JP4779466B2 - Barium titanate semiconductor porcelain composition - Google Patents

Barium titanate semiconductor porcelain composition Download PDF

Info

Publication number
JP4779466B2
JP4779466B2 JP2005192405A JP2005192405A JP4779466B2 JP 4779466 B2 JP4779466 B2 JP 4779466B2 JP 2005192405 A JP2005192405 A JP 2005192405A JP 2005192405 A JP2005192405 A JP 2005192405A JP 4779466 B2 JP4779466 B2 JP 4779466B2
Authority
JP
Japan
Prior art keywords
mol
characteristic
ρmax
barium titanate
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005192405A
Other languages
Japanese (ja)
Other versions
JP2007008768A (en
Inventor
貢 高田
康訓 並河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2005192405A priority Critical patent/JP4779466B2/en
Publication of JP2007008768A publication Critical patent/JP2007008768A/en
Application granted granted Critical
Publication of JP4779466B2 publication Critical patent/JP4779466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は半導体磁器組成物に関し、より詳しくは、消磁用正特性サーミスタに用いられるチタン酸バリウム(BaTiO3)系半導体磁器組成物に関するものである。 The present invention relates to a semiconductor ceramic composition, and more particularly to a barium titanate (BaTiO 3 ) -based semiconductor ceramic composition used for a demagnetizing positive temperature coefficient thermistor.

近年、大きな正の抵抗温度特性を有するチタン酸バリウム(BaTiO3)系半導体磁器組成物が開発されている。このチタン酸バリウム系半導体磁器組成物は、キュリー温度を越えると抵抗値が急激に増大して、通過する電流量を減少させることから、回路の過電流保護用や、テレビ受像機のブラウン管の消磁回路用など種々の用途に広く用いられるものである。 In recent years, barium titanate (BaTiO 3 ) -based semiconductor ceramic compositions having large positive resistance temperature characteristics have been developed. This barium titanate-based semiconductor porcelain composition has a resistance value that suddenly increases when the Curie temperature is exceeded, reducing the amount of current that passes through it. It is widely used for various applications such as circuits.

特に消磁用正特性サーミスタにおいては、低価格で緩やかに電流を減衰させるという要求が強くなっている。このため耐電圧および減衰電流特性をともに向上させることが求められている。   In particular, in the demagnetizing positive temperature coefficient thermistor, there is an increasing demand to attenuate the current gently at a low price. For this reason, it is required to improve both the withstand voltage and the attenuation current characteristics.

特許文献1は消磁用正特性サーミスタを開示し、抵抗温度特性を表すパラメータであるαを小さくすると、減衰電流特性を表す電流変化比ρの最大値ρmaxが大きくなる(=電流が緩やかに減衰する)という知見に基づき、消磁用正特性サーミスタとして用いられる半導体セラミックの抵抗温度特性αが10%/℃〜17%/℃であることが示されている。このような抵抗温度特性αにすることで、減衰電流特性ρmaxが0.7以上で、耐電圧が100V/mm以上が得られる。   Patent Document 1 discloses a demagnetizing positive temperature coefficient thermistor, and when α which is a parameter representing resistance temperature characteristics is reduced, the maximum value ρmax of the current change ratio ρ representing attenuation current characteristics increases (= current is gradually attenuated). It is shown that the resistance temperature characteristic α of a semiconductor ceramic used as a demagnetizing positive temperature coefficient thermistor is 10% / ° C to 17% / ° C. By setting such a resistance temperature characteristic α, the attenuation current characteristic ρmax is 0.7 or more and the withstand voltage is 100 V / mm or more.

一方、特許文献2においては、抵抗の急峻な立上がり特性を得る、即ち、抵抗温度特性αを大きくすることを目的とし、BaNdTiO3やBaSbTiO3などの基本組成にFeを0.001wt%〜0.007wt%添加している。Feの添加量を増やすことにより、抵抗温度特性αが大きくなることが示されている。Feの添加量が0.001wt%に達しない場合は、抵抗温度特性αがFeを添加しない場合と変わりがないことが述べられている。
特開2002−175902号公報 特公昭46−22266号公報
On the other hand, in Patent Document 2, Fe is added to a basic composition such as BaNdTiO 3 or BaSbTiO 3 in an amount of 0.001 wt% to 0. 007 wt% is added. It is shown that the resistance temperature characteristic α is increased by increasing the amount of Fe added. It is stated that when the addition amount of Fe does not reach 0.001 wt%, the resistance-temperature characteristic α is the same as when Fe is not added.
JP 2002-175902 A Japanese Patent Publication No.46-22266

特許文献1では、半導体セラミックの製造工程において冷却温度勾配を調整することで、半導体セラミックの酸化量を変動させて抵抗温度特性αを小さくし、これにより減衰電流特性ρmaxを大きくするものであるが、製造プロセスが複雑になるという問題があった。   In Patent Document 1, by adjusting the cooling temperature gradient in the manufacturing process of the semiconductor ceramic, the oxidation temperature of the semiconductor ceramic is varied to reduce the resistance temperature characteristic α, thereby increasing the attenuation current characteristic ρmax. The manufacturing process is complicated.

特許文献2では、Fe添加量は0.001wt%〜0.007wt%であるが、本発明の実施例に示す組成を基にmol表記に換算すると、主成分1molに対して0.000038mol〜0.000267molとなる。この範囲においてFeの添加量を増やすことで、抵抗温度特性αが大きくなるものであるが、抵抗温度特性αが大きくなると、減衰電流特性ρmaxが小さくなり、消磁用正特性サーミスタとしては望ましくない。従って、消磁用正特性サーミスタに求められる減衰電流特性ρmaxを満足させることができなかった。   In Patent Document 2, the amount of Fe added is 0.001 wt% to 0.007 wt%, but when converted to mol based on the composition shown in the examples of the present invention, 0.000038 mol-0 .000267 mol. Increasing the added amount of Fe in this range increases the resistance temperature characteristic α. However, if the resistance temperature characteristic α increases, the attenuation current characteristic ρmax decreases, which is not desirable as a demagnetizing positive characteristic thermistor. Therefore, the attenuation current characteristic ρmax required for the demagnetizing positive characteristic thermistor cannot be satisfied.

本発明の目的は、製造プロセスを複雑にすることなく、耐電圧および減衰電流特性ρmaxをともに向上させることができる消磁用正特性サーミスタを提供することにある。   An object of the present invention is to provide a demagnetizing positive temperature coefficient thermistor capable of improving both the withstand voltage and the attenuation current characteristic ρmax without complicating the manufacturing process.

上記の課題を解決するため、本発明のチタン酸バリウム径半導体磁器組成物は、主成分が、組成式:(Ba1-p-q-r-sSrpPbqCarErsmTiO3で表されるチタン酸バリウム系半導体磁器組成物であって、p、q、r、sおよびmは、それぞれ、0.150≦p≦0.195、0.0195≦q≦0.0240、0.120≦r≦0.165、0.0029≦s≦0.0032、0.998≦m≦1.002の範囲にあり、副成分として、Mnを、主成分1モルに対して、0.000300モル以上0.000350モル以下含有し、Siを、主成分1モルに対して、0.018モル以上0.021モル以下含有し、かつFeを、主成分1モルに対して、0.000010モル以上0.000035モル以下含有することを特徴とする。 To solve the above problems, barium titanate diameter semiconductor ceramic composition of the present invention, the main component is expressed by the formula of titanium represented by (Ba 1-pqrs Sr p Pb q Ca r Er s) m TiO 3 The barium-based semiconductor ceramic composition, wherein p, q, r, s, and m are 0.150 ≦ p ≦ 0.195, 0.0195 ≦ q ≦ 0.0240, and 0.120 ≦ r ≦, respectively. 0.165, 0.0029 ≦ s ≦ 0.0032, 0.998 ≦ m ≦ 1.002, and Mn as a subcomponent is 0.000300 mol or more and 0.1 or more mol per 1 mol of the main component. 000350 mol or less, Si is contained 0.018 mol or more and 0.021 mol or less with respect to 1 mol of the main component, and Fe is 0.000010 mol or more and 0.000035 mol with respect to 1 mol of the main component. Containing less than mol .

上記特許文献1,2の開示を総合すると抵抗温度特性αを小さくするには、Feを添加しないほうがよいということになる。これに反して本発明はFeを微量添加することにより抵抗温度特性αを小さくし、減衰電流特性ρmaxを大きくすることができるものである。特許文献2ではFeの添加量が増えるにつれて、抵抗温度特性αが大きくなるものであり、一方本発明ではFeの添加量は特許文献2より少ない範囲において、Feの添加量の増加に伴い抵抗温度特性αが増大するのではなく、減少するという現象を見出した。そして、本発明では、Feの添加量が増えるにつれて抵抗温度特性αが小さくなり、その結果減衰電流特性ρmaxを大きくすることができる。   To sum up the disclosures of Patent Documents 1 and 2, it is better not to add Fe in order to reduce the resistance temperature characteristic α. On the contrary, the present invention can reduce the resistance temperature characteristic α and increase the attenuation current characteristic ρmax by adding a small amount of Fe. In Patent Document 2, the resistance temperature characteristic α increases as the amount of Fe added increases. On the other hand, in the present invention, in the range where the amount of Fe added is smaller than that in Patent Document 2, the resistance temperature characteristic increases as the amount of Fe added increases. It has been found that the characteristic α does not increase but decreases. In the present invention, the resistance temperature characteristic α decreases as the amount of Fe added increases, and as a result, the attenuation current characteristic ρmax can be increased.

本発明では、チタン酸バリウム系半導体磁器材料にFeを添加することにより抵抗温度特性αが緩やかになることを利用し、製造プロセスを複雑にすることなく、Feの添加量を調整して抵抗温度特性αを制御し、消磁用正特性サーミスタの耐電圧および減衰電流特性ρmaxの両方を満足させることができる。具体的には、耐電圧100V/mm以上、減衰電流特性ρmax0.690以上を充分満足させることができる。   In the present invention, the resistance temperature characteristic α is moderated by adding Fe to the barium titanate semiconductor ceramic material, and the resistance temperature is adjusted by adjusting the amount of Fe added without complicating the manufacturing process. By controlling the characteristic α, it is possible to satisfy both the withstand voltage and the attenuation current characteristic ρmax of the demagnetizing positive characteristic thermistor. Specifically, the withstand voltage of 100 V / mm or more and the attenuation current characteristic ρmax of 0.690 or more can be sufficiently satisfied.

以下この発明の実施例を示して発明の特徴を詳細に説明する。   Hereinafter, the features of the present invention will be described in detail with reference to examples of the present invention.

主成分が、組成式:(Ba1-p-q-r-sSrpPbqCarErsmTiO3で表され、副成分としてMn、Si、Feを含有するチタン酸バリウム系半導体磁器組成物を製造し、室温比抵抗、抵抗温度特性(α(10−100))、耐電圧特性、減衰電流特性(ρmax)を調べた。 Main component expressed by the formula is represented by (Ba 1-pqrs Sr p Pb q Ca r Er s) m TiO 3, manufactured Mn, Si, barium titanate-based semiconductor ceramic composition containing Fe as an auxiliary component Then, room temperature specific resistance, resistance temperature characteristics (α (10-100)), withstand voltage characteristics, and decay current characteristics (ρmax) were examined.

上記チタン酸バリウム系半導体磁器組成物を製造するに当たって、まず、原料として主成分であるBaCO3、SrCO3、Pb34、CaCO3、TiO2、半導体化剤であるEr23、添加剤であるMnCO3、SiO2、Fe23などを準備し、これら各原料を表1に示す比率の半導体磁器組成物が得られるように調合した。 In manufacturing the barium titanate-based semiconductor ceramic composition, first, BaCO 3 , SrCO 3 , Pb 3 O 4 , CaCO 3 , TiO 2 as main components, Er 2 O 3 as a semiconducting agent, and addition are added as raw materials. MnCO 3 , SiO 2 , Fe 2 O 3, etc., which are agents, were prepared, and these raw materials were prepared so as to obtain a semiconductor ceramic composition having the ratio shown in Table 1.

次に、調合原料をボールミルで2時間湿式混合し、脱水、乾燥した後、約1200℃で2時間仮焼を行った。仮焼後、得られた仮焼原料を粉砕し、バインダーと混合し、乾燥、造粒する。造粒後、乾式プレス成形で円板状の成形体を作製、大気中約1400℃で1時間焼成した。得られた素子サイズは厚み2.5mm、直径10.6mmである。この素子にNi無電解メッキを行った後、Agペーストの塗布、焼き付けを行うことで電極を形成し、室温比抵抗、抵抗温度特性(α(10−100))、耐電圧特性、減衰電流特性(ρmax)を測定した。その結果を表1に示す。   Next, the blended raw materials were wet mixed for 2 hours with a ball mill, dehydrated and dried, and then calcined at about 1200 ° C. for 2 hours. After calcination, the obtained calcination raw material is pulverized, mixed with a binder, dried and granulated. After granulation, a disk-shaped molded body was produced by dry press molding and fired at about 1400 ° C. for 1 hour in the atmosphere. The obtained element size is 2.5 mm in thickness and 10.6 mm in diameter. This element is subjected to Ni electroless plating, and then an Ag paste is applied and baked to form an electrode, and room temperature resistivity, resistance temperature characteristics (α (10-100)), withstand voltage characteristics, attenuation current characteristics (Ρmax) was measured. The results are shown in Table 1.

Figure 0004779466
Figure 0004779466

表1に示す各特性は以下のように測定した。   Each characteristic shown in Table 1 was measured as follows.

室温比抵抗は測定温度25℃でデジタルマルチメータにより求めた。   The room temperature resistivity was determined with a digital multimeter at a measurement temperature of 25 ° C.

抵抗温度特性αは測定温度範囲20℃〜100℃において、5℃間隔でデジタルマルチメータを用いて抵抗を測定した。なお、抵抗温度特性αは以下の式より求めた。   The resistance temperature characteristic α was measured using a digital multimeter at intervals of 5 ° C. in a measurement temperature range of 20 ° C. to 100 ° C. The resistance temperature characteristic α was obtained from the following equation.

R1:素子温度を室温(25℃)にした際における比抵抗値ρ25の10倍の比抵抗値
R2:素子温度を室温(25℃)にした際における比抵抗値ρ25の100倍の比抵抗値
T1:比抵抗がR1となるときの素子温度
T2:比抵抗がR2となるときの素子温度、としたとき、
α(10−100)(%/℃)=[ln(R2/R1)/(T2−T1)]×100で表される。
R1: specific resistance value 10 times the specific resistance value ρ25 when the element temperature is room temperature (25 ° C) R2: specific resistance value 100 times the specific resistance value ρ25 when the element temperature is room temperature (25 ° C) T1: Element temperature when the specific resistance is R1 T2: Element temperature when the specific resistance is R2,
α (10-100) (% / ° C.) = [ln (R2 / R1) / (T2-T1)] × 100

耐電圧は所定のステップ電圧を1分間印加し、破壊しなければ次のステップの電圧を印加するというサイクルを素子が破壊するまで繰り返し行い、破壊する直前の電圧を耐電圧として測定した。   With respect to the withstand voltage, a cycle in which a predetermined step voltage was applied for 1 minute and the voltage of the next step was applied unless it was destroyed was repeated until the device was destroyed, and the voltage immediately before destruction was measured as the withstand voltage.

減衰電流特性ρmaxは測定電圧220V、周波数60Hz、直列抵抗20Ωの条件で、オシロスコープを用いて電流値を測定し、減衰電流特性ρmaxを求めた。なお、減衰電流特性ρmaxは以下の式より求めた。図1に示すように、電流変化比ρは、減衰中の電流において隣り合う電流ピーク値(I(n)、I(n+1))との間の電流変化比ρ=(I(n+1)/I(n))として算出し、電流変化比ρのうち最大変化比ρmaxを減衰電流特性とした。   The attenuation current characteristic ρmax was determined by measuring the current value using an oscilloscope under the conditions of a measurement voltage of 220 V, a frequency of 60 Hz, and a series resistance of 20Ω, to obtain the attenuation current characteristic ρmax. The attenuation current characteristic ρmax was obtained from the following equation. As shown in FIG. 1, the current change ratio ρ is a current change ratio ρ = (I (n + 1) / I) between adjacent current peak values (I (n), I (n + 1)) in the current being attenuated. (N)), and the maximum change ratio ρmax of the current change ratio ρ is defined as the attenuation current characteristic.

表1より、本発明の範囲外のFeが0.000010モルより少ない比較例1、2では耐電圧は180V/mm以上と高いが、減衰電流特性ρmaxが0.683以下となり、充分な減衰電流特性ρmaxが得られない。特にFeを含まない比較例1では減衰電流特性ρmaxが0.670となり精度の高い消磁特性が得られない。   From Table 1, in Comparative Examples 1 and 2 where Fe outside the range of the present invention is less than 0.000010 mol, the withstand voltage is as high as 180 V / mm or more, but the attenuation current characteristic ρmax is 0.683 or less, and the sufficient attenuation current is obtained. The characteristic ρmax cannot be obtained. Particularly, in Comparative Example 1 that does not contain Fe, the attenuation current characteristic ρmax is 0.670, and a highly accurate demagnetization characteristic cannot be obtained.

また、Feが0.000035モルより多い比較例3、4では減衰電流特性ρmaxは得られるものの、耐電圧が90V/mm以下となり不足する。   In Comparative Examples 3 and 4 with more than 0.000035 mol of Fe, although the attenuation current characteristic ρmax is obtained, the withstand voltage is 90 V / mm or less, which is insufficient.

これに対して、Feが0.000010モル〜0.000035モル含有されている実施例1〜10では、耐電圧が100V/mm以上で、かつ、減衰電流特性ρmaxが0.690以上となっており、Feの添加により両特性が向上していることが分かる。   On the other hand, in Examples 1-10 in which Fe is contained in 0.000010 mol to 0.000035 mol, the withstand voltage is 100 V / mm or more, and the attenuation current characteristic ρmax is 0.690 or more. It can be seen that both characteristics are improved by the addition of Fe.

図2はFeの添加量と比抵抗との関係を示している。実施例1〜10において、Feの添加量が0.000010モル〜0.000035モルまで増加するにつれて、比抵抗が17.3Ωcm〜21.4Ωcmまで増加していることが分かる。   FIG. 2 shows the relationship between the added amount of Fe and the specific resistance. In Examples 1-10, it turns out that the specific resistance is increasing to 17.3 ohm-cm-21.4 ohm-cm as the addition amount of Fe increases to 0.000010 mol-0.000035 mol.

図3はFeの添加量と抵抗温度特性αとの関係を示している。実施例1〜10において、Feの添加量が0.000010モル〜0.000035モルまで増加するにつれて、抵抗温度特性αが14.1%/℃〜10.9%/℃まで減少していることがわかる。Feの添加により抵抗温度特性αが緩やかになっている。   FIG. 3 shows the relationship between the added amount of Fe and the resistance temperature characteristic α. In Examples 1 to 10, the resistance temperature characteristic α decreases from 14.1% / ° C. to 10.9% / ° C. as the addition amount of Fe increases from 0.000010 mol to 0.000035 mol. I understand. The resistance temperature characteristic α is moderated by the addition of Fe.

図4はFeの添加量と耐電圧との関係を示している。実施例1〜10において、Feの添加量が0.000010モル〜0.000035モルまで増加するにつれて、耐電圧が175V/mm〜102V/mmまで減少しているが、消磁用正特性サーミスタに求められる耐電圧100V/mm以上を充分満足していることが分かる。   FIG. 4 shows the relationship between the added amount of Fe and the withstand voltage. In Examples 1 to 10, the withstand voltage decreased to 175 V / mm to 102 V / mm as the Fe addition amount increased from 0.000010 mol to 0.000035 mol. It can be seen that the withstand voltage of 100 V / mm or more is sufficiently satisfied.

図5はFeの添加量と減衰電流特性ρmaxとの関係を示している。実施例1〜10において、Feの添加量が0.000010モル〜0.000035モルまで増加するにつれて、減衰電流特性ρmaxは0.690〜0.744まで増加しており、Feの添加量の増加に伴い電流の減衰の仕方が緩やかになっていることが分かる。また、消磁用正特性サーミスタに求められる減衰電流特性ρmax0.690以上を充分満足していることが分かる。   FIG. 5 shows the relationship between the added amount of Fe and the attenuation current characteristic ρmax. In Examples 1 to 10, as the addition amount of Fe increases from 0.000010 mol to 0.000035 mol, the decay current characteristic ρmax increases from 0.690 to 0.744, and the addition amount of Fe increases. It can be seen that the method of current attenuation has become gentler. Further, it can be seen that the attenuation current characteristic ρmax 0.690 or more required for the demagnetization positive characteristic thermistor is sufficiently satisfied.

以上のように本発明では、消磁用正特性サーミスタに用いられるチタン酸バリウム系半導体磁器組成物において、Feの添加量を0.000010モル〜0.000035モルとすることにより、耐電圧100V/mm以上、減衰電流特性ρmax0.690以上を満足させることができる。   As described above, in the present invention, in the barium titanate semiconductor ceramic composition used for the demagnetizing positive temperature coefficient thermistor, the withstand voltage of 100 V / mm is obtained by setting the amount of Fe to 0.000010 mol to 0.000035 mol. As described above, the attenuation current characteristic ρmax 0.690 or more can be satisfied.

本発明では、主成分が組成式:(Ba1-p-q-r-sSrpPbqCarErsmTiO3で表され、副成分としてMn、Si、Feを含有するチタン酸バリウム系半導体磁器組成物を対象としているが、副成分の存在状態は主成分に固溶する場合を除外するものではない。 In the present invention, the main component a composition formula: (Ba 1-pqrs Sr p Pb q Ca r Er s) expressed in m TiO 3, Mn as an auxiliary component, Si, barium titanate containing Fe-based semiconductor ceramic composition However, the presence state of the subcomponent does not exclude the case where it is dissolved in the main component.

正特性サーミスタ素子に交流電圧を印加したときの電流と時間の関係を表す減衰電流特性を説明するための図である。It is a figure for demonstrating the attenuation | damping current characteristic showing the relationship between an electric current when an alternating voltage is applied to a positive characteristic thermistor element, and time. 本発明のFeの添加量と比抵抗との関係を示す図である。It is a figure which shows the relationship between the addition amount of Fe of this invention, and a specific resistance. 本発明のFeの添加量と抵抗温度特性αとの関係を示す図である。It is a figure which shows the relationship between the addition amount of Fe of this invention, and resistance temperature characteristic (alpha). 本発明のFeの添加量と耐電圧との関係を示す図である。It is a figure which shows the relationship between the addition amount of Fe of this invention, and a withstand voltage. 本発明のFeの添加量と減衰電流特性ρmaxとの関係を示す図である。It is a figure which shows the relationship between the addition amount of Fe of this invention, and the attenuation | damping current characteristic (rho) max.

Claims (1)

主成分が、組成式:(Ba1-p-q-r-sSrpPbqCarErsmTiO3で表されるチタン酸バリウム系半導体磁器組成物であって、
p、q、r、sおよびmは、それぞれ
0.150≦p≦0.195、
0.0195≦q≦0.0240、
0.120≦r≦0.165、
0.0029≦s≦0.0032、
0.998≦m≦1.002、
の範囲にあり、
副成分として、
Mnを、主成分1モルに対して、0.000300モル以上0.000350モル以下含有し、
Siを、主成分1モルに対して、0.018モル以上0.021モル以下含有し、かつ
Feを、主成分1モルに対して、0.000010モル以上0.000035モル以下含有する
ことを特徴とするチタン酸バリウム系半導体磁器組成物。
Main component expressed by a composition formula: a (Ba 1-pqrs Sr p Pb q Ca r Er s) barium titanate represented by m TiO 3 based semiconductor ceramic composition,
p, q, r, s and m are each 0.150 ≦ p ≦ 0.195,
0.0195 ≦ q ≦ 0.0240,
0.120 ≦ r ≦ 0.165,
0.0029 ≦ s ≦ 0.0032,
0.998 ≦ m ≦ 1.002,
In the range of
As a minor component
Mn is contained 0.000300 mol or more and 0.000350 mol or less with respect to 1 mol of the main component,
Si is contained 0.018 mol or more and 0.021 mol or less with respect to 1 mol of the main component, and Fe is contained 0.000010 mol or more and 0.000035 mol or less with respect to 1 mol of the main component. A barium titanate-based semiconductor ceramic composition.
JP2005192405A 2005-06-30 2005-06-30 Barium titanate semiconductor porcelain composition Active JP4779466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192405A JP4779466B2 (en) 2005-06-30 2005-06-30 Barium titanate semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192405A JP4779466B2 (en) 2005-06-30 2005-06-30 Barium titanate semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JP2007008768A JP2007008768A (en) 2007-01-18
JP4779466B2 true JP4779466B2 (en) 2011-09-28

Family

ID=37747738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192405A Active JP4779466B2 (en) 2005-06-30 2005-06-30 Barium titanate semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JP4779466B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065441A1 (en) * 2011-11-01 2013-05-10 株式会社村田製作所 Ptc thermistor and method for manufacturing ptc thermistor
KR102202488B1 (en) * 2015-07-06 2021-01-13 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5398095A (en) * 1977-02-08 1978-08-26 Matsushita Electric Ind Co Ltd Barium titanate semiconductor ceramics
JPS57157502A (en) * 1981-03-24 1982-09-29 Murata Manufacturing Co Barium titanate series porcelain composition
JPH0640768A (en) * 1992-07-23 1994-02-15 Inax Corp Production of ptc ceramics having high characteristic
JP3319314B2 (en) * 1996-11-20 2002-08-26 株式会社村田製作所 Barium titanate-based semiconductor porcelain composition
JP2000095562A (en) * 1998-07-24 2000-04-04 Murata Mfg Co Ltd Raw material composition for positive temperature coefficient thermistor, porcelain for positive temperature coefficient thermistor, and production of its porcelain
JP2000143338A (en) * 1998-11-11 2000-05-23 Murata Mfg Co Ltd Semiconductive ceramic and semiconductive ceramic element produced by using the ceramic
JP3855611B2 (en) * 2000-07-21 2006-12-13 株式会社村田製作所 Semiconductor ceramic and positive temperature coefficient thermistor
JP3554786B2 (en) * 2000-12-05 2004-08-18 株式会社村田製作所 Semiconductor ceramic, degaussing positive temperature coefficient thermistor, degaussing circuit, and method of manufacturing semiconductor ceramic

Also Published As

Publication number Publication date
JP2007008768A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP3319314B2 (en) Barium titanate-based semiconductor porcelain composition
JP5413458B2 (en) Barium titanate semiconductor ceramic composition and barium titanate semiconductor ceramic element
KR20150039692A (en) Semiconductor ceramic composition and ptc thermistor
WO2014141814A1 (en) Ptc thermistor ceramic composition and ptc thermistor element
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP4779466B2 (en) Barium titanate semiconductor porcelain composition
JP6604653B2 (en) Semiconductor porcelain composition and method for producing the same
JP5881169B2 (en) Method for producing semiconductor porcelain composition
JP4788274B2 (en) Oxide conductor porcelain and resistor having CTR characteristics
JP2541344B2 (en) Electronic parts using barium titanate based semiconductor porcelain
JP5988388B2 (en) Semiconductor porcelain composition and method for producing the same
JP2014072374A (en) Barium titanate-based semiconductor porcelain composition and ptc thermistor using the same
JP3554786B2 (en) Semiconductor ceramic, degaussing positive temperature coefficient thermistor, degaussing circuit, and method of manufacturing semiconductor ceramic
JP2976702B2 (en) Semiconductor porcelain composition
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP3003201B2 (en) Barium titanate-based semiconductor porcelain composition
JP6075877B2 (en) Semiconductor porcelain composition and method for producing the same
JP3598177B2 (en) Voltage non-linear resistor porcelain
WO2004110952A1 (en) Barium titanate based semiconductor porcelain composition
JP3823876B2 (en) Voltage-dependent nonlinear resistor
JP5137780B2 (en) Positive thermistor porcelain composition
JPH05198406A (en) Barium titanate based semiconductor porcelain composition
JP3617795B2 (en) Positive thermistor porcelain composition
JP3036051B2 (en) Barium titanate-based semiconductor porcelain composition
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4779466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150