JPH07220902A - Barium titanate semiconductor ceramic - Google Patents

Barium titanate semiconductor ceramic

Info

Publication number
JPH07220902A
JPH07220902A JP6035437A JP3543794A JPH07220902A JP H07220902 A JPH07220902 A JP H07220902A JP 6035437 A JP6035437 A JP 6035437A JP 3543794 A JP3543794 A JP 3543794A JP H07220902 A JPH07220902 A JP H07220902A
Authority
JP
Japan
Prior art keywords
barium titanate
resistance
semiconductor ceramic
based semiconductor
starting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6035437A
Other languages
Japanese (ja)
Inventor
Yoshiaki Abe
吉晶 阿部
Norimitsu Kito
範光 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6035437A priority Critical patent/JPH07220902A/en
Publication of JPH07220902A publication Critical patent/JPH07220902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a barium titanate semiconductor ceramic having a positive resistance-temp. characteristic having a low specific resistance at room temp., high resistance-temp. coefficient and high breakdown voltage. CONSTITUTION:A barium titanate semiconductor ceramic contains BaTiO3 and SrTiO3 as main components, at least one kind selected among rare earth elements La, Sm, Er, etc., and Nb, Bi, Sb, W, Th and Ta, as a semiconductorizer, Mn as a characteristic improver, and SiO2 as a sinter assistant. The Ti to Ba mol-ratio is 1.005-1.027 and the specific surface area of a starting material is 1.0-10.0m<2>/g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、チタン酸バリウム系
半導体磁器に関し、詳しくは、TVブラウン管の消磁用
正特性サーミスタ素子などの用途に用いるのに適したチ
タン酸バリウム系半導体磁器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a barium titanate-based semiconductor ceramic, and more particularly to a barium titanate-based semiconductor ceramic suitable for use as a demagnetizing positive temperature coefficient thermistor element of a TV Braun tube.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】チタン
酸バリウムに希土類元素、Nb,Bi,Sbなどを微量
添加して得られたチタン酸バリウム系半導体磁器は、所
定の温度(例えば120℃付近)で抵抗が急激に上昇す
る正の抵抗温度特性を示す。
2. Description of the Related Art Barium titanate-based semiconductor porcelain obtained by adding a small amount of rare earth elements, Nb, Bi, Sb, etc. to barium titanate has a predetermined temperature (for example, around 120 ° C.). ) Indicates a positive resistance-temperature characteristic in which the resistance rapidly rises.

【0003】そして、かかる正の抵抗温度特性を利用し
て、チタン酸バリウム系半導体磁器は、温度制御、過電
流保護、TV用のブラウン管枠の消磁用などの用途に広
く利用されている。
Utilizing such a positive resistance temperature characteristic, the barium titanate type semiconductor porcelain is widely used for temperature control, overcurrent protection, degaussing of a cathode ray tube frame for TV, and the like.

【0004】一方、近年のカラーTV用のブラウン管枠
の大型化にともない、自動消磁用回路などにおいては、
常温における比抵抗がさらに低く、しかも、抵抗温度係
数が大きくて、破壊電圧の高い正の抵抗温度特性を有す
る半導体磁器(正特性サーミスタ素子)が要求されるに
至っている。
On the other hand, with the recent enlargement of the cathode ray tube frame for color TV, in the circuit for automatic degaussing,
There has been a demand for a semiconductor ceramic (a positive temperature coefficient thermistor element) which has a lower specific resistance at room temperature, a large temperature coefficient of resistance, and a positive resistance temperature characteristic with a high breakdown voltage.

【0005】しかし、従来のチタン酸バリウム系半導体
磁器(正特性サーミスタ素子)では、比抵抗を低くする
と抵抗温度係数が小さくなり、しかも、破壊電圧が低下
するという問題点がある。
However, in the conventional barium titanate-based semiconductor ceramic (positive temperature coefficient thermistor element), when the specific resistance is lowered, the temperature coefficient of resistance becomes small, and further, the breakdown voltage is lowered.

【0006】そこで、この問題点を解決するために、ド
ーパントとしてErを使用したチタン酸バリウム系半導
体磁器組成物が提案されている(特開昭51−3809
1号公報)。
Therefore, in order to solve this problem, a barium titanate-based semiconductor ceramic composition using Er as a dopant has been proposed (Japanese Patent Laid-Open No. 51-3809).
No. 1).

【0007】しかし、特開昭51−38091号公報の
チタン酸バリウム系半導体磁器においては、その実施例
に開示されている最小比抵抗(35Ω・cm)よりさらに
比抵抗が小さく、しかも、抵抗温度係数が大きくて、破
壊電圧の高いものを得ることが非常に困難である。
However, in the barium titanate-based semiconductor ceramic disclosed in JP-A-51-38091, the specific resistance is smaller than the minimum specific resistance (35 Ω · cm) disclosed in the embodiment, and the resistance temperature is lower. It is very difficult to obtain a material having a large coefficient and a high breakdown voltage.

【0008】また、比抵抗を低下させる方法として、出
発原料を十分に粉砕して微粉化する方法が知られてい
る。
As a method for lowering the specific resistance, there is known a method in which the starting material is sufficiently pulverized to be finely pulverized.

【0009】しかし、出発原料を微粉化する方法におい
ては、粉砕粒径のばらつきにより比抵抗にばらつきが生
じ、安定性に欠けるという問題点がある。
However, in the method of pulverizing the starting material, there is a problem that the resistivity is varied due to the variation of the pulverized particle size and the stability is lacking.

【0010】この発明は、上記問題点を解決するもので
あり、常温における比抵抗が低く、しかも、抵抗温度係
数が大きくて、破壊電圧の高い正の抵抗温度特性を有す
るチタン酸バリウム系半導体磁器を提供することを目的
とする。
The present invention solves the above problems, and has a low specific resistance at room temperature, a large temperature coefficient of resistance, and a positive resistance-temperature characteristic with a high breakdown voltage. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、この発明のチタン酸バリウム系半導体磁器は、Ba
TiO3,SrTiO3を主成分とし、半導体化剤として
La,Sm,Erなどの希土類元素、Nb,Bi,S
b,W,Th,及びTaからなる群より選ばれる少なく
とも1種、特性改善剤としてMn、及び焼結助剤として
SiO2を含有するチタン酸バリウム系半導体磁器にお
いて、TiとBaのモル比(Ti/Ba)、及び出発原
料の比表面積がそれぞれ、Ti/Ba=1.005〜
1.027、出発原料の比表面積=1.0〜10.0m
2/gの範囲にあることを特徴とする。
In order to achieve the above object, the barium titanate-based semiconductor porcelain of the present invention is made of Ba.
TiO 3 , SrTiO 3 as a main component, and a rare earth element such as La, Sm, Er, etc. as a semiconductor agent, Nb, Bi, S
In a barium titanate-based semiconductor ceramic containing at least one selected from the group consisting of b, W, Th, and Ta, Mn as a characteristic improving agent, and SiO 2 as a sintering aid, the molar ratio of Ti and Ba ( Ti / Ba) and the specific surface area of the starting material are Ti / Ba = 1.005-
1.027, specific surface area of starting material = 1.0 to 10.0 m
It is characterized by being in the range of 2 / g.

【0012】また、焼結体粒子の平均粒径が3.5〜
6.5μmの範囲にあることを特徴とする。
The average particle size of the sintered particles is 3.5 to
It is characterized by being in the range of 6.5 μm.

【0013】[0013]

【実施例】以下に、この発明の実施例を示して、その特
徴とするところをさらに詳細に説明する。
EXAMPLES Examples of the present invention will be shown below to describe the features of the present invention in more detail.

【0014】まず、BaCO3,SrCO3,Er23
TiO2,MnCO3,SiO2のそれぞれを下記の式: (Ba0.777Sr0.22Er0.003)TiX3+0.0008Mn+
0.015SiO2 で表される組成になるように混合する。
First, BaCO 3 , SrCO 3 , Er 2 O 3 ,
Each of TiO 2 , MnCO 3 and SiO 2 is represented by the following formula: (Ba 0.777 Sr 0.22 Er 0.003 ) Ti X O 3 +0.0008 Mn +
Mix so as to have a composition represented by 0.015 SiO 2 .

【0015】そして、これに純水を添加し、ジルコニア
ビーズを用いてポットミルで2時間、5時間、及び10
時間湿式混合し、脱水、乾燥した後、1150℃で1時
間仮焼して仮焼体を得る。
Then, pure water was added thereto, and zirconia beads were used in a pot mill for 2 hours, 5 hours, and 10 minutes.
After wet mixing for an hour, dehydration and drying, calcination is performed at 1150 ° C. for 1 hour to obtain a calcined body.

【0016】次に、この仮焼体を粉砕し、バインダーと
して酢酸ビニルを混合して造粒した後、プレス成形機に
より成形して、直径14.0mm、厚さ2.4mmの円板状
の成形体を作成する。
Next, this calcined body was crushed, and mixed with vinyl acetate as a binder to be granulated, and then molded by a press molding machine to obtain a disk-shaped product having a diameter of 14.0 mm and a thickness of 2.4 mm. Create a compact.

【0017】それから、この成形体を、自然雰囲気中に
おいて1300〜1400℃の温度で焼成することによ
りチタン酸バリウム系半導体磁器(正特性サーミスタ素
子)を得る。そして、この正特性サーミスタ素子の両主
面に、In−Ga合金(電極)を付与する。
Then, the molded body is fired in a natural atmosphere at a temperature of 1300 to 1400 ° C. to obtain a barium titanate-based semiconductor ceramic (positive temperature coefficient thermistor element). Then, an In-Ga alloy (electrode) is applied to both main surfaces of the PTC thermistor element.

【0018】そして、このようにして得られた試料(正
特性サーミスタ素子)について、常温における比抵抗、
抵抗温度係数、及び破壊電圧を測定した。その結果を表
1,表2に示す。なお、表1,表2において、試料番号
に*を付したものは、この発明の範囲外の組成の比較例
であり、その他はこの発明の範囲内の組成の実施例であ
る。
With respect to the sample (positive temperature coefficient thermistor element) thus obtained, the specific resistance at room temperature,
The temperature coefficient of resistance and the breakdown voltage were measured. The results are shown in Tables 1 and 2. In Tables 1 and 2, the sample numbers with * are comparative examples of compositions outside the scope of the invention, and the others are examples of compositions within the scope of the invention.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】但し、表1,表2の抵抗温度係数αは、下
記の式: α={(2.303 logR2/R1)/(T2−T1)}×100
(%/℃) R1:25℃における抵抗値×1000 R2:25℃における抵抗値×10000 T1:抵抗値がR1のときの温度 T2:抵抗値がR2のときの温度 により求めた値である。
However, the temperature coefficient of resistance α in Tables 1 and 2 is expressed by the following formula: α = {(2.303 logR 2 / R 1 ) / (T 2 −T 1 )} × 100
(% / ° C) R 1 : Resistance value at 25 ° C × 1000 R 2 : Resistance value at 25 ° C × 10000 T 1 : Temperature when resistance value is R 1 T 2 : Depends on temperature when resistance value is R 2 It is the calculated value.

【0022】また、試料(チタン酸バリウム系半導体磁
器)中のTiとBaのモル比(Ti/Ba)及び出発原
料の比表面積と比抵抗との関係を図1に示す。
FIG. 1 shows the relationship between the molar ratio of Ti and Ba (Ti / Ba) in the sample (barium titanate-based semiconductor porcelain) and the specific surface area of the starting material and the specific resistance.

【0023】さらに、TiとBaのモル比(Ti/B
a)が1.016で、出発原料の比表面積が3.6m2
/gである試料(チタン酸バリウム系半導体磁器)につ
いての焼結体粒子の平均粒径と破壊電圧及び比抵抗の関
係を図2に示す。
Furthermore, the molar ratio of Ti and Ba (Ti / B
a) is 1.016 and the starting material has a specific surface area of 3.6 m 2.
FIG. 2 shows the relationship between the average particle size of the sintered body particles, the breakdown voltage, and the specific resistance of the sample (barium titanate-based semiconductor ceramic) having a weight ratio of / g.

【0024】表1,表2及び,図1,2を参照しつつ、
TiとBaのモル比(Ti/Ba),出発原料の比表面
積,焼結体粒子の平均粒径の限定理由を説明する。
Referring to Tables 1 and 2 and FIGS.
The reasons for limiting the molar ratio of Ti and Ba (Ti / Ba), the specific surface area of the starting material, and the average particle size of the sintered particles will be described.

【0025】まず、図1に示すように、Ti/Baの値
が0.998以下、あるいは1.034以上になると、
比抵抗が出発原料の比表面積(すなわち、出発原料の粉
砕粒径)の影響を大きく受け、その変動幅が大きくな
る。
First, as shown in FIG. 1, when the value of Ti / Ba becomes 0.998 or less, or 1.034 or more,
The specific resistance is greatly affected by the specific surface area of the starting material (that is, the pulverized particle size of the starting material), and the fluctuation range becomes large.

【0026】そして、この比抵抗の変動が原料調製時の
ロットばらつきとして現れ、比抵抗が非常に不安定な原
料となる。
Then, the fluctuation of the specific resistance appears as lot variation at the time of preparing the raw material, and the specific resistance becomes a very unstable raw material.

【0027】一方、Ti/Baの値が1.005〜1.
027の範囲にある場合、出発原料の比表面積(すなわ
ち粉砕粒径)の影響が小さく、比抵抗の安定した原料と
なる。
On the other hand, when the Ti / Ba value is 1.005 to 1.
When it is in the range of 027, the influence of the specific surface area (that is, the pulverized particle size) of the starting raw material is small, and the raw material has a stable specific resistance.

【0028】したがって、TiとBaのモル比(Ti/
Ba)は、1.005〜1.027の範囲にあることが
好ましい。
Therefore, the molar ratio of Ti and Ba (Ti /
Ba) is preferably in the range of 1.005 to 1.027.

【0029】次に、出発原料の比表面積(粉砕粒径)の
限定理由について説明する。出発原料の比表面積が0.
5m2/g以下になると、TiとBaのモル比(Ti/
Ba)の値いかんにかかわらず低抵抗化しにくく、ま
た、13.0m2/g以上になると、破壊電圧が低くな
るという問題点がある。これに対して、表1,表2に示
すように、比表面積が1.0〜10.0m2/gの範囲
(但し、Ti/Baが1.010〜1.022)にある
場合、比抵抗及び破壊電圧の両者について、好ましい特
性が得られる。
Next, the reason for limiting the specific surface area (ground particle size) of the starting material will be described. The specific surface area of the starting material is 0.
If it is 5 m 2 / g or less, the molar ratio of Ti and Ba (Ti /
There is a problem that it is difficult to lower the resistance regardless of the value of Ba), and if it is 13.0 m 2 / g or more, the breakdown voltage becomes low. On the other hand, as shown in Tables 1 and 2, when the specific surface area is in the range of 1.0 to 10.0 m 2 / g (however, Ti / Ba is 1.010 to 1.022), the ratio is Desirable properties are obtained for both resistance and breakdown voltage.

【0030】したがって、出発原料の比表面積は、1.
0〜10.0m2/gの範囲内にあることが好ましい。
Therefore, the specific surface area of the starting material is 1.
It is preferably in the range of 0 to 10.0 m 2 / g.

【0031】また、焼結体粒子の平均粒径を限定した理
由は次の通りである。焼成条件を調整することにより焼
結体粒子の平均粒径を変化させ、破壊電圧及び比抵抗を
測定したところ、平均粒径が3.5μm未満になると、
破壊電圧が急激に低下するとともに比抵抗が大きくな
る。また、焼結体粒子の平均粒径が6.5μmを越える
と、比抵抗は小さくなるが破壊電圧が急激に低下する。
図2は、TiとBaのモル比(Ti/Ba)が1.01
6で、出発原料の比表面積が3.6m2/gである試料
(チタン酸バリウム系半導体磁器)における、焼結体粒
子の平均粒径と破壊電圧との関係を示している。
The reason why the average particle size of the sintered particles is limited is as follows. By changing the average particle size of the sintered body particles by adjusting the firing conditions and measuring the breakdown voltage and the specific resistance, when the average particle size is less than 3.5 μm,
The breakdown voltage sharply decreases and the specific resistance increases. When the average particle size of the sintered particles exceeds 6.5 μm, the specific resistance decreases but the breakdown voltage sharply decreases.
FIG. 2 shows that the molar ratio of Ti to Ba (Ti / Ba) is 1.01.
6 shows the relationship between the average particle diameter of the sintered body particles and the breakdown voltage in the sample (barium titanate based semiconductor porcelain) in which the starting material has a specific surface area of 3.6 m 2 / g.

【0032】図2から明らかなように、平均粒径が3.
5〜6.5μmの範囲を外れると、破壊電圧が急激に低
下するばかりでなく、平均粒径が3.5μm未満になる
と、比抵抗が急激に上昇するため、消磁用正特性サーミ
スタとして実用することが困難になる。したがって、焼
結体粒子の平均粒径は、3.5〜6.5μmの範囲にあ
ることが好ましい。
As is apparent from FIG. 2, the average particle size is 3.
When it goes out of the range of 5 to 6.5 μm, not only the breakdown voltage sharply decreases, but also when the average particle diameter becomes less than 3.5 μm, the specific resistance sharply increases. Therefore, it is practically used as a demagnetizing positive temperature coefficient thermistor. Becomes difficult. Therefore, the average particle size of the sintered particles is preferably in the range of 3.5 to 6.5 μm.

【0033】なお、この発明は、その組成(Ti/Ba
の値、添加成分の割合など)や、焼成条件などに関し、
上記実施例に限定されるものではなく、発明の要旨の範
囲内において種々の応用、変形を加えることが可能であ
る。
The present invention has the composition (Ti / Ba).
Value, ratio of added components, etc.) and firing conditions,
The present invention is not limited to the above-described embodiments, and various applications and modifications can be made within the scope of the invention.

【0034】[0034]

【発明の効果】上述のように、この発明のチタン酸バリ
ウム系半導体磁器は、上記所定の範囲内の組成を有する
チタン酸バリウム系半導体磁器のTiとBaのモル比
(Ti/Ba)、及び出発原料の比表面積が、それぞ
れ、Ti/Ba=1.005〜1.027、出発原料の
比表面積=1.0〜10.0m2/gとなるようにして
いるので、常温における比抵抗が低く、しかも、抵抗温
度係数が大きくて、破壊電圧の高い正の抵抗温度特性を
有するチタン酸バリウム系半導体磁器を得ることができ
る。
As described above, the barium titanate-based semiconductor ceramic of the present invention has a molar ratio (Ti / Ba) of Ti and Ba of the barium titanate-based semiconductor ceramic having a composition within the above-mentioned predetermined range, and Since the specific surface area of the starting material is Ti / Ba = 1.005 to 1.027 and the specific surface area of the starting material = 1.0 to 10.0 m 2 / g, the specific resistance at room temperature is It is possible to obtain a barium titanate-based semiconductor ceramic having a low resistance temperature coefficient, a large resistance temperature coefficient, and a positive resistance temperature characteristic with a high breakdown voltage.

【0035】特に、焼成条件などを制御することによ
り、焼結体粒子の平均粒径を3.5〜6.5μmの範囲
内に調整することにより、破壊電圧の低下を確実に防止
して、信頼性をさらに向上させることができる。
In particular, by controlling the firing conditions and the like to adjust the average particle size of the sintered body particles within the range of 3.5 to 6.5 μm, it is possible to reliably prevent the breakdown voltage from decreasing. The reliability can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例にかかるチタン酸バリウム系
半導体磁器の、TiとBaのモル比(Ti/Ba)及び
出発原料の比表面積と比抵抗との関係を示す線図であ
る。
FIG. 1 is a diagram showing a relationship between a molar ratio of Ti and Ba (Ti / Ba), a specific surface area of a starting material, and a specific resistance of a barium titanate-based semiconductor ceramic according to an example of the present invention.

【図2】この発明の実施例にかかるチタン酸バリウム系
半導体磁器の、焼結体粒子の平均粒径と破壊電圧及び比
抵抗の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the average particle size of sintered particles, breakdown voltage, and specific resistance of the barium titanate-based semiconductor ceramic according to the example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 BaTiO3,SrTiO3を主成分と
し、半導体化剤としてLa,Sm,Erなどの希土類元
素、Nb,Bi,Sb,W,Th,及びTaからなる群
より選ばれる少なくとも1種、特性改善剤としてMn、
及び焼結助剤としてSiO2を含有するチタン酸バリウ
ム系半導体磁器において、 TiとBaのモル比(Ti/Ba)、及び出発原料の比
表面積がそれぞれ、 Ti/Ba=1.005〜1.027 出発原料の比表面積=1.0〜10.0m2/g の範囲にあることを特徴とするチタン酸バリウム系半導
体磁器。
1. At least one selected from the group consisting of BaTiO 3 , SrTiO 3 as a main component, a rare earth element such as La, Sm and Er as a semiconducting agent, and Nb, Bi, Sb, W, Th, and Ta. , Mn as a property improving agent,
And a barium titanate-based semiconductor ceramic containing SiO 2 as a sintering aid, the molar ratio of Ti to Ba (Ti / Ba) and the specific surface area of the starting material are Ti / Ba = 1.005 to 1. A barium titanate-based semiconductor porcelain characterized in that the starting material has a specific surface area of 1.0 to 10.0 m 2 / g.
【請求項2】 焼結体粒子の平均粒径が3.5〜6.5
μmの範囲にあることを特徴とする請求項1記載のチタ
ン酸バリウム系半導体磁器。
2. The average particle size of the sintered body particles is 3.5 to 6.5.
The barium titanate-based semiconductor ceramic according to claim 1, wherein the barium titanate-based semiconductor porcelain is in the range of μm.
JP6035437A 1994-02-07 1994-02-07 Barium titanate semiconductor ceramic Pending JPH07220902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6035437A JPH07220902A (en) 1994-02-07 1994-02-07 Barium titanate semiconductor ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6035437A JPH07220902A (en) 1994-02-07 1994-02-07 Barium titanate semiconductor ceramic

Publications (1)

Publication Number Publication Date
JPH07220902A true JPH07220902A (en) 1995-08-18

Family

ID=12441832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6035437A Pending JPH07220902A (en) 1994-02-07 1994-02-07 Barium titanate semiconductor ceramic

Country Status (1)

Country Link
JP (1) JPH07220902A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140653A1 (en) * 2009-06-05 2010-12-09 株式会社村田製作所 Barium titanate semiconductor ceramic composition and barium titanate semiconductor ceramic element
WO2016125520A1 (en) * 2015-02-06 2016-08-11 株式会社村田製作所 Semiconductor element and method for manufacturing same
WO2016125519A1 (en) * 2015-02-06 2016-08-11 株式会社村田製作所 Semiconductor element and method for manufacturing same
CN110102281A (en) * 2019-05-14 2019-08-09 中国计量大学 A kind of preparation method of the erbium ion-doped porous strontium titanates isometric particle of rare earth

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140653A1 (en) * 2009-06-05 2010-12-09 株式会社村田製作所 Barium titanate semiconductor ceramic composition and barium titanate semiconductor ceramic element
CN102459127A (en) * 2009-06-05 2012-05-16 株式会社村田制作所 Barium titanate semiconductor ceramic composition and barium titanate semiconductor ceramic element
US8187506B2 (en) 2009-06-05 2012-05-29 Murata Manufacturing Co., Ltd. Barium titanate-based semiconductor ceramic composition and barium titanate-based semiconductor ceramic device
JP5413458B2 (en) * 2009-06-05 2014-02-12 株式会社村田製作所 Barium titanate semiconductor ceramic composition and barium titanate semiconductor ceramic element
WO2016125520A1 (en) * 2015-02-06 2016-08-11 株式会社村田製作所 Semiconductor element and method for manufacturing same
WO2016125519A1 (en) * 2015-02-06 2016-08-11 株式会社村田製作所 Semiconductor element and method for manufacturing same
JPWO2016125520A1 (en) * 2015-02-06 2017-09-14 株式会社村田製作所 Semiconductor device and manufacturing method thereof
CN107210105A (en) * 2015-02-06 2017-09-26 株式会社村田制作所 Semiconductor element and its manufacture method
CN110102281A (en) * 2019-05-14 2019-08-09 中国计量大学 A kind of preparation method of the erbium ion-doped porous strontium titanates isometric particle of rare earth

Similar Documents

Publication Publication Date Title
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
US3962146A (en) Ptc thermistor composition and method of making the same
JP6604653B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0354165A (en) Ptc ceramic composition and production thereof
JPH07220902A (en) Barium titanate semiconductor ceramic
JP4058140B2 (en) Barium titanate semiconductor porcelain
JP2014034505A (en) Semiconductor ceramic composition and method of producing the same
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP3254316B2 (en) Barium titanate-based semiconductor porcelain composition
JPS6243522B2 (en)
JP2679449B2 (en) Semiconductor porcelain having positive temperature coefficient of resistance and manufacturing method thereof
JP3003201B2 (en) Barium titanate-based semiconductor porcelain composition
JPH04104951A (en) Barium titanate-based semiconductive porcelain material
JP2005001971A (en) Barium titanate semiconductor ceramic composition
JPH05198406A (en) Barium titanate based semiconductor porcelain composition
JP3036128B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JP2967439B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JP3178083B2 (en) Barium titanate-based ceramic semiconductor and method for producing the same
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP3036051B2 (en) Barium titanate-based semiconductor porcelain composition
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JPS6048897B2 (en) Composition for semiconductor ceramic capacitors

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020226