JP3166787B2 - Barium titanate-based semiconductor porcelain composition - Google Patents

Barium titanate-based semiconductor porcelain composition

Info

Publication number
JP3166787B2
JP3166787B2 JP03161192A JP3161192A JP3166787B2 JP 3166787 B2 JP3166787 B2 JP 3166787B2 JP 03161192 A JP03161192 A JP 03161192A JP 3161192 A JP3161192 A JP 3161192A JP 3166787 B2 JP3166787 B2 JP 3166787B2
Authority
JP
Japan
Prior art keywords
temperature
barium titanate
resistance
based semiconductor
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03161192A
Other languages
Japanese (ja)
Other versions
JPH05198405A (en
Inventor
康訓 並河
範光 鬼頭
吉晶 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP03161192A priority Critical patent/JP3166787B2/en
Publication of JPH05198405A publication Critical patent/JPH05198405A/en
Application granted granted Critical
Publication of JP3166787B2 publication Critical patent/JP3166787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半導体磁器組成物に
関し、詳しくは、正の抵抗温度特性を有するチタン酸バ
リウム(BaTiO)系半導体磁器組成物に関する。
BACKGROUND OF THE INVENTION This invention relates to a semiconductor ceramic composition, particularly to a positive barium titanate having a resistance-temperature characteristic (BaTiO 3) based semiconductor ceramic composition.

【0002】[0002]

【従来の技術】近年、大きな正の抵抗温度特性を有する
チタン酸バリウム(BaTiO)系半導体磁器組成物
が開発されている。このチタン酸バリウム系半導体磁器
組成物は、キュリー温度を越えると抵抗値が急激に増大
して、通過する電流量を減少させることから、回路の過
電流保護用や、テレビ受像機のブラウン管枠の消磁用な
ど種々の用途に広く用いられている。
2. Description of the Related Art In recent years, barium titanate (BaTiO 3 ) -based semiconductor ceramic compositions having a large positive resistance temperature characteristic have been developed. The barium titanate-based semiconductor porcelain composition has a resistance value that rapidly increases when the Curie temperature is exceeded, and reduces the amount of current passing therethrough. It is widely used for various purposes such as degaussing.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のチタン
酸バリウム系半導体磁器組成物は、結晶構造が立方晶系
である温度範囲においては正の抵抗温度特性を有してい
るが、それより低温側の、結晶構造が正方晶系である温
度範囲においては負の抵抗温度特性を有している。した
がって、正方晶系の温度範囲から立方晶系の温度範囲に
かけての全温度範囲にわたって抵抗温度特性を数式化す
ることが極めて困難であり、例えば、チタン酸バリウム
系半導体磁器組成物からなる正特性サーミスタを用いた
回路の設計を理論的に正確かつ効率よく行うことができ
ず、その用途が制約されるという問題点がある。
However, the conventional barium titanate-based semiconductor porcelain composition has a positive resistance temperature characteristic in a temperature range in which the crystal structure is cubic, but it has a lower temperature. On the other hand, in the temperature range where the crystal structure is tetragonal, it has a negative resistance-temperature characteristic. Therefore, it is extremely difficult to formulate the resistance temperature characteristic over the entire temperature range from the tetragonal temperature range to the cubic temperature range. For example, a positive temperature coefficient thermistor made of a barium titanate-based semiconductor ceramic composition However, there is a problem that it is impossible to theoretically accurately and efficiently design a circuit using, and its use is restricted.

【0004】この発明は、上記問題点を解決するもので
あり、結晶構造が正方晶系の温度範囲においても正の抵
抗温度特性を有するチタン酸バリウム系半導体磁器組成
物を提供することを目的とする。
An object of the present invention is to provide a barium titanate-based semiconductor ceramic composition having a positive resistance temperature characteristic even in a tetragonal crystal temperature range. I do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、この発明のチタン酸バリウム系半導体磁器組成物
は、結晶構造が正方晶系である温度範囲と、結晶構造が
立方晶系である温度範囲の、両方の温度範囲において、
正の抵抗温度特性を有し、一般式: (Ba 1-v-w Sr v Me w )TiO 3 +yMn+zSiO 2 (但し、MeはY,La,Ceなどの希土類元素、N
b、Bi、Sb、W、Th及びTaからなる群から選ば
れる少なくとも1種)で表され、 v,w,zがそれぞれ、 0.01 ≦v≦0.4 0.0003≦w≦0.0029 0.001 ≦z≦0.04 の範囲にあり、かつ、wに対するyの比が 0.6 ≦ y/w ≦ 4 の範囲にある ことを特徴とする。
In order to achieve the above object, the barium titanate-based semiconductor ceramic composition of the present invention has a temperature range in which the crystal structure is tetragonal and a cubic crystal structure. In both temperature ranges of the temperature range,
Have a positive resistance temperature characteristic, the general formula: (Ba 1-vw Sr v Me w) TiO 3 + yMn + zSiO 2 ( where, Me is Y, La, rare earth elements such as Ce, N
selected from the group consisting of b, Bi, Sb, W, Th and Ta
Is represented by the at least one), v, w, z are each in the range of 0.01 ≦ v ≦ 0.4 0.0003 ≦ w ≦ 0.0029 0.001 ≦ z ≦ 0.04, and , W in the range of 0.6 ≦ y / w ≦ 4 .

【0006】[0006]

【0007】[0007]

【実施例】以下に、この発明の実施例を比較例とともに
示して発明の特徴をさらに詳細に説明する。
EXAMPLES The features of the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.

【0008】(実施例1) 一般式: (Ba0.88−WSr0.12Me)TiO+0.
001Mn+0.02SiOで表されるチタン酸バリウム系
半導体磁器組成物を製造し、その抵抗温度特性を調べ
た。
(Example 1) General formula: (Ba 0.88-W Sr 0.12 Me w ) TiO 3 +0.
To produce a barium titanate-based semiconductor ceramic composition represented by 001Mn + 0.02SiO 2, it was examined their resistance-temperature characteristic.

【0009】ここで、MeはLa、Ce、Pr、Nd、
Sm、Cd、Ho、Dy、Y、Erの少なくとも1種で
ある。
Here, Me is La, Ce, Pr, Nd,
It is at least one of Sm, Cd, Ho, Dy, Y, and Er.

【0010】上記のチタン酸バリウム系半導体磁器組成
物を製造するにあたっては、まず、原料のBaCO3、
SrCO、La、Ce、Pr、N
、Sm、Cd、HoO、Dy
、Y、Er、TiO、MnCO、S
iOを、表1の組成になるように所定の割合で配合す
る。
In producing the barium titanate-based semiconductor porcelain composition, first, the raw materials BaCO 3,
SrCO 3 , La 2 O 3 , Ce 2 O 3 , Pr 2 O 3 , N
d 2 O 3, Sm 2 O 3, Cd 2 O 3, HoO, Dy 2 O
3 , Y 2 O 3 , Er 2 O 3 , TiO 2 , MnCO 3 , S
iO 2 is blended at a predetermined ratio so as to have the composition shown in Table 1.

【0011】次いで、この配合原料をポットミルで5時
間湿式混合し、脱水、乾燥した後1150℃で2時間仮
焼する。それから、得られた仮焼原料を粉砕し、バイン
ダである酢酸ビニルと混合し、造粒後、乾式プレスで長
辺12mm、短辺7mm、厚さ4mmの角板に成型して試料を
作成した。そして、この試料を空気雰囲気中において1
300〜1370℃の温度条件下に焼成して半導体磁器
(チタン酸バリウム系半導体磁器)を得た。
Next, this compounded raw material is wet-mixed in a pot mill for 5 hours, dehydrated and dried, and then calcined at 1150 ° C. for 2 hours. Then, the obtained calcined raw material was pulverized, mixed with vinyl acetate as a binder, granulated, and then formed into a square plate having a long side of 12 mm, a short side of 7 mm, and a thickness of 4 mm by a dry press to prepare a sample. . Then, this sample is placed in an air atmosphere for 1 hour.
Sintering was performed under a temperature condition of 300 to 1370 ° C. to obtain a semiconductor ceramic (a barium titanate-based semiconductor ceramic).

【0012】それから、得られた半導体磁器の両面にI
n−Ga合金を塗布して電極を形成し、常温における比
抵抗(ρ)、抵抗温度係数を測定した。その結果を表1
に示す。
[0012] Then, on both sides of the obtained semiconductor porcelain, I
An electrode was formed by applying an n-Ga alloy, and the specific resistance (ρ) and the temperature coefficient of resistance at normal temperature were measured. Table 1 shows the results.
Shown in

【0013】[0013]

【表1】 [Table 1]

【0014】なお、表1の抵抗温度係数は、以下に説明
する方法により求めた。
The temperature coefficient of resistance in Table 1 was obtained by the method described below.

【0015】図1は、この発明の実施例にかかるチタン
酸バリウム系半導体磁器(組成物)の抵抗温度特性の一
例を示す線図である。このような特性を有するチタン酸
バリウム系半導体磁器において、図1のa領域(結晶構
造が正方晶系の温度範囲)の抵抗温度係数をA(%/
℃)、b領域(結晶構造が立方晶系の温度範囲)の抵抗
温度係数をB(%/℃)とし、このA,Bを、次の式 A,B={(2.303ラlogR/R)/(T
)}×100 (%/℃) (但し、T<T) T:a領域内の任意の温度 T:b領域内の任意の温度 R:Tにおける抵抗値 R:Tにおける抵抗値 により求めた。
FIG. 1 is a diagram showing an example of the resistance-temperature characteristics of a barium titanate-based semiconductor ceramic (composition) according to an embodiment of the present invention. In the barium titanate-based semiconductor porcelain having such characteristics, the resistance temperature coefficient of the region a in FIG. 1 (a temperature range in which the crystal structure is a tetragonal system) is A (% /
C), and the temperature coefficient of resistance in the region b (temperature range in which the crystal structure is a cubic system) is B (% / ° C.), and A and B are represented by the following equations: A, B = {(2.303 La log R 2 / R 1 ) / (T 2
T 1 )} × 100 (% / ° C.) (however, T 1 <T 2 ) T 1 : arbitrary temperature in region a T 2 : arbitrary temperature in region b R 1 : resistance value at T 1 R 2 : determined by the resistance value of T 2.

【0016】ここで、A,Bの値が、 A,B>0のとき、抵抗温度特性が正特性 A,B=0のとき、抵抗温度特性がフラットな特性 A,B<0のとき、抵抗温度特性が負特性 であることを示す。Here, when the values of A and B are A, B> 0, when the resistance temperature characteristics are positive characteristics A, B = 0, when the resistance temperature characteristics are flat characteristics A, B <0, Indicates that the resistance-temperature characteristic is a negative characteristic.

【0017】なお、表1において、試料番号に*を付し
たものは、請求項2に記載の組成範囲外の比較例であ
り、その他は請求項2の記載の組成範囲内の実施例であ
る。
In Table 1, those marked with * are the comparative examples outside the composition range described in claim 2, and the others are examples within the composition range described in claim 2. .

【0018】表1に示すように、この発明の実施例にか
かるチタン酸バリウム系半導体磁器では、Meの全種類
についてA>0となっており、結晶構造が正方晶系の温
度範囲において、正の抵抗温度特性を有するチタン酸バ
リウム系半導体磁器が得られていることがわかる。ま
た、請求項2において、Meの添加量wの範囲をw<
0.0029に限定したのは、試料番号5,11のよう
に、添加量wが0.0029の場合、正方晶系の温度範
囲において、その抵抗温度特性がフラットになるMeが
あるからである。
As shown in Table 1, in the barium titanate-based semiconductor porcelain according to the embodiment of the present invention, A> 0 for all types of Me, and the crystal structure is positive in a tetragonal temperature range. It can be seen that a barium titanate-based semiconductor porcelain having the resistance-temperature characteristics described above has been obtained. Further, in claim 2, the range of the addition amount w of Me is defined as w <
The reason for limiting to 0.0029 is that when the addition amount w is 0.0029 as in sample numbers 5 and 11, there is Me in which the resistance temperature characteristic becomes flat in the tetragonal temperature range. .

【0019】(実施例2) 一般式: (Ba0.88−wSr0.12Me)TiO+y
Mn+0.02SiO で表されるチタン酸バリウム系半導体磁器組成物を、上
記実施例1の場合と同様の条件で製造し、MeとMnの
含有比率などの影響を調べた。
Example 2 General formula: (Ba 0.88-w Sr 0.12 Me w ) TiO 3 + y
A barium titanate-based semiconductor ceramic composition represented by Mn + 0.02SiO 2 was manufactured under the same conditions as in Example 1 described above, and the influence of the content ratio of Me and Mn was examined.

【0020】表2に、この実施例の半導体磁器について
調べたMe、Mnの含有比率、常温における比抵抗
(ρ)、抵抗温度係数の関係を示す。
Table 2 shows the relationship between the contents of Me and Mn, the specific resistance (ρ) at room temperature, and the temperature coefficient of resistance, which were examined for the semiconductor ceramic of this embodiment.

【0021】[0021]

【表2】 [Table 2]

【0022】なお、表2において、試料番号に*を付し
たものは、この発明の範囲外の組成の比較例であり、そ
の他はこの発明の範囲内の組成の実施例である。表2に
示すように、この発明の範囲外の比較例では、A≦0
もしくは試料番号13のようにA>0であってもAが0
付近なっており、抵抗温度特性がほぼフラットまたは
負特性であるのに対して、この発明の実施例にかかるチ
タン酸バリウム系半導体磁器においては、表2に示すよ
うなMeとMnの含有比率においてA>0となってお
り、結晶構造が正方晶系の温度範囲において正の抵抗温
度特性を有していることがわかる。
In Table 2, those with * added to the sample numbers are comparative examples of compositions outside the scope of the present invention, and the others are examples of compositions within the scope of the present invention. As shown in Table 2, in comparative examples outside the scope of the present invention, A ≦ 0 ,
Alternatively, even if A> 0 as in sample number 13, A is 0
It has become near, while the resistance-temperature characteristic is substantially flat or negative characteristics, in the barium titanate type semiconducting ceramic according to an embodiment of the present invention, the content ratio of Me and Mn as shown in Table 2 A> 0, it can be seen that the crystal structure has a positive resistance temperature characteristic in a tetragonal temperature range.

【0023】また、Sr、SiOの含有量に関して
は、本願発明の範囲内で適宜含有率を調節することによ
り、抵抗温度特性をある程度制御することが可能であ
る。なお、図2は、Srの含有比率を変化させキュリー
点をシフトさせた2種類のチタン酸バリウム系半導体磁
器の抵抗温度特性を示しており、いずれも、結晶構造が
正方晶系の温度範囲で正の抵抗温度特性を有しているこ
とがわかる。
Further, with respect to the contents of Sr and SiO 2 , the resistance-temperature characteristics can be controlled to some extent by appropriately adjusting the contents within the scope of the present invention. FIG. 2 shows the resistance-temperature characteristics of two types of barium titanate-based semiconductor porcelain in which the Curie point was shifted by changing the content ratio of Sr, and in each case, the crystal structure was within a tetragonal temperature range. It can be seen that it has a positive resistance-temperature characteristic.

【0024】[0024]

【発明の効果】上述のように、この発明のチタン酸バリ
ウム系半導体磁器組成物は、結晶構造が正方晶系である
温度範囲において正の抵抗温度特性を持たせるととも
、結晶構造が立方晶系である温度範囲において正の
抵抗温度特性を持たせるようにしているので、正方晶系
の温度範囲から立方晶系の温度範囲にかけての全温度範
囲にわたって抵抗温度特性を容易かつ正確に数式化する
ことが可能になり、正特性サーミスタなどを用いた回路
の設計を理論的に、正確かつ効率よく行うことができ
る。
According to the present invention as described above, barium titanate-based semiconductor ceramic composition of the present invention, Rutotomo to have a positive resistance-temperature characteristics in the temperature range crystal structure is tetragonal
In addition, since the crystal structure is made to have a positive resistance temperature characteristic even in the temperature range where the crystal structure is cubic, the resistance temperature characteristic is maintained over the entire temperature range from the tetragonal temperature range to the cubic temperature range. Can be easily and accurately formed into a mathematical expression, and a circuit using a positive temperature coefficient thermistor or the like can be theoretically, accurately, and efficiently designed.

【0025】また、一般式: (Ba1−V−WSrMeW)TiO +yMn+z
SiO で表されるような組成になるように各成分を配合するこ
とにより、結晶構造が正方晶系である温度範囲において
も正の抵抗温度特性を有するチタン酸バリウム系半導体
磁器組成物を確実に得ることができる。
In addition, the general formula: (Ba1-V-WSrVMeW) TiO3 + YMn+ Z
SiO2  Combine each component so that it has the composition represented by
In the temperature range where the crystal structure is tetragonal,
Barium titanate based semiconductor with positive resistance temperature characteristics
The porcelain composition can be reliably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例のチタン酸バリウム系半導体
磁器組成物の抵抗温度特性を示す線図である。
FIG. 1 is a diagram showing resistance temperature characteristics of a barium titanate-based semiconductor ceramic composition according to an example of the present invention.

【図2】この発明の他の実施例のチタン酸バリウム系半
導体磁器組成物の抵抗温度特性を示す線図である。
FIG. 2 is a diagram showing resistance temperature characteristics of a barium titanate-based semiconductor ceramic composition according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

a 結晶構造が正方晶系の温度範囲 b 結晶構造が立方晶系の温度範囲 a Temperature range where the crystal structure is tetragonal b Temperature range where the crystal structure is cubic

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−38091(JP,A) 特開 平4−329601(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-51-38091 (JP, A) JP-A-4-329601 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶構造が正方晶系である温度範囲と、
結晶構造が立方晶系である温度範囲の、両方の温度範囲
において、正の抵抗温度特性を有し、 一般式: (Ba 1-v-w Sr v Me w )TiO 3 +yMn+zSiO 2 (但し、MeはY,La,Ceなどの希土類元素、N
b、Bi、Sb、W、Th及びTaからなる群から選ば
れる少なくとも1種)で表され、 v,w,zがそれぞれ、 0.01 ≦v≦0.4 0.0003≦w≦0.0029 0.001 ≦z≦0.04 の範囲にあり、かつ、wに対するyの比が 0.6 ≦ y/w ≦ 4 の範囲にある ことを特徴とするチタン酸バリウム系半導
体磁器組成物。
1. A temperature range in which the crystal structure is tetragonal,
Temperature range crystal structure is a cubic system, in both temperature ranges, have a positive resistance-temperature characteristics, the general formula: (Ba 1-vw Sr v Me w) TiO 3 + yMn + zSiO 2 ( where, Me is Y , La, Ce and other rare earth elements, N
selected from the group consisting of b, Bi, Sb, W, Th and Ta
Is represented by the at least one), v, w, z are each in the range of 0.01 ≦ v ≦ 0.4 0.0003 ≦ w ≦ 0.0029 0.001 ≦ z ≦ 0.04, and , A ratio of y to w is in the range of 0.6 ≦ y / w ≦ 4 .
JP03161192A 1992-01-21 1992-01-21 Barium titanate-based semiconductor porcelain composition Expired - Fee Related JP3166787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03161192A JP3166787B2 (en) 1992-01-21 1992-01-21 Barium titanate-based semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03161192A JP3166787B2 (en) 1992-01-21 1992-01-21 Barium titanate-based semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPH05198405A JPH05198405A (en) 1993-08-06
JP3166787B2 true JP3166787B2 (en) 2001-05-14

Family

ID=12336004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03161192A Expired - Fee Related JP3166787B2 (en) 1992-01-21 1992-01-21 Barium titanate-based semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JP3166787B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053291A (en) * 2011-08-08 2013-03-21 Nitto Denko Corp Adhesive tape or sheet
KR101862810B1 (en) * 2011-03-31 2018-05-30 신에쓰 가가꾸 고교 가부시끼가이샤 Waterproof sheet and waterproof treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888264B2 (en) * 2006-07-28 2012-02-29 Tdk株式会社 Multilayer thermistor and manufacturing method thereof
JP5222781B2 (en) * 2009-04-28 2013-06-26 ニチコン株式会社 Positive thermistor porcelain composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101862810B1 (en) * 2011-03-31 2018-05-30 신에쓰 가가꾸 고교 가부시끼가이샤 Waterproof sheet and waterproof treatment
JP2013053291A (en) * 2011-08-08 2013-03-21 Nitto Denko Corp Adhesive tape or sheet

Also Published As

Publication number Publication date
JPH05198405A (en) 1993-08-06

Similar Documents

Publication Publication Date Title
JP3319314B2 (en) Barium titanate-based semiconductor porcelain composition
US6221800B1 (en) Method of producing PTC semiconducting ceramic
JP3039513B2 (en) Barium titanate powder, semiconductor ceramic, and semiconductor ceramic element
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP3245984B2 (en) Barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic and method of manufacturing the same
JP3376911B2 (en) Semiconductor ceramic and semiconductor ceramic element
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP2000143338A (en) Semiconductive ceramic and semiconductive ceramic element produced by using the ceramic
JP3039511B2 (en) Semiconductor ceramic and semiconductor ceramic element
JP2976702B2 (en) Semiconductor porcelain composition
JPH05198406A (en) Barium titanate based semiconductor porcelain composition
JP4779466B2 (en) Barium titanate semiconductor porcelain composition
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPH04104951A (en) Barium titanate-based semiconductive porcelain material
JPH07220902A (en) Barium titanate semiconductor ceramic
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
WO2004110952A1 (en) Barium titanate based semiconductor porcelain composition
JP3506044B2 (en) Semiconductor ceramic, semiconductor ceramic element, and circuit protection element
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JPH03215354A (en) Barium titanate-based semiconductor ceramic composition
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH0677005A (en) Barium titanate semiconductor porcelain composition
JP3036128B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JP3036051B2 (en) Barium titanate-based semiconductor porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees