JP5881169B2 - Method for producing semiconductor porcelain composition - Google Patents

Method for producing semiconductor porcelain composition Download PDF

Info

Publication number
JP5881169B2
JP5881169B2 JP2012177851A JP2012177851A JP5881169B2 JP 5881169 B2 JP5881169 B2 JP 5881169B2 JP 2012177851 A JP2012177851 A JP 2012177851A JP 2012177851 A JP2012177851 A JP 2012177851A JP 5881169 B2 JP5881169 B2 JP 5881169B2
Authority
JP
Japan
Prior art keywords
composition
calcined powder
calcined
semiconductor ceramic
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012177851A
Other languages
Japanese (ja)
Other versions
JP2014034505A (en
Inventor
政博 上城
政博 上城
康行 松浦
康行 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2012177851A priority Critical patent/JP5881169B2/en
Publication of JP2014034505A publication Critical patent/JP2014034505A/en
Application granted granted Critical
Publication of JP5881169B2 publication Critical patent/JP5881169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は半導体磁器組成物およびその製造方法に関する。より詳しくは、正の温度係数を有するチタン酸バリウム系半導体磁器組成物およびその製造方法に関する。   The present invention relates to a semiconductor ceramic composition and a method for producing the same. More specifically, the present invention relates to a barium titanate semiconductor ceramic composition having a positive temperature coefficient and a method for producing the same.

チタン酸バリウム(BaTiO3)系半導体磁器組成物は、主成分であるチタン酸バリウムを半導体化させた組成物であり、常温では比抵抗が低いが、キュリー点を超えると急激に比抵抗が増大(ジャンプ)するという、正の抵抗温度特性を有しており、従来からヒータ用、過電流保護用、温度検知用等の正特性サーミスタとして広く用いられている。
従来、チタン酸バリウムを半導体化させるための半導体化剤として、希土類元素(レアアース)が一般に用いられてきた。
Barium titanate (BaTiO 3 ) -based semiconductor ceramic composition is a composition in which barium titanate, which is the main component, is made into a semiconductor. The resistivity is low at room temperature, but the resistivity increases rapidly when the Curie point is exceeded. It has a positive resistance temperature characteristic of “jumping” and has been widely used as a positive temperature coefficient thermistor for heaters, overcurrent protection, temperature detection and the like.
Conventionally, rare earth elements (rare earth) have been generally used as a semiconducting agent for making barium titanate into a semiconductor.

例えば、下記の特許文献1には、耐突入電流特性を向上させることにより、正特性サーミスタ素子の小形化が可能なチタン酸バリウム系半導体磁器組成物として、チタン酸バリウムまたはその固溶体からなる主成分と半導体化剤と添加剤とが添加含有されているチタン酸バリウム系半導体磁器組成物が開示されている。
特許文献1の実施例で用いられている半導体化剤は、Y,Er,La、またはNdの酸化物であり、いずれも希土類元素の酸化物である。
For example, Patent Document 1 below discloses a main component composed of barium titanate or a solid solution thereof as a barium titanate-based semiconductor ceramic composition capable of reducing the size of a positive temperature coefficient thermistor element by improving inrush current resistance. There is disclosed a barium titanate-based semiconductor ceramic composition that contains an additive, a semiconducting agent, and an additive.
The semiconducting agent used in the examples of Patent Document 1 is an oxide of Y, Er, La, or Nd, all of which are rare earth element oxides.

また、特許文献2には、素子材料を低比抵抗化しても耐電圧、突入許容電力およびON−OFFサイクル寿命が低下することがなく、抵抗値の低い正特性サーミスタを得ることができる組成物として、組成式(BaxSryCazPbsDt)TiuO3で表されるチタン酸バリウム系固溶体に対して、Mn、Siを所定量含有することを特徴とする正特性サーミスタ磁器組成物が開示されているが、やはり半導体化剤として希土類元素D(Pr、Sm)が用いられている。 Further, Patent Document 2 discloses a composition capable of obtaining a positive temperature coefficient thermistor having a low resistance value without reducing withstand voltage, inrush allowable power and ON-OFF cycle life even when the element material has a low specific resistance. as a PTC thermistor ceramic, wherein relative composition formula (Ba x Sr y Ca z Pb s D t) Ti u O 3 in a solid solution of barium titanate type represented, Mn, that contains a predetermined amount of Si Although a composition is disclosed, rare earth element D (Pr, Sm) is also used as a semiconducting agent.

また、特許文献3には、耐電圧および減衰電流特性をともに向上させた消磁用正特性サーミスタに用いられるチタン酸バリウム系半導体磁器組成物が開示され、特許文献4には、アルカリ金属元素やBiの含有量が少なくても、適度な高キュリー点を維持しつつ、製品間での抵抗値のバラツキが抑制された半導体セラミックが開示されているが、いずれも、半導体化剤として希土類元素が用いられている。   Patent Document 3 discloses a barium titanate-based semiconductor ceramic composition used for a demagnetizing positive temperature coefficient thermistor with improved withstand voltage and attenuation current characteristics. Patent Document 4 discloses an alkali metal element or Bi. Although there is disclosed a semiconductor ceramic in which variation in resistance value between products is suppressed while maintaining a moderately high Curie point even if the content of N is low, both use rare earth elements as a semiconducting agent. It has been.

希土類元素はその名が示すとおり、希少な元素で生産国も限られており、日本はほぼ100%輸入に頼っているのが現状である。したがって、外交関係の悪化により急に輸入困難な事態に陥る場合があり、昨今では、希土類元素を用いない代替手段が求められている。   As the name suggests, rare earth elements are rare and the countries of production are limited. Japan currently relies almost 100% on imports. Therefore, there is a case where importation suddenly becomes difficult due to deterioration of diplomatic relations, and an alternative means that does not use rare earth elements has been demanded recently.

希土類元素を半導体化剤として用いないものとして、特許文献5には、所定のpHに調整した五酸化アンチモンゾルを半導体化剤として使用することを特徴とするチタン酸バリウム系磁器半導体の製造方法が開示されている。しかし、アンチモンは希土類元素ではないものの、資源枯渇や生産コストの問題から、希土類元素と同様、現在はほぼ100%輸入に頼っているのが現状であるため、希土類元素と同じ問題が存在する。   Patent Document 5 discloses a method for producing a barium titanate-based porcelain semiconductor characterized in that antimony pentoxide sol adjusted to a predetermined pH is used as a semiconducting agent, as a rare earth element is not used as a semiconducting agent. It is disclosed. However, although antimony is not a rare earth element, due to resource depletion and production cost problems, as with rare earth elements, the current situation is that it is almost 100% dependent on imports.

特開平10−203866号公報Japanese Patent Laid-Open No. 10-203866 特開2001−85201号公報Japanese Patent Laid-Open No. 2001-85201 特開2007−8768号公報JP 2007-8768 特開2010−138044号公報JP 2010-138044 A 特開平4−238860号公報JP-A-4-238860

本発明は、チタン酸バリウム系の半導体磁器組成物であって、希土類元素に代表される希少な金属元素を添加しなくても、希土類元素を用いた従来の半導体磁器組成物に匹敵する性能を有する半導体磁器組成物およびその製造方法を提供することを課題とする。   The present invention is a barium titanate-based semiconductor ceramic composition that has performance comparable to conventional semiconductor ceramic compositions using rare earth elements, even without adding rare metal elements typified by rare earth elements. It is an object of the present invention to provide a semiconductor ceramic composition and a method for producing the same.

本発明者は、前記課題を解決するために種々検討した結果、Baの一部をストロンチウム、カルシウムのいずれか1種、または、ストロンチウム、カルシウムおよび鉛からなる群から選ばれる2種以上で置換したチタン酸バリウム系の磁器組成において、半導体化剤として希土類元素の代わりに、マグネシウム酸チタン酸ビスマス(Bi(Mg0.5Ti0.5)O3)を特定の割合で添加含有させることによって、半導体磁器を得ることに成功し、前記課題を解決した。 As a result of various studies to solve the above problems, the present inventor has partially replaced Ba with one of strontium and calcium, or two or more selected from the group consisting of strontium, calcium and lead. In the barium titanate-based porcelain composition, semiconductor porcelain is obtained by adding bismuth magnesium titanate (Bi (Mg 0.5 Ti 0.5 ) O 3 ) at a specific ratio instead of rare earth elements as a semiconducting agent. Successfully solved the problem.

すなわち本発明は、主成分が、組成式(1-x)(BaaMe1-a)TiO3-xBi(Mg0.5Ti0.5)O3で表される半導体磁器組成物であって、
前記aは0.4950≦a≦0.9500であり、
前記Meは、SrまたはCaのいずれか1種であるか、または、Sr,CaおよびPbからなる群から選ばれる2種以上であり、
前記MeがSrであるか、または、Sr,CaおよびPbからなる群から選ばれる2種以上であるときは、前記xが0.0020≦x≦0.0050であり、
前記MeがCaであるときは、前記xが0.0070≦x≦0.0090であること
を特徴とする。
That is, the present invention is a semiconductor ceramic composition whose main component is represented by the composition formula (1-x) (Ba a Me 1-a ) TiO 3 -xBi (Mg 0.5 Ti 0.5 ) O 3 ,
A is 0.4950 ≦ a ≦ 0.9500,
The Me is any one of Sr or Ca, or two or more selected from the group consisting of Sr, Ca and Pb,
When Me is Sr or two or more selected from the group consisting of Sr, Ca and Pb, x is 0.0020 ≦ x ≦ 0.0050,
When Me is Ca, the x is 0.0070 ≦ x ≦ 0.0090.

本発明に係る半導体磁器組成物は、希土類元素を含んでいなくても、低い比抵抗値と高い耐電圧性を示し、キュリー点付近における抵抗値の立ち上がり幅(PTCジャンプ)の桁数が高く、優れた電気的特性を有するため、正特性サーミスタとして用いるのに好適である。
希土類元素の代わりに添加されているマグネシウム酸チタン酸ビスマスを構成する各金属元素は、国内で容易に入手できる元素であるため、本発明によれば、輸入に依存しない半導体磁器組成物の提供が可能となる。
The semiconductor ceramic composition according to the present invention exhibits a low specific resistance value and a high withstand voltage even when it does not contain a rare earth element, and the number of digits of the rising width (PTC jump) of the resistance value near the Curie point is high. Since it has excellent electrical characteristics, it is suitable for use as a positive temperature coefficient thermistor.
Since each metal element constituting bismuth magnesium titanate added in place of rare earth elements is an element that can be easily obtained in Japan, according to the present invention, it is possible to provide a semiconductor ceramic composition that does not depend on imports. It becomes possible.

また、本発明は、前記半導体磁器組成物の製造方法であって、
Ba,Me,Tiをそれぞれ含む化合物を秤量、混合、仮焼して、組成式(BaaMe1-a)TiO3で表されるBT仮焼粉末を得る工程(aは0.4950≦a≦0.9500であり、Meは、SrまたはCaのいずれか1種、または、Sr,CaおよびPbからなる群から選ばれる2種以上)、
Bi,Mg,Tiをそれぞれ含む化合物を秤量、混合、仮焼して、組成式Bi(Mg0.5Ti0.5)O3で表されるBMT仮焼粉末を得る工程、
前記BT仮焼粉末とBMT仮焼粉末とを、1-x:xの重量比にて混合し、造粒して造粒粉を得る工程(xは、MeがSrであるか、または、Sr,CaおよびPbからなる群から選ばれる2種以上であるときは、0.0020≦x≦0.0050であり、MeがCaであるときは、0.0070≦x≦0.0090)、および
前記造粒粉を、成形、焼成する工程
を含むことを特徴とする。
Further, the present invention is a method for producing the semiconductor ceramic composition,
A step of obtaining a BT calcined powder represented by the composition formula (Ba a Me 1-a ) TiO 3 by weighing, mixing, and calcining a compound containing each of Ba, Me, and Ti (a is 0.4950 ≦ a ≦ 0.9500 And Me is any one of Sr or Ca, or two or more selected from the group consisting of Sr, Ca and Pb),
A step of weighing, mixing, and calcining a compound containing Bi, Mg, and Ti to obtain a BMT calcined powder represented by a composition formula Bi (Mg 0.5 Ti 0.5 ) O 3 ;
The step of mixing the BT calcined powder and the BMT calcined powder at a weight ratio of 1-x: x and granulating to obtain a granulated powder (x is Me is Sr or Sr , Ca and Pb when two or more selected from the group consisting of 0.0020 ≦ x ≦ 0.0050, and when Me is Ca, 0.0070 ≦ x ≦ 0.0090), and molding the granulated powder, It includes a step of firing.

このように、Baの一部が、Sr,Caの少なくとも1種、さらに任意でPbによって置換されたチタン酸バリウム系の仮焼粉末を用意し、さらに、マグネシウム酸チタン酸ビスマスの仮焼粉末を用意し、これを上記所定の重量比にて混合し、造粒、成形、焼成することにより、半導体化剤として希土類元素を用いなくても、上記組成式で表される主成分を含み、優れた電気的特性を有する半導体磁器組成物を得ることができる。   In this way, a barium titanate-based calcined powder in which a part of Ba is substituted with at least one of Sr and Ca, and optionally Pb, is prepared, and a calcined powder of bismuth magnesium titanate is further prepared. Prepared, mixed at the above predetermined weight ratio, granulated, molded, and fired, including a main component represented by the above composition formula without using a rare earth element as a semiconducting agent, and excellent A semiconductor porcelain composition having excellent electrical characteristics can be obtained.

本発明によれば、希土類元素に代表される希少な金属元素を使用しなくても、優れた電気的特性を有する半導体磁器組成物を得ることができる。   According to the present invention, a semiconductor ceramic composition having excellent electrical characteristics can be obtained without using rare metal elements typified by rare earth elements.

本発明の半導体磁器組成物の主成分は、組成式(1-x)(BaaMe1-a)TiO3-xBi(Mg0.5Ti0.5)O3で表される。前記xは、前記MeがSrであるか、または、Sr,CaおよびPbからなる群から選ばれる2種以上であるとき(すなわち、MeがSr,Sr+Ca,Sr+Pb,Ca+PbまたはSr+Ca+Pbの場合)は、0.0020≦x≦0.0050の範囲内にある必要があり、前記MeがCaであるときは、前記xが0.0070≦x≦0.0090の範囲内にある必要がある。xが上記範囲を超える場合は、比抵抗が高くなるか、あるいは耐電圧が低下する。また、PTCジャンプが3桁以下まで低下する場合がある。 The main component of the semiconductor ceramic composition of the present invention is represented by the composition formula (1-x) (Ba a Me 1-a ) TiO 3 -xBi (Mg 0.5 Ti 0.5 ) O 3 . The x is when the Me is Sr or two or more selected from the group consisting of Sr, Ca and Pb (ie, Me is Sr, Sr + Ca, Sr + Pb, Ca + Pb or (In the case of Sr + Ca + Pb) needs to be in the range of 0.0020 ≦ x ≦ 0.0050, and when Me is Ca, the x needs to be in the range of 0.0070 ≦ x ≦ 0.0090. When x exceeds the above range, the specific resistance increases or the withstand voltage decreases. Also, the PTC jump may drop to 3 digits or less.

また、前記組成式において、Baの組成値aは0.4950≦a≦0.9500である。0.4950未満では比抵抗が高くなりやすく、0.9500を超えると耐電圧が低下しやすい。   In the composition formula, the composition value a of Ba is 0.4950 ≦ a ≦ 0.9500. If it is less than 0.4950, the specific resistance tends to increase, and if it exceeds 0.9500, the withstand voltage tends to decrease.

前記組成式において、MeはSr,CaおよびPbからなる群から選択される金属元素を表し、1種類の金属元素であっても、2種または3種の金属元素であってもよいが、SrかCaのいずれかは必須である(すなわち、MeがPb単独となる場合はない)。このように、Baの一部を、Sr,Caの少なくとも1種、および任意でPbで置換することにより、耐電圧を高くすることができる。
本発明において、Meの組成値は、1.0000から前記Baの組成値aを引いたものであるため、0.0500〜0.5050の範囲となる。
In the composition formula, Me represents a metal element selected from the group consisting of Sr, Ca and Pb, and may be one kind of metal element or two or three kinds of metal elements. Either Ca or Ca is essential (ie, Me is not Pb alone). Thus, the withstand voltage can be increased by substituting a part of Ba with at least one of Sr and Ca, and optionally with Pb.
In the present invention, since the composition value of Me is 1.000 minus the composition value a of Ba, it is in the range of 0.0500 to 0.5050.

また、前記組成式中の「Me1-a」を「SrbCacPbd(b+c+d=1-a)」と表した場合、各組成値b、c、d、およびBaの組成値aの特に好ましい値は以下の通りである。
・MeがSr,CaおよびPbである場合(Sr+Ca+Pb)、a,b,c,dの好ましい値は、0.4950≦a≦0.8700、b≦0.1000、0.0300≦c≦0.2000、および、0.0300≦d≦0.3250;各組成値のより好ましい値は、0.5500≦a≦0.8700、b≦0.0800、0.0700≦c≦0.1700、0.0600≦d≦0.2000である。
・MeがCaおよびPbである場合(Ca+Pb)、各組成値の好ましい値は、bがゼロであることを除いて、Sr+Ca+Pbの場合と同じである。
・MeがSrおよびCaである場合(Sr+Ca)、a,b,cの好ましい値は、0.6200≦a≦0.9500、0.0500≦b≦0.2500、および、c≦0.20000;
・MeがSr単独である場合、各組成値の好ましい値は、cがゼロであることを除いて、Sr+Caの場合と同じである。
・MeがSrおよびPbである場合(Sr+Pb)、a,b,dの好ましい値は、0.7400≦a≦0.90000、0.0400≦b≦0.2000、および、0.0400≦d≦0.2000:
・MeがCa単独である場合、a,cの好ましい値は、0.8000≦a≦0.9300、および、0.0700≦c≦0.2000:
各組成値を上記範囲とすることが、低い比抵抗値、高い耐電圧性、4桁以上のPTCジャンプ特性を達成する上で好ましい。
Further, when “Me 1-a ” in the composition formula is expressed as “Sr b Ca c Pb d (b + c + d = 1−a)”, the composition values a, b, c, d, and Ba Particularly preferred values are as follows.
When Me is Sr, Ca and Pb (Sr + Ca + Pb), preferable values of a, b, c and d are 0.4950 ≦ a ≦ 0.8700, b ≦ 0.1000, 0.0300 ≦ c ≦ 0.2000, and 0.0300 ≦ d ≦ 0.3250; More preferable values of the respective composition values are 0.5500 ≦ a ≦ 0.8700, b ≦ 0.0800, 0.0700 ≦ c ≦ 0.1700, 0.0600 ≦ d ≦ 0.2000.
When Me is Ca and Pb (Ca + Pb), the preferred values for each composition value are the same as for Sr + Ca + Pb, except that b is zero.
When Me is Sr and Ca (Sr + Ca), preferred values of a, b, c are 0.6200 ≦ a ≦ 0.9500, 0.0500 ≦ b ≦ 0.2500, and c ≦ 0.20000;
When Me is Sr alone, the preferred values for each composition value are the same as for Sr + Ca, except that c is zero.
When Me is Sr and Pb (Sr + Pb), preferred values of a, b, d are 0.7400 ≦ a ≦ 0.90000, 0.0400 ≦ b ≦ 0.2000, and 0.0400 ≦ d ≦ 0.2000:
When Me is Ca alone, preferable values of a and c are 0.8000 ≦ a ≦ 0.9300 and 0.0700 ≦ c ≦ 0.2000:
It is preferable to set each composition value within the above range in order to achieve a low specific resistance value, a high voltage resistance, and a PTC jump characteristic of 4 digits or more.

また、本発明は、希土類元素を添加せずに半導体磁器組成物を得ることを目的として開発されたものであるため、希土類元素を含んでいないことが好ましい。   Moreover, since this invention was developed for the purpose of obtaining a semiconductor ceramic composition without adding rare earth elements, it is preferable that no rare earth elements are contained.

前記組成式中の(BaaMe1-a)TiO3を、(BaMe)TifO3と表した場合、Tiの組成値f[言い換えれば、Tiと(BaMe)のモル比:Ti/(BaMe)]は、0.9500≦f≦1.0150であることが好ましい。この範囲を外れると比抵抗が高くなりやすいか、耐電圧が低くなりやすい。
より好ましいfの値は1.0000≦f≦1.0150であり、特に好ましいfの値は1.0030≦f≦1.0120である。
When (Ba a Me 1-a ) TiO 3 in the composition formula is expressed as (BaMe) Ti f O 3 , the composition value f of Ti [in other words, the molar ratio of Ti and (BaMe): Ti / ( BaMe)] is preferably 0.9500 ≦ f ≦ 1.0150. Outside this range, the specific resistance tends to increase or the withstand voltage tends to decrease.
A more preferable value of f is 1.000 ≦ f ≦ 1.0150, and a particularly preferable value of f is 1.0030 ≦ f ≦ 1.0120.

前記組成式中のBi(Mg0.5Ti0.5)O3を、Big(MgTi)O3と表した場合、Biの組成値g[言い換えれば、Biと(MgTi)のモル比:Bi/(MgTi)]は、0.9500≦g≦1.0000であることが好ましい。この範囲を外れると、半導体化しにくくなる。
より好ましいgの値は、0.9800≦g≦1.0000である。
When Bi (Mg 0.5 Ti 0.5 ) O 3 in the composition formula is expressed as Bi g (MgTi) O 3 , the composition value g of Bi [in other words, the molar ratio of Bi to (MgTi): Bi / (MgTi )] Is preferably 0.9500 ≦ g ≦ 1.0000. Outside this range, it becomes difficult to make a semiconductor.
A more preferable value of g is 0.9800 ≦ g ≦ 1.0000.

また、前記半導体磁器組成物は、さらにMnおよびSiを含有することが好ましい。MnおよびSiは、(BaaMe1-a)TiO3仮焼粉末(BT仮焼粉末)を作製する際に添加されることが好ましい。
Mnを添加することにより、電気的特性を向上させることができるが、添加量が多すぎると、比抵抗が高くなるため、(BaaMe1-a)TiO3に対し、Mnが元素換算で0.0075〜0.0230重量%となる量で添加することが好ましい。
また、Siを添加することにより、焼成温度を低くすることができ、1270〜1350℃程度の通常の焼成条件で、比抵抗が低く、良好な電気的特性を有する半導体磁器組成物を得ることができるが、添加量が多すぎると、電気的特性の劣化や、素子の融着が生じやすくなるため、(BaaMe1-a)TiO3に対し、SiO2換算で0.30〜0.75重量%となる量で添加することが好ましい。
The semiconductor ceramic composition preferably further contains Mn and Si. Mn and Si are preferably added when preparing the (Ba a Me 1-a ) TiO 3 calcined powder (BT calcined powder).
By adding Mn, the electrical characteristics can be improved, but if the amount added is too large, the specific resistance will increase, so that Mn is equivalent to the element in terms of (Ba a Me 1-a ) TiO 3. It is preferable to add in an amount of 0.0075 to 0.0230% by weight.
In addition, by adding Si, the firing temperature can be lowered, and it is possible to obtain a semiconductor ceramic composition having a low specific resistance and good electrical characteristics under normal firing conditions of about 1270 to 1350 ° C. However, if the amount added is too large, the electrical characteristics are deteriorated and the device is likely to be fused, so that (Ba a Me 1-a ) TiO 3 is 0.30 to 0.75 wt% in terms of SiO 2. It is preferable to add in such an amount.

本発明に係る半導体磁器組成物の製造方法の一例を以下に概説する。
まず、Ba,Me(Sr,Caの少なくとも1種、任意でPb),Tiをそれぞれ含む化合物を、(BaaMe1-a)TiO3の組成となるように秤量・配合し(0.4950≦a≦0.9500)、さらに任意でMn含有化合物および/またはSi含有化合物を添加する。その後、ポットミル等を用いて、純水中で混合し、濾過・乾燥・仮焼の工程を経てチタン酸バリウム系の仮焼粉末(BT仮焼粉末)を得る。仮焼は、1100〜1250℃にて、1〜2時間行うことが好ましい。
同様に、マグネシウム酸チタン酸ビスマスを得るために、Bi,Mg,Tiをそれぞれ含む化合物を、Bi(Mg0.5Ti0.5)O3の組成となるように秤量・配合する。その後、ポットミル等を用いて、純水中で混合し、濾過・乾燥・仮焼の工程を経てマグネシウム酸チタン酸ビスマスの仮焼粉末(BMT仮焼粉末)を得る。仮焼は、700〜900℃にて、1〜2時間行うことが好ましい。
その後、BT仮焼粉末とBMT仮焼粉末が、重量比にて1-x:xとなるよう、秤量・配合し、ポットミル等を用いて、純水中で湿式にて混合を行い、その後濾過、乾燥、造粒を行う。
この際、前記xの値は、前記Meが、Srであるか、または、Sr,CaおよびPbからなる群から選ばれる2種以上であるときは、0.0020≦x≦0.0050の範囲とし、前記MeがCaであるときは、0.0070≦x≦0.0090の範囲とする。
その後、得られた造粒粉をプレス成形機等にて成形し、焼成を行うことにより、本発明に係る半導体磁器組成物を得ることができる、焼成は、1270〜1350℃で1〜3時間行うことが好ましい。
An example of a method for producing a semiconductor ceramic composition according to the present invention will be outlined below.
First, a compound containing Ba, Me (at least one of Sr and Ca, optionally Pb), and Ti, respectively, is weighed and blended so as to have a composition of (Ba a Me 1-a ) TiO 3 (0.4950 ≦ a ≦ 0.9500), and optionally adding Mn-containing compounds and / or Si-containing compounds. Thereafter, using a pot mill or the like, mixing is performed in pure water, and a barium titanate-based calcined powder (BT calcined powder) is obtained through steps of filtration, drying, and calcining. The calcination is preferably performed at 1100 to 1250 ° C. for 1 to 2 hours.
Similarly, in order to obtain bismuth magnesium titanate, a compound containing Bi, Mg, and Ti is weighed and blended so as to have a composition of Bi (Mg 0.5 Ti 0.5 ) O 3 . Thereafter, using a pot mill or the like, the mixture is mixed in pure water, and a calcined powder (BMT calcined powder) of bismuth magnesium titanate is obtained through filtration, drying and calcining processes. The calcination is preferably performed at 700 to 900 ° C. for 1 to 2 hours.
Then, BT calcined powder and BMT calcined powder are weighed and blended so that the weight ratio is 1-x: x, mixed in pure water using a pot mill etc., and then filtered. Dry, granulate.
At this time, the value of x is in the range of 0.0020 ≦ x ≦ 0.0050 when the Me is Sr or two or more selected from the group consisting of Sr, Ca and Pb, and the Me When is Ca, the range is 0.0070 ≦ x ≦ 0.0090.
Thereafter, the obtained granulated powder is molded with a press molding machine or the like and fired to obtain the semiconductor ceramic composition according to the present invention. The firing is performed at 1270 to 1350 ° C. for 1 to 3 hours. Preferably it is done.

前記各金属元素を含む化合物としては、例えば各金属元素の酸化物、窒化物、炭酸塩等が挙げられる。
例えば、BaはBaCO3として、SrはSrCO3として、CaはCaCO3として、PbはPb3O4として、TiはTiO2として、BiはBi2O3として、MgはMgCO3として添加することができる。
これらの化合物を、各金属元素が、各仮焼粉末の組成式・組成値を満たすように配合し、上記手順にてBT仮焼粉末およびBMT仮焼粉末を得、その後、両者を混合し、上記手順にて焼成すればよい。なお、各金属元素が上記組成値を満たす割合で配合されていればよく、酸素の量は過剰となってもよい。
同様に、添加成分であるMnはMnCO3として、SiはSiO2やSi34として添加することができる。なお、焼成後の組成物において、MnやSiは主成分に固溶していてもよい。
Examples of the compound containing each metal element include oxides, nitrides, and carbonates of each metal element.
For example, Ba should be added as BaCO 3 , Sr as SrCO 3 , Ca as CaCO 3 , Pb as Pb 3 O 4 , Ti as TiO 2 , Bi as Bi 2 O 3 , and Mg as MgCO 3. Can do.
These compounds are blended so that each metal element satisfies the composition formula / composition value of each calcined powder, BT calcined powder and BMT calcined powder are obtained by the above procedure, and then both are mixed, What is necessary is just to bake in the said procedure. In addition, each metal element should just be mix | blended in the ratio which satisfy | fills the said composition value, and the quantity of oxygen may be excess.
Similarly, the additive component Mn can be added as MnCO 3 , and Si can be added as SiO 2 or Si 3 N 4 . In the composition after firing, Mn and Si may be dissolved in the main component.

(BaaMe1-a)TiO3仮焼粉末(BT仮焼粉末)の出発原料としてBaCO3、SrCO3、CaCO3、Pb3O4、TiO2を、添加成分としてMnCO3、SiO2を準備し、これらを表1〜4に示す所定の組成となるよう、秤量し、配合した。その後、ポットミルを用いて純水中で湿式混合し、濾過し、乾燥を行った後、約1200℃で120分間仮焼して、BT仮焼粉末を得た。表中のMnおよびSiO2の%はそれぞれ、その左欄に示す組成式に対するMn元素およびSiO2の重量%である。
同様に、Bi(Mg0.5Ti0.5)O3仮焼粉末(BMT仮焼粉末)の出発原料としてBi2O3、MgCO3、TiO2を準備し、これらを表1〜4に示す所定の組成となるよう、秤量し、配合した。その後、ポットミルを用いて純水中で湿式混合し、濾過し、乾燥を行った後、約850℃で120分間仮焼して、BMT仮焼粉末を得た。
その後、BT仮焼粉末、BMT仮焼粉末を、表1に示す重量比x(BT:BMT=1-x:x)で秤量、配合し、ポットミルを用いて純水中で湿式混合を行い、濾過、乾燥を行った後、ポリビニルアルコール(バインダー)を用いて造粒した。
得られた造粒粉を、プレス成形機によって、円柱状(直径18.0mm×厚さ3.0mm)に成形し、大気雰囲気下、約1300℃で60分間焼成を行い、焼成体を得た。
BaBa 3 , SrCO 3 , CaCO 3 , Pb 3 O 4 , TiO 2 as starting materials of (Ba a Me 1-a ) TiO 3 calcined powder (BT calcined powder), MnCO 3 , SiO 2 as additive components These were prepared, weighed and blended so as to have predetermined compositions shown in Tables 1 to 4. Thereafter, the mixture was wet-mixed in pure water using a pot mill, filtered, dried, and calcined at about 1200 ° C. for 120 minutes to obtain a BT calcined powder. The percentages of Mn and SiO 2 in the table are the percentages by weight of Mn element and SiO 2 with respect to the composition formula shown in the left column, respectively.
Similarly, Bi 2 O 3 , MgCO 3 , and TiO 2 are prepared as starting materials for Bi (Mg 0.5 Ti 0.5 ) O 3 calcined powder (BMT calcined powder), and the predetermined compositions shown in Tables 1 to 4 are used. And weighed and blended. Thereafter, the mixture was wet-mixed in pure water using a pot mill, filtered, dried, and calcined at about 850 ° C. for 120 minutes to obtain a BMT calcined powder.
Thereafter, BT calcined powder and BMT calcined powder are weighed and blended at a weight ratio x (BT: BMT = 1-x: x) shown in Table 1, and wet-mixed in pure water using a pot mill, After filtration and drying, the mixture was granulated using polyvinyl alcohol (binder).
The obtained granulated powder was molded into a cylindrical shape (diameter 18.0 mm × thickness 3.0 mm) with a press molding machine, and fired at about 1300 ° C. for 60 minutes in an air atmosphere to obtain a fired body.

また、BMT仮焼粉末を用いず、イットリウムを半導体化剤として用いた焼成体を製造した(比較例1〜3および5〜8それぞれの枝番1参照)。出発原料として、Y2O3を添加した以外は、上記実施例のBT仮焼粉末の製造と同じ手順で仮焼を行い、得られた仮焼粉末を、BMT仮焼粉末と混合せずに造粒したこと以外は、上記実施例と同じ手順にて焼成し、焼成体を製造した。
また、希土類元素もBMT仮焼粉末も添加しない焼成体を製造した(比較例1〜3および5〜8それぞれの枝番2参照)。実施例のBT仮焼粉末の製造と同じ手順で仮焼を行い、得られた仮焼粉末を、BMT仮焼粉末と混合せずに造粒したこと以外は、実施例と同じ手順にて焼成し、焼成体を製造した。
また、Me(Sr,Ca,Pb)を添加しない焼成体を製造した(比較例4−1〜4−5)。BT仮焼粉末製造時に、MeおよびMn,Siを添加しないこと以外は、実施例と同じ手順にて焼成体を製造した。
Also, a fired body using yttrium as a semiconducting agent was produced without using the BMT calcined powder (see branch numbers 1 of Comparative Examples 1 to 3 and 5 to 8). Except for adding Y 2 O 3 as a starting material, calcining was performed in the same procedure as the production of the BT calcined powder in the above example, and the obtained calcined powder was not mixed with the BMT calcined powder. Except having granulated, it baked in the same procedure as the said Example, and manufactured the sintered body.
In addition, a fired body to which neither a rare earth element nor a BMT calcined powder was added was produced (see branch numbers 2 of Comparative Examples 1 to 3 and 5 to 8). Calcination was performed in the same procedure as in the production of the BT calcined powder in the example, and the calcined powder obtained was calcined in the same procedure as in the example except that it was granulated without mixing with the BMT calcined powder. The fired body was manufactured.
Moreover, the sintered body which does not add Me (Sr, Ca, Pb) was manufactured (Comparative Examples 4-1 to 4-5). A fired body was manufactured in the same procedure as in the Examples, except that Me, Mn, and Si were not added when manufacturing the BT calcined powder.

このようにして得られた各焼成体の両面にIn−Ga電極を塗布し、比抵抗、耐電圧測定用の試料とした。比抵抗は温度25℃で測定し、耐電圧は、試料に印加する電圧を徐々に上昇させてゆき、絶縁破壊が生じる限界の電圧を測定することによって求めた。さらに、温度と抵抗の関係を測定し、キュリー点(CP)、PTCジャンプの桁数(比抵抗初期値からの変化桁数)を求めた。結果を表1〜4に示す。表1は、Meが(Sr+Ca+Pb)または(Ca+Pb)である場合のデータを示し、表2は、Meが(Sr+Ca)またはSr単独である場合のデータを示し、表3は、Meが(Sr+Pb)である場合のデータを示し、表4は、MeがCa単独である場合のデータを示す。
表中の評価が○の試料は、希土類不使用、比抵抗500Ω・cm以下、耐電圧200V以上を全て満たしたものであり、評価が×のものは、上記条件の一つ以上を満たさないものである。
In-Ga electrodes were applied to both sides of each fired body thus obtained to obtain samples for measuring specific resistance and withstand voltage. The specific resistance was measured at a temperature of 25 ° C., and the withstand voltage was obtained by gradually increasing the voltage applied to the sample and measuring the limit voltage at which dielectric breakdown occurred. Furthermore, the relationship between temperature and resistance was measured, and the number of Curie points (CP) and PTC jump digits (number of digits changed from the initial value of specific resistance) were obtained. The results are shown in Tables 1-4. Table 1 shows the data when Me is (Sr + Ca + Pb) or (Ca + Pb), Table 2 shows the data when Me is (Sr + Ca) or Sr alone, and Table 3 shows that Me is (Sr + The data when Pb) is shown, and Table 4 shows the data when Me is Ca alone.
Samples with an evaluation of ○ in the table are those that do not use rare earths, have a specific resistance of 500 Ω · cm or less, and withstand voltage of 200 V or more, and those with an evaluation of × do not satisfy one or more of the above conditions It is.

Figure 0005881169
Figure 0005881169

Figure 0005881169
Figure 0005881169

Figure 0005881169
Figure 0005881169

Figure 0005881169
Figure 0005881169

表1に示すとおり、本発明の組成式で表されるチタン酸バリウム系の半導体磁器組成物は、半導体化剤としてイットリウムを用いた比較例の試料(比較例1〜3,5〜8それぞれの枝番1の試料)と比べて遜色のない特性を示した。これに対し、半導体化剤としてイットリウムを用いず、また、マグネシウム酸チタン酸ビスマスも添加しなかった比較例の試料(比較例1〜3,5〜8それぞれの枝番2の試料)は半導体化しなかった。   As shown in Table 1, the barium titanate-based semiconductor ceramic composition represented by the composition formula of the present invention is a comparative sample using yttrium as a semiconducting agent (Comparative Examples 1 to 3, 5 to 8 respectively). Compared with the branch No. 1 sample), the characteristics were inferior. On the other hand, the sample of the comparative example which did not use yttrium as a semiconducting agent and also did not add bismuth magnesium titanate (samples of branch numbers 2 of Comparative Examples 1 to 3, 5 to 8) was made into a semiconductor. There wasn't.

また、マグネシウム酸チタン酸ビスマスを添加した場合であっても、xが所定の範囲にない場合は、比抵抗が増大して500Ω・cmを超えるか、耐電圧が低下して200V未満となり、正特性サーミスタ材料に要求される特性を満たさなかった。また、試料によっては、PTCジャンプ桁数が3.0以下になる試料が見られた。より具体的には、Meが、Sr+Ca+Pb、Ca+Pb、Sr+Ca、Sr+Pb、またはSrの場合は、xが0.0020≦x≦0.0050の範囲を外れた場合(比較例1〜3,5〜7それぞれの枝番3および4の試料)、MeがCaの場合は、xが0.0070≦x≦0.0090の範囲を外れた場合(比較例8−3,8−4)、マグネシウム酸チタン酸ビスマスを添加しても、正特性サーミスタ材料に要求される特性を備えた半導体磁器組成物は得られなかった。
また、マグネシウム酸チタン酸ビスマスを添加した場合であっても、Meを添加していない比較例4−1〜4−5の試料は、半導体化しないか、あるいは、比抵抗が増大するか耐電圧が低下し、正特性サーミスタ材料に要求される特性を満たさなかった。
また、Baの添加量が少なすぎる場合(a<0.4950である比較例1−5,3−5)、比抵抗が増大する傾向が見られ、Baの添加量が多すぎる場合(a>0.9500である比較例5−5)、耐電圧が低下する傾向が見られた。
In addition, even when bismuth magnesium titanate is added, if x is not within the predetermined range, the specific resistance increases and exceeds 500 Ω · cm, or the withstand voltage decreases to less than 200 V. Characteristic thermistor material does not meet the required characteristics. In addition, depending on the sample, a sample with a PTC jump digit number of 3.0 or less was observed. More specifically, when Me is Sr + Ca + Pb, Ca + Pb, Sr + Ca, Sr + Pb, or Sr, when x is out of the range of 0.0020 ≦ x ≦ 0.0050 (each of Comparative Examples 1 to 3, 5 to 7) (Samples of branch numbers 3 and 4) When Me is Ca, when x is out of the range of 0.0070 ≦ x ≦ 0.0090 (Comparative Examples 8-3 and 8-4), bismuth magnesium titanate is added. However, a semiconductor ceramic composition having characteristics required for a positive temperature coefficient thermistor material could not be obtained.
Moreover, even when bismuth magnesium titanate is added, the samples of Comparative Examples 4-1 to 4-5 without adding Me do not become semiconductors or increase in specific resistance or withstand voltage. And the characteristics required for the positive temperature coefficient thermistor material were not satisfied.
Further, when the addition amount of Ba is too small (Comparative Examples 1-5 and 3-5 where a <0.4950), there is a tendency for the specific resistance to increase, and when the addition amount of Ba is too large (a> 0.9500 There was a tendency for the withstand voltage to decrease in some Comparative Examples 5-5).

上記実験等の結果から、Baの組成値が0.4950〜0.9500であり、MeがSrまたはCaのいずれか1種であるか、または、Sr,CaおよびPbからなる群から選ばれる2種以上であり、さらに、前記xが特定の範囲となるようにマグネシウム酸チタン酸ビスマスを配合した場合、比抵抗が低く、耐電圧が高く、PTCジャンプ桁が4.0以上の半導体磁器組成物が得られることが分かった。   From the results of the above experiments, the composition value of Ba is 0.4950 to 0.9500, Me is any one of Sr or Ca, or two or more selected from the group consisting of Sr, Ca and Pb. Furthermore, it was found that when bismuth magnesium titanate was blended so that x was in a specific range, a semiconductor ceramic composition having a low specific resistance, a high withstand voltage, and a PTC jump digit of 4.0 or more was obtained. It was.

上記実験から、本発明によれば、チタン酸バリウム系組成に半導体化剤である希土類元素の代わりにマグネシウム酸チタン酸ビスマスを添加した組成系とすることにより、希土類元素を用いた半導体磁器組成物と同等の性能を実現できることが分かった。   From the above experiment, according to the present invention, a semiconductor ceramic composition using a rare earth element was obtained by adding bismuth magnesium titanate instead of a rare earth element as a semiconducting agent to a barium titanate composition. It was found that the same performance can be realized.

Claims (3)

Ba,Me,Tiをそれぞれ含む化合物を秤量、混合、仮焼して、組成式(BaA compound containing Ba, Me, and Ti is weighed, mixed, and calcined, and the composition formula (Ba aa MeMe 1-a1-a )TiO) TiO 3Three で表されるBT仮焼粉末を得る工程(aは0.4950≦a≦0.9500であり、Meは、SrまたはCaのいずれか1種、または、Sr,CaおよびPbからなる群から選ばれる2種以上)、(A is 0.4950 ≦ a ≦ 0.9500, Me is any one of Sr and Ca, or two or more selected from the group consisting of Sr, Ca and Pb) ),
Bi,Mg,Tiをそれぞれ含む化合物を秤量、混合、仮焼して、組成式Bi(MgA compound containing Bi, Mg, and Ti is weighed, mixed, and calcined, and the composition formula Bi (Mg 0.50.5 TiTi 0.50.5 )O) O 3Three で表されるBMT仮焼粉末を得る工程、A step of obtaining a BMT calcined powder represented by:
前記BT仮焼粉末とBMT仮焼粉末とを、1-x:xの重量比にて混合し、造粒して造粒粉を得る工程(xは、MeがSrであるか、または、Sr,CaおよびPbからなる群から選ばれる2種以上であるときは、0.0020≦x≦0.0050であり、MeがCaであるときは、0.0070≦x≦0.0090)、およびThe step of mixing the BT calcined powder and the BMT calcined powder at a weight ratio of 1-x: x and granulating to obtain a granulated powder (x is Me is Sr or Sr , Ca and Pb are two or more selected from the group consisting of 0.0020 ≦ x ≦ 0.0050, and when Me is Ca, 0.0070 ≦ x ≦ 0.0090), and
前記造粒粉を、成形、焼成する工程The step of molding and baking the granulated powder
を含む、半導体磁器組成物の製造方法。A method for producing a semiconductor ceramic composition, comprising:
希土類元素を使用しないことを特徴とする、請求項1に記載の半導体磁器組成物の製造方法。2. The method for producing a semiconductor ceramic composition according to claim 1, wherein no rare earth element is used. 前記BT仮焼粉末を得る工程において、Mn含有化合物およびSi含有化合物を添加混合した後、仮焼することを特徴とする、請求項1または2に記載の製造方法。The method according to claim 1 or 2, wherein in the step of obtaining the BT calcined powder, the Mn-containing compound and the Si-containing compound are added and mixed, and then calcined.
JP2012177851A 2012-08-10 2012-08-10 Method for producing semiconductor porcelain composition Active JP5881169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012177851A JP5881169B2 (en) 2012-08-10 2012-08-10 Method for producing semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177851A JP5881169B2 (en) 2012-08-10 2012-08-10 Method for producing semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JP2014034505A JP2014034505A (en) 2014-02-24
JP5881169B2 true JP5881169B2 (en) 2016-03-09

Family

ID=50283709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177851A Active JP5881169B2 (en) 2012-08-10 2012-08-10 Method for producing semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JP5881169B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369902B2 (en) * 2014-10-10 2018-08-08 ニチコン株式会社 Semiconductor porcelain composition and method for producing the same
JP6604653B2 (en) * 2016-03-30 2019-11-13 ニチコン株式会社 Semiconductor porcelain composition and method for producing the same
CN110317056B (en) * 2018-03-30 2022-03-01 Tdk株式会社 Dielectric composition and electronic component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248465A (en) * 1988-08-05 1990-02-19 Hakusan Seisakusho:Kk Barium titanate-based semiconductor porcelain
JPH08306509A (en) * 1995-05-10 1996-11-22 Matsushita Electric Ind Co Ltd Positive temperature coefficient thermistor and its manufacturing method
JPH1092605A (en) * 1996-09-11 1998-04-10 Matsushita Electric Ind Co Ltd Manufacture of positive temperature thermistor
JP3319314B2 (en) * 1996-11-20 2002-08-26 株式会社村田製作所 Barium titanate-based semiconductor porcelain composition

Also Published As

Publication number Publication date
JP2014034505A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
KR101782326B1 (en) Semiconductor ceramic composition and ptc thermistor
WO2014141814A1 (en) Ptc thermistor ceramic composition and ptc thermistor element
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
KR20170094085A (en) Semiconductor ceramic composition and ptc thermistor
JP6604653B2 (en) Semiconductor porcelain composition and method for producing the same
JP5881169B2 (en) Method for producing semiconductor porcelain composition
JP5988388B2 (en) Semiconductor porcelain composition and method for producing the same
JP2000143338A (en) Semiconductive ceramic and semiconductive ceramic element produced by using the ceramic
US6071842A (en) Barium titanate-based semiconductor ceramic
JP4788274B2 (en) Oxide conductor porcelain and resistor having CTR characteristics
JP6075877B2 (en) Semiconductor porcelain composition and method for producing the same
JP2007153659A (en) Dielectric porcelain composition and electronic component
JP6369902B2 (en) Semiconductor porcelain composition and method for producing the same
JP4058140B2 (en) Barium titanate semiconductor porcelain
JP4779466B2 (en) Barium titanate semiconductor porcelain composition
JP4269485B2 (en) Lead barium titanate semiconductor ceramic composition
WO2004110952A1 (en) Barium titanate based semiconductor porcelain composition
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPH07118061A (en) Barium titanate-based semiconductor porcelain composition
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JP3617795B2 (en) Positive thermistor porcelain composition
JPH07220902A (en) Barium titanate semiconductor ceramic
JPH1092605A (en) Manufacture of positive temperature thermistor
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160128

R150 Certificate of patent or registration of utility model

Ref document number: 5881169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250