低下する
ので好ましくない。SiO2 量が0.5原子%以上3.
0原子%以下の範囲内の場合には、上記優れた電気特性
に加え、さらに室温比抵抗の低い磁器を得ることができ
る。
The amount of SiO 2 added (element ratio in the composition formula: r) is set to be 0.1 to 0.1 with respect to the Ti atom of barium titanate.
It is preferably from 3 atomic% to 3.0 atomic%. When the amount of SiO 2 is less than 0.3 atomic%, the specific resistance exceeds 5 Ωcm, and the ratio between the withstand voltage and the room temperature specific resistance is reduced to 25 or less. On the other hand, if it exceeds 3.0 atomic%, the ratio of the logarithmic value of the temperature coefficient of resistance to the resistivity at room temperature drops to 15 or less, which is not preferable. 2. The amount of SiO 2 is 0.5 atomic% or more.
When the content is within the range of 0 atomic% or less, it is possible to obtain a porcelain having low specific resistance at room temperature in addition to the above excellent electric characteristics.

【0016】本発明の磁器組成におけるチタン酸バリウ
ム系半導体磁器の製造において、チタン成分の出発原料
として酸化チタンを用い、その比表面積値(BET比表
面積値)が4m2 /g以上50m2 /g以下、好ましく
は、5〜30m2 /gであるものを用いると、優れた電
気特性を有する磁器を得ることができる。
In the production of the barium titanate-based semiconductor porcelain having the porcelain composition of the present invention, titanium oxide is used as a starting material for the titanium component, and its specific surface area (BET specific surface area) is 4 m 2 / g or more and 50 m 2 / g. In the following, preferably, a porcelain having excellent electrical characteristics can be obtained by using a porcelain of 5 to 30 m 2 / g.

【0017】酸化チタンは、一般に顔料として用いられ
ることが多く、純度95%以上で、5〜10m2 /gの
比表面積を有するものが市販されている。しかしなが
ら、これら顔料級酸化チタンにおいては、原料鉱物から
残留するニオブや鉄など、半導体磁器とした場合に電気
特性的に大きな変動要因となる元素が含まれており、そ
のままでは使用できない。このため、純度が99.5%
以上の高純度酸化チタンを使用する必要があるが、製造
時の処理により粒子径が大きくなってしまい、せいぜい
2〜3m2 /gの比表面積を有する製品しか使用するこ
とができなかった。
Titanium oxide is generally used as a pigment in many cases, and one having a purity of 95% or more and a specific surface area of 5 to 10 m 2 / g is commercially available. However, these pigment-grade titanium oxides contain elements that greatly change electrical characteristics when used as semiconductor porcelain, such as niobium and iron remaining from raw minerals, and cannot be used as they are. Therefore, the purity is 99.5%
Although it is necessary to use the above-mentioned high-purity titanium oxide, the particle size becomes large due to the treatment at the time of production, and only products having a specific surface area of at most 2-3 m 2 / g could be used.

【0018】本発明者らは、使用する高純度酸化チタン
の比表面積を4m2 /g以上50m2 /g以下、好まし
くは、5〜30m2 /gに設定することにより、特定磁
器組成におけるチタン酸バリウム系半導体磁器の電気特
性を改善することを見いだし、本発明に到達した。使用
する酸化チタンの比表面積値が4m2 /g未満の場合に
は、得られる焼結体の粒径が大きくなって、結果的に比
抵抗−耐電圧特性が低下する。また、50m2 /gを越
える場合には、得られる焼結体の粒径分布が悪くなり、
耐電圧と室温比抵抗の比が25以下に低下するので好ま
しくない。
[0018] The present inventors, the specific surface area of the high-purity titanium oxide used 4m 2 / g or more 50 m 2 / g or less, preferably, by setting the 5 to 30 m 2 / g, titanium in a specific ceramic composition The inventors have found that the electrical characteristics of barium oxide-based semiconductor porcelain are improved, and arrived at the present invention. When the specific surface area value of the titanium oxide used is less than 4 m 2 / g, the particle size of the obtained sintered body becomes large, and as a result, the specific resistance-withstand voltage characteristics decrease. On the other hand, when it exceeds 50 m 2 / g, the particle size distribution of the obtained sintered body is deteriorated,
Since the ratio between the withstand voltage and the room temperature specific resistance is reduced to 25 or less, it is not preferable.

【0019】また、本発明者らは、チタン酸バリウム系
半導体磁器における各成分元素の出発原料(原料に使用
する化合物)を選択・特定し、さらにこれら出発原料の
混合処理時の系におけるpHを、弱塩基性へ調整するこ
とにより、得られる半導体磁器の電気特性が改善される
ことも見いだした。たとえば、上記半導体磁器への添加
量は微量であるものの、PTC特性や各種電気的特性に
大きな影響を及ぼす半導体化剤やMnについては、出発
原料としてたとえば硝酸塩や酢酸塩など対応する元素の
水溶性塩を選び、その水溶液を添加して均一に混合する
のが好ましい。これにより、半導体磁器のさらなる低抵
抗化が可能となる。上記以外の各成分元素の出発原料と
しては、それぞれ酸化物または炭酸塩を用いるのが好ま
しい。
The present inventors have also selected and specified starting materials (compounds used for the starting materials) of each component element in the barium titanate-based semiconductor porcelain, and further adjusted the pH in the system during the mixing treatment of these starting materials. It has also been found that the electric properties of the obtained semiconductor porcelain can be improved by adjusting to a weak basicity. For example, although the amount of addition to the above-mentioned semiconductor porcelain is very small, as for the semiconducting agent and Mn which have a great influence on the PTC characteristics and various electric characteristics, the water solubility of corresponding elements such as nitrates and acetates as starting materials, for example, It is preferable to select a salt, add an aqueous solution thereof, and mix uniformly. Thereby, the resistance of the semiconductor porcelain can be further reduced. It is preferable to use an oxide or a carbonate as a starting material for each component element other than the above.

【0020】各出発原料は、ボールミルなどの手法によ
り、十分に湿式混合される。半導体化剤やMnの出発原
料として水溶性塩を用いると、混合過程で加水分解反応
が起こる。この際のpHをアンモニアなどの弱塩基を用
いて8以上11以下に調整することにより、比抵抗−耐
電圧特性および比抵抗−抵抗温度係数特性が良好なもの
となる。このpHが8未満の場合には、耐電圧と室温比
抵抗の比が25以下に低下する。また、pHが11を越
えるように調整するのは、弱塩基の添加量が非常に多く
なるため不経済である。
The starting materials are sufficiently wet-mixed by a technique such as a ball mill. When a water-soluble salt is used as a starting material for the semiconducting agent or Mn, a hydrolysis reaction occurs in the mixing process. By adjusting the pH at this time to 8 or more and 11 or less by using a weak base such as ammonia, the specific resistance-withstand voltage characteristics and the specific resistance-resistance temperature coefficient characteristics are improved. When the pH is less than 8, the ratio between the withstand voltage and the room temperature resistivity decreases to 25 or less. Further, it is uneconomical to adjust the pH so as to exceed 11, since the amount of the weak base to be added becomes extremely large.

【0021】湿式混合したスラリーは脱水乾燥後、おお
よそ1000〜1150℃で仮焼してチタン酸バリウム
系固溶体粉末を得る。仮焼温度が1000℃以下の場合
には各成分の固溶が十分に進まず、1150℃以上では
融着を起こし仮焼後粉末の粉砕が困難となる。このよう
にして得られたチタン酸バリウム系固溶体粉末は、湿式
で粉砕してスラリーとし、バインダを添加し、造粒、成
形後、焼成して半導体磁器を形成する。
The wet-mixed slurry is dehydrated and dried, and then calcined at about 1000 to 1150 ° C. to obtain a barium titanate-based solid solution powder. When the calcination temperature is 1000 ° C. or lower, the solid solution of each component does not sufficiently advance, and when it is 1150 ° C. or higher, fusion occurs and it becomes difficult to grind the powder after calcination. The barium titanate-based solid solution powder thus obtained is wet-milled to form a slurry, a binder is added, granulated, molded, and fired to form a semiconductor porcelain.

【0022】[0022]

【発明の実施の形態】以下、実施例により本発明をさら
に詳しく説明する。ただし、本発明はこれらの製造例、
実施例のみに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention, these production examples,
It is not limited only to the embodiment.

【0023】高純度酸化チタンの製造例 四塩化チタン水溶液(Ti分として16.4%含有)
を、蒸留水でTi分として3.0%の濃度になるように
希釈し、70℃に加熱した。この温度で1時間保持した
後、上記四塩化チタン水溶液を追加投入し、Ti分とし
て7.2%の濃度とした。その後昇温し、5時間還流し
た。還流後得られたスラリーをろ過、水洗を繰り返して
不純物を除いた後、110℃で乾燥した。得られた酸化
チタンの塩素含有量を測定したところ100ppm以下
であった。これを800℃で熱処理を行い、比表面積値
5.7m2 /gの酸化チタンを得た。
Production Example of High Purity Titanium Oxide Titanium tetrachloride aqueous solution (containing 16.4% as Ti content)
Was diluted with distilled water to a concentration of 3.0% as a Ti content, and heated to 70 ° C. After maintaining at this temperature for one hour, the above-mentioned aqueous solution of titanium tetrachloride was additionally charged to give a Ti content of 7.2%. Thereafter, the temperature was raised and the mixture was refluxed for 5 hours. After the reflux, the obtained slurry was repeatedly filtered and washed with water to remove impurities, and then dried at 110 ° C. When the chlorine content of the obtained titanium oxide was measured, it was 100 ppm or less. This was heat-treated at 800 ° C. to obtain a titanium oxide having a specific surface area of 5.7 m 2 / g.

【0024】実施例 1 出発原料の化合物として、上記製造例にて用意した比表
面積値5.7m2 /gのTiO2 、市販のBaCO3
SrCO3 、CaCO3 、Pb3 4 、Y(NO3 3
・6H2 O、La(CH3 COO)3 ・3/2H2 O、
NbCl5 、SbCl3 、Mn(NO3 2 ・6H
2 O、SiO2 から選択し、焼成後の磁器組成が、 (Ba1-x-y Srx Pby A TiB 3 +pZ+qM
n+rSiO2 (但し、Zは、Y,La,Nb,Sbからなる半導体化
剤を示す)という組成式において表1の元素比率となる
ように、各化合物を配合してスラリーとした。
Example 1 TiO 2 having a specific surface area of 5.7 m 2 / g, commercially available BaCO 3 ,
SrCO 3 , CaCO 3 , Pb 3 O 4 , Y (NO 3 ) 3
· 6H 2 O, La (CH 3 COO) 3 · 3 / 2H 2 O,
NbCl 5, SbCl 3, Mn ( NO 3) 2 · 6H
2 O, selected from SiO 2, the ceramic composition after firing, (Ba 1-xy Sr x Pb y) A Ti B O 3 + pZ + qM
Each compound was blended so that the element ratio was as shown in Table 1 in a composition formula of n + rSiO 2 (where Z represents a semiconducting agent composed of Y, La, Nb, and Sb) to form a slurry.

【0025】[0025]

【表1】 [Table 1]

【0026】pH9.0のアンモニア緩衝液を、その濃
度が0.02mol/lとなるようにスラリーに添加
し、湿式ボールミル混合を15時間行った。これを脱水
乾燥して得られた粉体を、1100℃で2時間仮焼し
た。得られた仮焼粉はピンミルにより解砕後、純水と
0.5重量%の分散剤を添加して70重量%のスラリー
を調製し、これを湿式ボールミルにより3時間粉砕し
た。粉砕メディアとしては、直径10mmのジルコニア
ボールを用いた。粉砕後のスラリーにバインダーを加え
て造粒し、成形圧力1000kg/cm2 でプレスし、
直径20mm×厚み1.0mmの円板状の成形体を得
た。成形体は、300℃/時間で昇温し、1320℃で
1時間保持した後、300℃/時間で降温する、という
焼成工程を経て半導体磁器とした。得られた半導体磁器
の両主表面にIn−Ga合金を塗布し、室温比抵抗
〔ρ〕、耐電圧〔V〕、抵抗温度係数〔α〕を測定し
た。耐電圧としては、試料に印加する交流電圧を徐々に
上昇させ、試料の破壊が生じる直前の電圧値を求め、抵
抗温度係数としては、T1 を室温抵抗値の10倍の抵抗
値を示す温度、T2 を室温抵抗値の100倍の抵抗値を
示す温度として、 α = {2.303/(T2 /T1 )}×100
(%/℃) で示される値を求めた。得られた結果を表2に示す。
An ammonia buffer having a pH of 9.0 was added to the slurry so that the concentration became 0.02 mol / l, and the mixture was subjected to wet ball mill mixing for 15 hours. The powder obtained by dehydration and drying was calcined at 1100 ° C. for 2 hours. The obtained calcined powder was pulverized by a pin mill, and pure water and 0.5% by weight of a dispersant were added to prepare a 70% by weight slurry, which was pulverized by a wet ball mill for 3 hours. A zirconia ball having a diameter of 10 mm was used as a grinding media. A binder is added to the slurry after pulverization, and granulation is performed, and the mixture is pressed at a molding pressure of 1000 kg / cm 2 .
A disk-shaped molded body having a diameter of 20 mm and a thickness of 1.0 mm was obtained. The molded body was formed into a semiconductor porcelain through a firing step of raising the temperature at 300 ° C./hour, maintaining the temperature at 1320 ° C. for 1 hour, and then decreasing the temperature at 300 ° C./hour. An In-Ga alloy was applied to both main surfaces of the obtained semiconductor ceramic, and the room temperature specific resistance [ρ], the withstand voltage [V], and the temperature coefficient of resistance [α] were measured. As the withstand voltage, the AC voltage applied to the sample was gradually increased, and the voltage value immediately before the sample was destroyed was determined. As the temperature coefficient of resistance, T 1 was a temperature showing 10 times the resistance value at room temperature. the T 2 as a temperature showing a 100 times the resistance of the resistance at room temperature, α = {2.303 / (T 2 / T 1)} × 100
(% / ° C.). Table 2 shows the obtained results.

【0027】[0027]

【表2】 [Table 2]

【0028】表1,表2において※を付してある、試料
番号1、2、5、7、8、9、10、13、14、1
5、16、19の磁器組成は、本発明の範囲内にないも
のである。表2の結果に示されているように、本発明の
製造方法により得られた磁器は、室温比抵抗が5Ωcm
以下で、耐電圧と室温比抵抗との比が25以上であると
ともに、抵抗温度係数と室温比抵抗の対数値との比が1
5以上であることがわかる。なお、試料番号21、22
では半導体化剤の出発原料として塩素化合物を用いてい
る。一般に、塩素が残留するようなことがあれば、半導
体磁器の電気的特性にあまり良い影響を与えないが、本
発明の製造方法により得られた磁器では、そのような影
響がほとんど見られないこともわかる。
Sample numbers 1, 2, 5, 7, 8, 9, 10, 13, 14, 1 marked with * in Tables 1 and 2
The porcelain compositions of 5, 16, and 19 are not within the scope of the present invention. As shown in the results of Table 2, the porcelain obtained by the production method of the present invention has a room temperature specific resistance of 5 Ωcm.
In the following, the ratio between the withstand voltage and the room temperature resistivity is 25 or more, and the ratio between the temperature coefficient of resistance and the logarithmic value of the room temperature resistivity is 1
It turns out that it is 5 or more. In addition, sample numbers 21 and 22
Uses a chlorine compound as a starting material for the semiconducting agent. Generally, if chlorine remains, it does not have a very good effect on the electrical characteristics of the semiconductor porcelain, but the porcelain obtained by the manufacturing method of the present invention hardly shows such an effect. I understand.

【0029】実施例2 前述した「高純度酸化チタンの製造例」において、最終
工程における熱処理の温度を表3に示す各温度に変化さ
せて、種々の比表面積値を有する酸化チタンを用意し
た。これらの酸化チタンそれぞれを出発原料として用い
て、実施例1における試料番号4の組成となるように各
化合物を配合し、実施例1と同様の方法で磁器を調製し
た。得られた磁器について、その表面を走査型電子顕微
鏡で観察し、粒径範囲を測定し、表3に示した。またさ
らに、得られた磁器について、実施例1と同様の方法で
電気的特性を測定した結果を表4に示す。
Example 2 Titanium oxides having various specific surface values were prepared by changing the temperature of the heat treatment in the final step to each temperature shown in Table 3 in the above-mentioned "Production example of high-purity titanium oxide". Using each of these titanium oxides as a starting material, each compound was blended so as to have the composition of Sample No. 4 in Example 1, and a porcelain was prepared in the same manner as in Example 1. The surface of the obtained porcelain was observed with a scanning electron microscope, and the particle size range was measured. Table 4 shows the results of measuring the electrical characteristics of the obtained porcelain in the same manner as in Example 1.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】表3、表4において※印を付してある、2
3、28の試料番号の磁器は、出発原料として用いる酸
化チタンの比表面積値が、本発明の範囲外のものであ
る。これらの酸化チタンを用いて調製した磁器において
は、相対的に焼結体粒径が大きい、あるいは、粒径範囲
が広いことがわかる。また、表4から比抵抗−耐電圧特
性および比抵抗−抵抗温度係数特性が劣っていることも
わかる。
In Tables 3 and 4, 2 marked with *
In the porcelains of sample numbers 3 and 28, the specific surface area of titanium oxide used as a starting material is out of the range of the present invention. It can be seen that the porcelain prepared using these titanium oxides has a relatively large sintered body particle size or a wide particle size range. Table 4 also shows that the specific resistance-withstand voltage characteristics and the specific resistance-resistance temperature coefficient characteristics are inferior.

【0033】実施例3 湿式ボールミル混合を行う際にスラリーに添加するアン
モニア緩衝液を調整することにより、スラリーのpHを
表5の値に設定した後、混合処理を行う以外は、実施例
1と同様の操作を行って試料番号4の組成の磁器を調製
した。得られた磁器について、電気的特性を評価した結
果を表5に示す。
Example 3 The procedure of Example 1 was repeated except that the pH of the slurry was adjusted to the value shown in Table 5 by adjusting the ammonia buffer added to the slurry when performing the wet ball mill mixing, and then the mixing treatment was performed. The same operation was performed to prepare a porcelain having the composition of Sample No. 4. Table 5 shows the results of evaluating the electrical characteristics of the obtained porcelain.

【0034】[0034]

【表5】 [Table 5]

【0035】出発原料として用いる半導体化剤(Y)お
よびMn元素成分に水溶性塩を用いる場合、湿式ボール
ミル混合を行う際のスラリーのpHが8〜11の範囲に
ないものは、比抵抗−耐電圧特性および比抵抗−抵抗温
度係数特性が低下することがわかる(試料番号29)。
When a water-soluble salt is used as the semiconducting agent (Y) and the Mn element component used as a starting material, when the pH of the slurry at the time of wet ball mill mixing is not in the range of 8 to 11, the specific resistance-resistance is used. It can be seen that the voltage characteristics and the specific resistance-resistance temperature coefficient characteristics decrease (Sample No. 29).

【0036】実施例4 実施例3において、出発原料として用いるYおよびMn
について、硝酸塩を用いる代わりに、Y2 3 , MnC
3 を使用する以外は同様の操作を行い、試料番号4の
組成の磁器を調製した。得られた磁器について、電気的
特性を評価した結果を表6に示す。
Example 4 In Example 3, Y and Mn used as starting materials
, Instead of using nitrates, Y 2 O 3 , MnC
The same operation was performed except that O 3 was used to prepare a porcelain having the composition of Sample No. 4. Table 6 shows the results of evaluating the electrical characteristics of the obtained porcelain.

【0037】[0037]

【表6】 [Table 6]

【0038】半導体化剤およびMnの原料として、それ
ぞれ酸化物および炭酸塩を用いた場合には、室温比抵抗
が若干高くなるが、良好な比抵抗−耐電圧特性、比抵抗
−抵抗温度係数特性を有することがわかる。
When oxides and carbonates are used as the materials of the semiconducting agent and Mn, respectively, the specific resistance at room temperature slightly increases, but the specific resistance-withstand voltage characteristic and the specific resistance-resistance temperature coefficient characteristic are improved. It can be seen that

【0039】[0039]

【発明の効果】本発明によれば、チタン酸バリウム系半
導体磁器の製造方法において、出発原料の一つとして酸
化チタンを用い、その酸化チタンの比表面積値を4m2
/g以上50m2 /g以下とすることにより、特定組成
における電気的特性の優れた半導体磁器を得ることがで
きる。
According to the present invention, in a method for producing a barium titanate-based semiconductor porcelain, titanium oxide is used as one of the starting materials, and the specific surface area of the titanium oxide is 4 m 2.
By setting the content to not less than / g and not more than 50 m 2 / g, it is possible to obtain a semiconductor porcelain having excellent electrical characteristics in a specific composition.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁器組成が、 (Ba1-x-y Srx Pby ) A TiB 3 +pZ+qM
n+rSiO2 (但し、Zは、Y,Laなどの稀土類元素およびNb,
Sbからなる群のうち少なくとも一種からなる半導体化
剤を示す)で表され、上記組成式における、x,y,
A,B,p,q,rで示された各構成元素の比率が、そ
れぞれ 0.05 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.40 0.25 ≦ x+y ≦ 0.48 0.990 ≦ A/B ≦ 1.000 0.001 ≦ p < 0.002 0.05 ≦ q/p ≦ 0.15 0.003 ≦ r ≦ 0.03 の範囲内である半導体磁器の製造において、出発原料の
一つとして酸化チタンを用い、その酸化チタンの比表面
積値が、BET比表面積値として4m2 /g以上50m
2 /g以下であることを特徴とするチタン酸バリウム系
半導体磁器の製造方法。
1. A ceramic composition, (Ba 1-xy Sr x Pb y) A Ti B O 3 + pZ + qM
n + rSiO 2 (where Z is a rare earth element such as Y or La and Nb,
Sb represents a semiconducting agent consisting of at least one of the group consisting of Sb), and x, y, and
A, B, p, q, r, the ratios of the respective constituent elements are respectively 0.05 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.40 0.25 ≦ x + y ≦ 0.48 0. 990 ≦ A / B ≦ 1.000 0.001 ≦ p <0.002 0.05 ≦ q / p ≦ 0.15 0.003 ≦ r ≦ 0.03 A titanium oxide is used as one of the raw materials, and the specific surface area of the titanium oxide is 4 m 2 / g or more and 50 m or more as a BET specific surface area.
A method for producing a barium titanate-based semiconductor porcelain, which is not more than 2 / g.
【請求項2】 x,y,A,B,p,q,rで示された
各構成元素の比率が、それぞれ以下の範囲内である請求
項1記載のチタン酸バリウム系半導体磁器の製造方法 0.05 ≦ x ≦ 0.40 0.05 ≦ y ≦ 0.40 0.25 ≦ x+y ≦ 0.45 0.992 ≦ A/B ≦ 1.000 0.001 ≦ p ≦ 0.0018 0.05 ≦ q/p ≦ 0.10 0.005 ≦ r ≦ 0.03
2. The method for producing a barium titanate-based semiconductor porcelain according to claim 1, wherein the ratios of the constituent elements indicated by x, y, A, B, p, q, and r are respectively within the following ranges. 0.05≤x≤0.40 0.05≤y≤0.40 0.25≤x + y≤0.45 0.992≤A / B≤1.000 0.001≤p≤0.0018 0.05 ≤ q / p ≤ 0.10 0.005 ≤ r ≤ 0.03
【請求項3】 出発原料の混合に際し、半導体化剤およ
びMn以外の各磁器構成成分については出発原料として
それらの酸化物または炭酸塩を用い、半導体化剤および
Mnについては出発原料としてそれらの水溶性塩を用
い、これらの混合スラリーのpHを弱塩基により8以上
11以下に調整した後、混合処理を行うことを特徴とす
る請求項1または2記載のチタン酸バリウム系半導体磁
器の製造方法。
3. When mixing the starting materials, their oxides or carbonates are used as starting materials for each of the porcelain components other than the semiconducting agent and Mn, and their water-soluble components are used as starting materials for the semiconducting agent and Mn. 3. The method for producing barium titanate-based semiconductor porcelain according to claim 1 or 2, wherein the pH of the mixed slurry is adjusted to 8 or more and 11 or less with a weak base using a neutral salt.
JP8247085A 1996-08-28 1996-08-28 Production of barium titanate-base semiconductor porcelain Pending JPH1072254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8247085A JPH1072254A (en) 1996-08-28 1996-08-28 Production of barium titanate-base semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8247085A JPH1072254A (en) 1996-08-28 1996-08-28 Production of barium titanate-base semiconductor porcelain

Publications (1)

Publication Number Publication Date
JPH1072254A true JPH1072254A (en) 1998-03-17

Family

ID=17158210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8247085A Pending JPH1072254A (en) 1996-08-28 1996-08-28 Production of barium titanate-base semiconductor porcelain

Country Status (1)

Country Link
JP (1) JPH1072254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020096978A (en) * 2001-06-19 2002-12-31 가부시키가이샤 무라타 세이사쿠쇼 Barium titanate powder, method for manufacturing and evaluating the same, dielectric ceramic, and monolithic ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020096978A (en) * 2001-06-19 2002-12-31 가부시키가이샤 무라타 세이사쿠쇼 Barium titanate powder, method for manufacturing and evaluating the same, dielectric ceramic, and monolithic ceramic capacitor

Similar Documents

Publication Publication Date Title
US6221800B1 (en) Method of producing PTC semiconducting ceramic
US6071842A (en) Barium titanate-based semiconductor ceramic
JPH0354165A (en) Ptc ceramic composition and production thereof
JP2017178658A (en) Semiconductor ceramic composition and method for producing the same
JP4058140B2 (en) Barium titanate semiconductor porcelain
JPH1072254A (en) Production of barium titanate-base semiconductor porcelain
JP3254316B2 (en) Barium titanate-based semiconductor porcelain composition
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP2005001971A (en) Barium titanate semiconductor ceramic composition
JPS6243522B2 (en)
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP3699195B2 (en) Positive characteristic semiconductor porcelain and manufacturing method thereof
JPH07220902A (en) Barium titanate semiconductor ceramic
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JP2521862B2 (en) Dielectric porcelain composition
JPH07211511A (en) Positive temperature coefficient thermistor and its production
JPH08203702A (en) Barium titanate semiconductor ceramic and its manufacture
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH07142207A (en) Barium titanate semiconductor ceramic and its manufacture
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JP2000286104A (en) Manufacture of positive temperature coefficient thermistor
JPH10101414A (en) Reduction-resistant positive thermistor
JPH05315106A (en) Barium titanate ceramic semiconductor and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060602