JPH04104951A - Barium titanate-based semiconductive porcelain material - Google Patents

Barium titanate-based semiconductive porcelain material

Info

Publication number
JPH04104951A
JPH04104951A JP2219528A JP21952890A JPH04104951A JP H04104951 A JPH04104951 A JP H04104951A JP 2219528 A JP2219528 A JP 2219528A JP 21952890 A JP21952890 A JP 21952890A JP H04104951 A JPH04104951 A JP H04104951A
Authority
JP
Japan
Prior art keywords
mol
semiconductor
barium titanate
manganese
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2219528A
Other languages
Japanese (ja)
Inventor
Makoto Sano
誠 佐野
Norimitsu Kito
鬼頭 範光
Takahiko Kawahara
河原 隆彦
Yoshiaki Abe
吉晶 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2219528A priority Critical patent/JPH04104951A/en
Publication of JPH04104951A publication Critical patent/JPH04104951A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductive porcelain material having small specific resistance at a normal temperature and high dielectric strength by mixing a principal component comprising BaTiO3, CaTiO3, SrTiO3 and PbTiO3 with manganese, silica and a specific semiconductor-making agent. CONSTITUTION:Manganese, silica and a semiconductor-making agent are added to a principal component composed of 30-95mol% BaTiO3, 3-25 mol% CaTiO3, 1-25mol% SrTiO3 and 1-30mol% PbTiO3 in following manner to afford the aimed semiconductive porcelain material. Namely, 0.03-0.1mol% manganese calculated as Mn, 0.5-5mol% silica calculated as SiO2 and 0.05-0.2mol% Nb, Bi, Sb, W, Th, Ta and at least a species of rare earth elements as a semiconductor-making agent are added to the principal component. By adding Mn and a semiconductor-making agent in the above-mentioned manner, <=10OMEGAcm specific resistance and >=100V/mm dielectric strength are obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はチタン酸バリウム系半導体磁器材料に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to barium titanate-based semiconductor ceramic materials.

(従来技術) チタン酸バリウム系半導体磁器に用いられる材料は、チ
タン酸バリウムを主成分とし、半導体化剤となるY、L
a、Ceなどの希土類元素、NbB i、Sb、W、T
h、Taなどの中から選ばれる少なくとも1種類を添加
含有させたものである。このような材料を用いた半導体
磁器は、常温において小さい比抵抗を有し、キュリー点
を趙えると著しい正の抵抗温度変化を示すという特徴を
有している。通常、チタン酸バリウム系半導体磁器では
、その主成分であるチタン酸バリウムの影響により、そ
のキュリー点が120℃付近にある。
(Prior art) The material used for barium titanate-based semiconductor porcelain has barium titanate as its main component, and Y and L as semiconductor agents.
a, rare earth elements such as Ce, NbBi, Sb, W, T
At least one selected from among h, Ta, etc. is added and contained. Semiconductor porcelain made of such materials has a characteristic that it has a small resistivity at room temperature and exhibits a significant positive temperature change in resistance when the Curie point is exceeded. Normally, barium titanate-based semiconductor porcelain has a Curie point around 120° C. due to the influence of its main component, barium titanate.

このキュリー点を高温側に移行させるために、Baの一
部をpbで置換することが知られている。
In order to shift this Curie point to the high temperature side, it is known to replace a part of Ba with Pb.

逆に、キュリー点を低温側に移行させるために、Baの
一部をSrで置換したり、Tiの一部をZr、Snなど
で置換することが知られている。
On the other hand, in order to shift the Curie point to a lower temperature side, it is known to replace a portion of Ba with Sr or a portion of Ti with Zr, Sn, or the like.

また、チタン酸バリウム系半導体材料にマンガンをMn
に換算して0.03〜0.15モル%添加することによ
り、キュリー点を超えたのちの抵抗温度変化率を著しく
増大させることが知られている。さらに、SiO□を0
.5〜5モル%添加することにより、常温における比抵
抗を小さくするとともに安定したものにすることが知ら
れている。
In addition, manganese is added to barium titanate-based semiconductor materials.
It is known that adding 0.03 to 0.15 mol % (calculated as 0.03 to 0.15 mol %) significantly increases the resistance temperature change rate after the Curie point has been exceeded. Furthermore, SiO□ is 0
.. It is known that by adding 5 to 5 mol %, the specific resistance at room temperature can be reduced and stabilized.

(発明が解決しようとする課題) このようなチタン酸バリウム系半導体磁器材料を用いた
半導体磁器の耐電圧特性を上げるため、Baの一部をC
aまたはCa、Srで置換し、Mn、SiO□を添加し
たものが提案されている。
(Problem to be Solved by the Invention) In order to improve the withstand voltage characteristics of semiconductor porcelain using such barium titanate-based semiconductor porcelain material, a part of Ba is replaced with C.
Substitution with a, Ca, and Sr and addition of Mn and SiO□ have been proposed.

しかし、比抵抗が10Ω■以下のものでは、絶縁破壊電
圧が最高のもので48V/mの値しか示さず、実用上十
分な値ではない。
However, when the specific resistance is 10 Ω or less, the maximum dielectric breakdown voltage is only 48 V/m, which is not a practically sufficient value.

また、Baの一部をPb、Sr、Caで同時に置換した
ものでは、優れた耐電圧特性を得ることができると報告
されているが、Mn添加量が0゜03モル%以上でかつ
半導体化剤が0.2モル%より多かったため、35Ω■
までしか比抵抗を下げることができなかった。
Furthermore, it has been reported that excellent withstand voltage characteristics can be obtained by replacing a part of Ba with Pb, Sr, and Ca at the same time, but if the amount of Mn added is 0.03 mol% or more and Since the amount of the agent was more than 0.2 mol%, the resistance was 35Ω■
It was possible to lower the resistivity only up to

それゆえに、この発明の主たる目的は、常温における比
抵抗が小さく、かつ耐電圧が高い半導体磁器を得ること
ができるチタン酸バリウム系半導体磁器材料を提供する
ことである。
Therefore, the main object of the present invention is to provide a barium titanate-based semiconductor ceramic material that can yield a semiconductor ceramic material that has a low specific resistance at room temperature and a high withstand voltage.

(課題を解決するための手段) この発明は、BaTi0.が30〜95モル%Ca T
 i Osが3〜25モル%、5rTi○3が1〜25
モル%、  P b T i O3が1〜30モル%か
らなる主成分に対して、マンガンをMnに換算して0.
03モル%以上0.1モル%未満、シリカをSiO□に
換算して0.5〜5モル%、および半導体化剤として、
Nb、Bi、Sb、W。
(Means for Solving the Problems) This invention provides BaTi0. is 30-95 mol% CaT
iOs is 3-25 mol%, 5rTi○3 is 1-25
With respect to the main component consisting of 1 to 30 mol% of PbT i O3, manganese is 0.0% in terms of Mn.
03 mol% or more and less than 0.1 mol%, 0.5 to 5 mol% in terms of silica as SiO□, and as a semiconducting agent,
Nb, Bi, Sb, W.

Th、Taおよび希土類元素の中から選ばれる少なくと
も1種類を0.05〜0.2モル%添加含有した、チタ
ン酸バリウム系半導体磁器材料である。
This is a barium titanate-based semiconductor ceramic material containing 0.05 to 0.2 mol% of at least one selected from Th, Ta, and rare earth elements.

(作用) 主成分が、BaTi0.、CaTi0..5rTi03
.PbTiO3からなり、言い換えれば、BaTi○、
のBaの一部をCa、Sr、pbで同時に置換したもの
である。また、マンガンをMnに換算して0.03モル
%以上0.1モル%未満かつ半導体化剤を0.05〜0
.2モル%添加することにより、比抵抗が10Ω■以下
で耐電圧が100V/鶴以上になる。
(Action) The main component is BaTi0. , CaTi0. .. 5rTi03
.. Consisting of PbTiO3, in other words, BaTi○,
Part of Ba is replaced with Ca, Sr, and pb at the same time. In addition, manganese is 0.03 mol% or more and less than 0.1 mol% in terms of Mn, and the semiconducting agent is 0.05 to 0.
.. By adding 2 mol%, the specific resistance becomes 10 Ω or less and the withstand voltage becomes 100 V/Tsuru or more.

(発明の効果) この発明によれば、比抵抗が小さく、かつ耐電圧の高い
半導体磁器を作製可能なチタン酸バリウム系半導体磁器
材料を得ることができる。
(Effects of the Invention) According to the present invention, it is possible to obtain a barium titanate-based semiconductor ceramic material that has a low specific resistance and can produce a semiconductor ceramic that has a high withstand voltage.

この発明の上述の目的、その他の目的、特徴および利点
は、以下の実施例の詳細な説明から一層明らかとなろう
The above objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments.

(実施例) まず、原料として、主成分であるBaCO5゜Ca C
og +  S r COs 、  P b、04 、
 T t 02、半導体化剤であるYz Os + L
ag Os 、Ce0z 、Ndz 03 、添加物で
あるMnCO5,SiO□などを準備した。これらの各
原料を表1に示す比率の半導体磁器材料が得られるよう
に配合し、湿式混合して混合物を得た。この混合物を脱
水乾燥し、1150℃で2時間仮焼して仮焼物を得た。
(Example) First, as a raw material, the main component BaCO5゜CaC
og + S r COs , P b , 04 ,
T t 02, semiconducting agent Yz Os + L
Ag Os , Ce0z , Ndz 03 , and additives such as MnCO5 and SiO□ were prepared. These raw materials were blended so as to obtain a semiconductor ceramic material having the ratio shown in Table 1, and wet-mixed to obtain a mixture. This mixture was dehydrated and dried, and calcined at 1150° C. for 2 hours to obtain a calcined product.

さらに、この仮焼物を粉砕し、バインダを加えて造粒し
、成形圧力1000kg/aJで円板状に成形して成形
物を得た。この成形物を1360℃で焼成し、直径17
.5m、厚さ0.6mの円板状の半導体磁器を得た。
Further, this calcined product was crushed, granulated with the addition of a binder, and molded into a disk shape at a molding pressure of 1000 kg/aJ to obtain a molded product. This molded product was fired at 1360°C, and the diameter was 17.
.. A disk-shaped semiconductor porcelain measuring 5 m long and 0.6 m thick was obtained.

得られた半導体磁器の両生面にIn−Ga合金の電極を
形成し、試料とした。
In--Ga alloy electrodes were formed on the amphibatic surfaces of the obtained semiconductor porcelain to prepare a sample.

これらの試料について、常温(25℃)における比抵抗
、耐電圧特性およびキュリー点を測定して、表2に示し
た。なお、表中*印を付したものはこの発明の範囲外の
ものであり、それ以外はこの発明の範囲内のものである
Regarding these samples, the specific resistance, withstand voltage characteristics, and Curie point at room temperature (25° C.) were measured and shown in Table 2. In addition, those marked with * in the table are outside the scope of this invention, and the others are within the scope of this invention.

次に、各組成の限定理由について説明する。Next, the reasons for limiting each composition will be explained.

試料番号21のように、BaTi0.が3θモル%未満
では、比抵抗が大きくなる。一方、試料番号26のよう
に、BaTi0:+が95モル%を超えると、耐電圧特
性の改善効果がない。
Like sample number 21, BaTi0. is less than 3θ mol %, the specific resistance becomes large. On the other hand, when BaTi0:+ exceeds 95 mol %, as in sample number 26, there is no effect of improving withstand voltage characteristics.

試料番号3.5.6のように、CaTi0.が3モル%
未満では、耐電圧特性の改善効果がない。
As in sample number 3.5.6, CaTi0. is 3 mol%
If it is less than that, there is no effect of improving withstand voltage characteristics.

一方、試料番号27のように、CaTiOsが25モル
%を超えると、比抵抗が大きくなる。
On the other hand, when CaTiOs exceeds 25 mol %, as in sample number 27, the specific resistance increases.

試料番号2のように、5rTiO,が1モル%未満では
、耐電圧特性の改善効果がない。一方、試料番号1のよ
うに、5rTiO,が25モル%を超えると、耐電圧特
性の改善効果がない。
As in Sample No. 2, if 5rTiO is less than 1 mol %, there is no effect of improving withstand voltage characteristics. On the other hand, when 5rTiO exceeds 25 mol %, as in Sample No. 1, there is no effect of improving withstand voltage characteristics.

試料番号4のように、pbTio2が1モル%未満では
、耐電圧特性の改善効果がない。一方、試料番号28の
ように、P b T i O,が30モル%を超えると
、半導体化が困難となる。
If pbTio2 is less than 1 mol %, as in sample number 4, there is no effect of improving withstand voltage characteristics. On the other hand, when P b T i O, exceeds 30 mol %, as in sample number 28, it becomes difficult to make it into a semiconductor.

試料番号13のように、添加物としてのMnが0.1モ
ル%以上では、比抵抗を35Ω1以下にすることができ
ず、小さい比抵抗を得ることができない。一方、試料番
号14のように、Mnが0.03モル%未満では、耐電
圧特性の改善効果が少ない。
As in Sample No. 13, when Mn as an additive is 0.1 mol% or more, the specific resistance cannot be made 35Ω1 or less, and a small specific resistance cannot be obtained. On the other hand, if the Mn content is less than 0.03 mol %, as in Sample No. 14, the effect of improving withstand voltage characteristics is small.

試料番号11のように半導体化剤が0.05モル%未満
となるか、試料番号12のように半導体化剤が0,2モ
ル%を超えると、比抵抗が大きくなりすぎる。
If the amount of the semiconducting agent is less than 0.05 mol % as in Sample No. 11, or more than 0.2 mol % as in Sample No. 12, the specific resistance becomes too large.

試料番号20のように、Sin、が0.5モル%よりも
少ない場合では、耐電圧特性の改善効果がない。一方、
試料番号18のように、Sin。
When the amount of Sin is less than 0.5 mol %, as in sample number 20, there is no effect of improving withstand voltage characteristics. on the other hand,
Like sample number 18, Sin.

が5モル%を超えると、融着がおこる。If it exceeds 5 mol%, fusion will occur.

それに対して、この発明の範囲内のチタン酸バリウム系
半導体磁器材料を用いれば、10Ω備以下の小さい比抵
抗を有し、かつ100V/m以上の耐電圧を有する半導
体磁器を得ることができる。
On the other hand, if a barium titanate-based semiconductor ceramic material within the scope of the present invention is used, it is possible to obtain a semiconductor ceramic having a small resistivity of 10Ω or less and a withstand voltage of 100V/m or more.

特許出願人 株式会社 村田製作所 代理人 弁理士 岡 1) 全 啓Patent applicant Murata Manufacturing Co., Ltd. Agent: Patent Attorney Oka 1) Zenhiro

Claims (1)

【特許請求の範囲】  BaTiO_3が30〜95モル%,CaTiO_3
が3〜25モル%,SrTiO_3が1〜25モル%,
PbTiO_3が1〜30モル%からなる主成分に対し
て、 マンガンをMnに換算して0.03モル%以上0.1モ
ル%未満、 シリカをSiO_2に換算して0.5〜5モル%、およ
び半導体化剤として、Nb,Bi,Sb,W,Th,T
aおよび希土類元素の中から選ばれる少なくとも1種類
を0.05〜0.2モル%添加含有した、チタン酸バリ
ウム系半導体磁器材料。
[Claims] BaTiO_3 is 30 to 95 mol%, CaTiO_3
is 3 to 25 mol%, SrTiO_3 is 1 to 25 mol%,
With respect to the main component consisting of 1 to 30 mol% of PbTiO_3, manganese is 0.03 mol% or more and less than 0.1 mol% in terms of Mn, silica is 0.5 to 5 mol% in terms of SiO_2, and as a semiconductor agent, Nb, Bi, Sb, W, Th, T
A barium titanate-based semiconductor ceramic material containing 0.05 to 0.2 mol% of at least one selected from a and rare earth elements.
JP2219528A 1990-08-20 1990-08-20 Barium titanate-based semiconductive porcelain material Pending JPH04104951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219528A JPH04104951A (en) 1990-08-20 1990-08-20 Barium titanate-based semiconductive porcelain material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219528A JPH04104951A (en) 1990-08-20 1990-08-20 Barium titanate-based semiconductive porcelain material

Publications (1)

Publication Number Publication Date
JPH04104951A true JPH04104951A (en) 1992-04-07

Family

ID=16736895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219528A Pending JPH04104951A (en) 1990-08-20 1990-08-20 Barium titanate-based semiconductive porcelain material

Country Status (1)

Country Link
JP (1) JPH04104951A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022411A1 (en) * 1996-11-20 1998-05-28 Murata Manufacturing Co., Ltd. Barium titanate-base semiconducting ceramic composition
WO2011002021A1 (en) * 2009-07-01 2011-01-06 株式会社村田製作所 Semiconductor ceramic and positive-coefficient thermistor
EP2774904A4 (en) * 2011-11-01 2016-01-27 Murata Manufacturing Co Ptc thermistor and method for manufacturing ptc thermistor
CN105622091A (en) * 2014-11-24 2016-06-01 三星电机株式会社 Dielectric ceramic composition and electronic device using the same
JP2017014093A (en) * 2015-07-06 2017-01-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition and multilayer ceramic capacitor containing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022411A1 (en) * 1996-11-20 1998-05-28 Murata Manufacturing Co., Ltd. Barium titanate-base semiconducting ceramic composition
US6187707B1 (en) 1996-11-20 2001-02-13 Murata Manufacturing Co., Ltd. Barium titanate-based semiconductive ceramic composition
CN1089735C (en) * 1996-11-20 2002-08-28 株式会社村田制作所 Barium titanate-base semiconducting ceramic composition
WO2011002021A1 (en) * 2009-07-01 2011-01-06 株式会社村田製作所 Semiconductor ceramic and positive-coefficient thermistor
CN102471164A (en) * 2009-07-01 2012-05-23 株式会社村田制作所 Semiconductor ceramic and positive-coefficient thermistor
JPWO2011002021A1 (en) * 2009-07-01 2012-12-13 株式会社村田製作所 Semiconductor ceramic and positive temperature coefficient thermistor
US8390421B2 (en) 2009-07-01 2013-03-05 Murata Manufacturing Co., Ltd. Semiconductor ceramic and positive-coefficient characteristic thermistor
JP5510455B2 (en) * 2009-07-01 2014-06-04 株式会社村田製作所 Semiconductor ceramic and positive temperature coefficient thermistor
EP2774904A4 (en) * 2011-11-01 2016-01-27 Murata Manufacturing Co Ptc thermistor and method for manufacturing ptc thermistor
CN105622091A (en) * 2014-11-24 2016-06-01 三星电机株式会社 Dielectric ceramic composition and electronic device using the same
JP2017014093A (en) * 2015-07-06 2017-01-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition and multilayer ceramic capacitor containing the same
JP2021004172A (en) * 2015-07-06 2021-01-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric porcelain composition and multilayer ceramic capacitor containing the same

Similar Documents

Publication Publication Date Title
US4483933A (en) Semiconductor ceramic composition
KR100320723B1 (en) Barium Titanate-base Semiconducting Ceramic Composition
US4096098A (en) Semiconductor ceramic composition
US3962146A (en) Ptc thermistor composition and method of making the same
JP6604653B2 (en) Semiconductor porcelain composition and method for producing the same
JPH04104951A (en) Barium titanate-based semiconductive porcelain material
JP2541344B2 (en) Electronic parts using barium titanate based semiconductor porcelain
JP3003201B2 (en) Barium titanate-based semiconductor porcelain composition
JP2536679B2 (en) Positive characteristic thermistor material
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP2976702B2 (en) Semiconductor porcelain composition
JP3273468B2 (en) Barium titanate-based semiconductor porcelain composition
JPS5910951B2 (en) Raw material composition for manufacturing high dielectric constant porcelain
JP3036051B2 (en) Barium titanate-based semiconductor porcelain composition
JPH0551254A (en) Barium titanate-containing semiconductor porcelain composition
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JPH07220902A (en) Barium titanate semiconductor ceramic
JPH03215354A (en) Barium titanate-based semiconductor ceramic composition
JPH05275203A (en) Semiconductor ceramic composite
JP3036128B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JP2967439B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JPH03215353A (en) Barium titanate-based semiconductor ceramic composition
JPH061655A (en) Piezoelectric porcelain
JPH0380321B2 (en)
JPH061657A (en) Piezoelectric porcelain