JP4269485B2 - Lead barium titanate semiconductor ceramic composition - Google Patents

Lead barium titanate semiconductor ceramic composition Download PDF

Info

Publication number
JP4269485B2
JP4269485B2 JP2000144807A JP2000144807A JP4269485B2 JP 4269485 B2 JP4269485 B2 JP 4269485B2 JP 2000144807 A JP2000144807 A JP 2000144807A JP 2000144807 A JP2000144807 A JP 2000144807A JP 4269485 B2 JP4269485 B2 JP 4269485B2
Authority
JP
Japan
Prior art keywords
semiconductor ceramic
ceramic composition
glass
lead
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000144807A
Other languages
Japanese (ja)
Other versions
JP2001328862A (en
Inventor
博文 木村
浜田一之
慎輔 治田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2000144807A priority Critical patent/JP4269485B2/en
Publication of JP2001328862A publication Critical patent/JP2001328862A/en
Application granted granted Critical
Publication of JP4269485B2 publication Critical patent/JP4269485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、120〜490℃の温度で任意のキュリー点を有し、高温での使用においても優れたPTCR特性を有するチタン酸バリウム鉛系半導体磁器組成物に関するものである。
【0002】
【従来の技術】
従来、チタン酸バリウム系の半導体磁器組成物において、キュリー点を高温側にシフトさせるために、Baの一部をPbで置換することが知られている。しかしながら、Pb置換する場合には焼成時のPbの揮発による特性の劣化が問題となっている。特に、Pb置換量が50モル%を超えたキュリー点が300℃以上のものにおいては、室温抵抗の急激な増加によりPTCR特性の著しい劣化が生じる。
この問題を解決するために、例えば特開平4−21565号公報には、チッ化ホウ素(BN)を0.8〜4.5モル%添加することにより、焼結性が改善されて半導体化が促進されることが開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記開示された磁器組成物は、焼成により粒子径が異なる成長をするため、大きな粒子の存在により耐電圧が低くPTCRサーミスタとして用いる場合には信頼性に課題を有していた。
【0004】
【課題を解決するための手段】
前記課題を解決するために、本発明者らは鋭意検討を行った結果、軟化点が低いガラス物質を添加した場合には、1000〜1200℃と従来よりも低い温度で焼成することができるため、焼成時にPbの揮発が抑制され、Pb置換量が広範囲において、特に従来では達成し得なかったPbが60〜90モル%と高濃度領域において、低抵抗素子が得られることを見出し、高いキュリー温度を有する高温用のPTCR材料用のチタン酸バリウム鉛系半導体磁器組成物を提供できることを見出した。本発明は、120〜490℃の温度で任意のキュリー点を有し、特に、高温での使用においても優れたPTCR特性を有すると共に電流制限素子としても使用可能なチタン酸バリウム鉛系半導体磁器組成物を提供することを目的とする。本発明は、(Ba1-xPbx)TiO3(式中、xは0≦x<1である。)を母体としたチタン酸バリウム鉛系半導体磁器組成物において、チタン酸バリウム鉛系半導体磁器組成物は、前記母体に半導体化剤軟化点が950℃以下のガラス物質とを混合し焼成したものであり、前記ガラス物質は母体に対して0.5〜3.0wt%の範囲であり、前記ガラス物質はホウケイ酸鉛ガラスであることを特徴とするチタン酸バリウム鉛系半導体磁器組成物に関する。また、(Ba 1-x Pb x )TiO 3 (式中、xは0≦x<1である。)を母体としたチタン酸バリウム鉛系半導体磁器組成物において、チタン酸バリウム鉛系半導体磁器組成物は、前記母体に半導体化剤と軟化点が950℃以下のガラス物質とを混合し焼成したものであり、前記ガラス物質は母体に対して0.5〜3.0wt%の範囲であり、前記ガラス物質はPb−Si、Pb−Ge、B−Si、B−Si−Pb、B−Ba及びBa−Pb−Siから選ばれる少なくとも1種以上であることを特徴とするチタン酸バリウム鉛系半導体磁器組成物に関する。
【0005】
【発明の実施の形態】
本発明におけるガラス物質としては、軟化点が950℃以下のものであれば特に限定されないが、Pb、B及びSiから選ばれる少なくとも1種以上を含有するものが好ましい。ガラス物質の軟化点が過度に低い場合には得られたチタン酸バリウム鉛系半導体磁器組成物がRTCR特性を示さなくなる場合があるので、ガラス物質の軟化点は300℃以上が好ましい。また、ガラス物質の軟化点が950℃を超えて過度に高くなると焼成温度を1200℃以下とすることができなくなる。
ガラス物質の具体的としては、Pb−Si、Pb−Ge、B−Si、B−Si−Pb、B−Ba及びBa−Pb−Siから選ばれる少なくとも1種以上が好ましい。
ガラス物質は、その添加量が過度に少ない場合には、焼結が十分に促進されず、また、過度に多い場合には、異相を形成することにより室温比抵抗の増加が起こることがある。このためガラス物質の添加量は母体であるチタン酸バリウム全重量に対して0.5〜3.0wt%の範囲で添加するのが好ましい。なお、焼結性を損なわない範囲であれば前記ガラス物質中に少量の不融物が含まれていてもよい。
【0006】
本発明のチタン酸バリウム鉛系半導体磁器組成物におけるガラス成分の添加効果は次の通りと考えられる。
ガラス物質として添加された、例えばホウケイ酸鉛ガラスは、チタン酸バリウム鉛系半導体磁器組成物がペロブスカイト結晶構造を形成する温度や半導体化温度を下げて、焼成時のPbの蒸発を抑制する効果がある。また、添加されたホウケイ酸鉛ガラスは、340℃付近から軟化して粘性流動機構により、粒子構造の均一化ならびに粒成長を促進し、従来より低温での緻密化を達成する。結果として、公知試料に比べ低比抵抗化となり、耐電圧も高く良好となるものと推定される。また、高濃度Nb25の添加量でも半導体化を示す。
【0007】
本発明における半導体化剤としては、Nb25、Y23、Sb25、La23のような3価または5価金属酸化物の少なくとも1種が挙げられる。半導体化剤の添加量が過度に多い場合や過度に少ない場合には、PTCR特性を示さなくなることがあるので、半導体化剤は母体に対して0.11〜0.22モル%の範囲で添加するのが好ましい。
【0008】
本発明の組成物により作製した半導体磁器は、室温比抵抗(R25)が5〜29000Ω・cmの値を示し、抵抗のジャンプ幅が3〜5桁と良好なPTCR特性を有し、特に低抵抗素子が得られる。また、耐電圧が高いことにより高信頼性を有し、小型化が可能となる。
【0009】
本発明のチタン酸バリウム鉛系半導体磁器組成物において、Pbの置換量を大きくするとともにTcが高くなり、また抵抗のジャンプ幅も大きくなり、特にBaの60〜90モル%をPbで置換することにより、高温での使用において優れたPTCR特性を有する半導体磁器組成物を提供できる。
【0010】
【実施例】
以下、本発明について、実施例を示して具体的に説明する。
【0011】
実施例1
出発原料として市販のPbO、BaCO3、TiO2、Nb25、ホウケイ酸鉛ガラス(品番KF−27;岩城硝子(株)製:Pb:Si:B=83:0.4:12(wt%);軟化点340℃)の粉末を用いて表1に示す組成になるように秤量後、ボールミル混合を18時間行った。脱媒した後、800〜950℃で20〜60分仮焼を行った。
仮焼粉は、ボールミルで18時間粉砕混合を行った。脱媒した後、バインダー水溶液を添加し、蒸発乾固後、フルイにより造粒し、200kg/cm2の圧力で7mmφ×1.2mmtのペレットに成形した。それを大気中で1000〜1200℃の温度で1時間保持する条件で焼成した。焼結体の両面にオーミック性銀電極を塗布し、620℃、10分の条件で電極焼き付けを行った。得られた試料を用いて抵抗−温度特性および耐電圧の測定を行った。電気特性、密度を表2に示す。半導体化剤としてNb以外の3価、5価の元素においても同様の効果が得られた。なお、表1、表2において※印を付したものは本発明の範囲外のもので比較のために記載した。比較試料の作製は実施例に記載した方法と同様に行った。
試料番号1〜4はPbOを60モル%とした母体に対し、半導体化剤としてNb25を0.13モル%、ホウケイ酸鉛ガラスを全重量に対し0.5〜4.0wt%添加したものである。
【0012】
試料番号5〜9はPbOを60モル%とした母体に対し、半導体化剤としてNb25を0.11〜0.22モル%、ホウケイ酸鉛ガラスを全重量に対し、1.0wt%添加したものである。
試料番号10〜14はPbOを0〜90モル%とした母体に対し、半導体化剤としてNb25を0.13〜0.16モル%、ホウケイ酸鉛ガラスを全重量に対し、1.0wt%添加したものである。
表1に原料仕込み組成を示す。表2に電気特性、密度を示す。
試料番号15〜20はホウケイ酸鉛ガラスに代えて他のガラス物質を使用した場合である。ガラス物質の種類と添加量のほかは試料2の場合と同様に行った。表3にガラス物質の種類、軟化点、添加量および比抵抗を示す。
【0013】
表1〜表3から明らかなようにチタン酸バリウム鉛系の母体に対して半導体化剤を0.11〜0.22モル%、ガラス物質を全重量に対し0.5〜1.5wt%の範囲で加えられた試料は、Tcが127〜490℃の範囲で室温比抵抗(R25)が8〜29000Ω・cmのを有するPTCR特性が得られた。表2から室温比抵抗が小さく、且つ耐電圧が高いことがわかる。
【0014】
図1および図2は、ホウケイ酸鉛ガラスを全重量に対し1.0wt%添加した試料(試料番号2)と従来公知の試料(チッ化ホウ素;BN)の焼結体の粒子構造を示すSEM写真図を示したものである。従来公知の試料はNb25を0.13モル%とし、ホウケイ酸鉛ガラスに代えてBNを0.085wt%としたほかは試料番号2と同様な方法により作製した。従来公知の試料では2μm〜20μm程度の粒子が混在しているのに対して、ホウケイ酸鉛ガラスを添加したものは10μm程度の均一な粒子を形成する。
【0015】
図3は、ホウケイ酸鉛ガラスを添加した試料と従来公知の試料(BN添加;添加量0.067、0.085、0.17、0.34wt%)の室温比抵抗値と耐電圧との関係を示す。これより、ホウケイ酸鉛ガラスを添加することにより均一な粒子成長が生じ、従来公知の試料に比べ低抵抗で耐電圧の向上がみられることがわかる。
【0016】
本発明にかかる母体に対してPbが0.1〜90mol%の範囲において、ホウケイ酸鉛ガラスを添加した場合には、Pb置換量が低濃度領域から高濃度領域までの広い範囲で低比抵抗であり、特に60〜90モル%の領域において室温比抵抗が小さいことがわかる。したがって、低温用PTCR材料だけでなく、395〜490℃というような高いキュリー温度を有する高温度用のPTCR材料を提供できる。
【0017】
図4は、本発明にかかる母体に対してPbを0〜90モル%添加した半導体磁器(試料番号2、10〜14)の比抵抗−温度特性を示したものである。
【0018】
【発明の効果】
チタン酸バリウム鉛に軟化点が950℃以下のガラス物質を添加することにより、Tc=120〜490℃の高い温度領域で小さな室温比抵抗を有する良好なPTCR特性を有する半導体磁器を提供できる。また、軟化点が950℃以下のガラス物質を添加することによって均一な粒子径を有する磁器が得られ、耐電圧が高い半導体磁器を提供できる。さらに、室温で低比抵抗であり電流制限素子としても使用することできる。このチタン酸バリウム鉛系半導体磁器組成物は安価な原料で容易に製造できるため、特に高温用のPTCR材料として工業的価値は極めて大きい。
【0019】
【表1】

Figure 0004269485
【0020】
【表2】
Figure 0004269485
【0021】
【表3】
Figure 0004269485

【図面の簡単な説明】
【図1】本発明品の試料の粒子構造を示す図面に代わる写真図である。
【図2】従来品の試料の粒子構造を示す図面に代わる写真図である。
【図3】ホウケイ酸鉛ガラスを添加した試料と従来公知の試料の室温比抵抗値と耐電圧との関係を示す図である。
【図4】本発明品の試料の比抵抗−温度特性を示したものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead barium titanate semiconductor ceramic composition having an arbitrary Curie point at a temperature of 120 to 490 ° C. and having excellent PTCR characteristics even when used at a high temperature.
[0002]
[Prior art]
Conventionally, in a barium titanate-based semiconductor ceramic composition, it is known that a part of Ba is replaced with Pb in order to shift the Curie point to a high temperature side. However, when Pb substitution is performed, deterioration of characteristics due to volatilization of Pb during firing is a problem. In particular, when the Pb substitution amount exceeds 50 mol% and the Curie point is 300 ° C. or higher, the PTCR characteristics are significantly deteriorated due to a rapid increase in the room temperature resistance.
In order to solve this problem, for example, in Japanese Patent Laid-Open No. 4-21565, by adding 0.8 to 4.5 mol% of boron nitride (BN), the sinterability is improved and the semiconductor is made. It is disclosed to be promoted.
[0003]
[Problems to be solved by the invention]
However, since the disclosed porcelain composition grows with different particle diameters by firing, the withstand voltage is low due to the presence of large particles, and there is a problem in reliability when used as a PTCR thermistor.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, when a glass material having a low softening point is added, the glass can be fired at 1000 to 1200 ° C., which is lower than the conventional temperature. It has been found that low resistance elements can be obtained in a high concentration region where Pb volatilization is suppressed during firing, Pb substitution amount is wide, especially in the high concentration region of 60 to 90 mol% which could not be achieved conventionally. It has been found that a barium lead titanate semiconductor ceramic composition for a high temperature PTCR material having a temperature can be provided. The present invention has an arbitrary Curie point at a temperature of 120 to 490 ° C., and has a barium lead titanate semiconductor ceramic composition that has an excellent PTCR characteristic even when used at a high temperature and can be used as a current limiting element. The purpose is to provide goods. The present invention, (wherein, x is 0 ≦ x <1 and is.) (Ba 1-x Pb x) TiO 3 in the barium titanate lead-based semiconductor ceramic composition as a host, barium titanate-lead based semiconductor The porcelain composition is obtained by mixing the base material with a semiconducting agent and a glass material having a softening point of 950 ° C. or lower and firing the mixture, and the glass material is in a range of 0.5 to 3.0 wt% with respect to the base material. Further, the present invention relates to a lead barium titanate semiconductor ceramic composition , wherein the glass substance is lead borosilicate glass . Further, in a barium lead titanate-based semiconductor ceramic composition based on (Ba 1-x Pb x ) TiO 3 (where x is 0 ≦ x <1), a barium lead titanate-based semiconductor ceramic composition The product is obtained by mixing the base material with a semiconducting agent and a glass material having a softening point of 950 ° C. or lower and firing the glass material, and the glass material is in a range of 0.5 to 3.0 wt% with respect to the base material. The glass material is at least one selected from Pb—Si, Pb—Ge, B—Si, B—Si—Pb, B—Ba and Ba—Pb—Si The present invention relates to a semiconductor ceramic composition.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The glass material in the present invention is not particularly limited as long as it has a softening point of 950 ° C. or lower, but preferably contains at least one selected from Pb, B and Si. When the softening point of the glass material is excessively low, the obtained barium lead titanate semiconductor ceramic composition may not exhibit RTCR characteristics. Therefore, the softening point of the glass material is preferably 300 ° C. or higher. Moreover, if the softening point of the glass substance is excessively higher than 950 ° C., the firing temperature cannot be reduced to 1200 ° C. or lower.
Specifically, the glass material is preferably at least one selected from Pb—Si, Pb—Ge, B—Si, B—Si—Pb, B—Ba, and Ba—Pb—Si.
When the glass material is added in an excessively small amount, the sintering is not sufficiently promoted, and when it is excessively large, an increase in room temperature resistivity may occur by forming a heterogeneous phase. For this reason, it is preferable to add the glass substance in the range of 0.5 to 3.0 wt% with respect to the total weight of the base barium titanate. Note that a small amount of infusible material may be included in the glass material as long as the sinterability is not impaired.
[0006]
The effect of adding the glass component in the barium lead titanate semiconductor ceramic composition of the present invention is considered as follows.
For example, lead borosilicate glass added as a glass substance has the effect of reducing the temperature at which the barium lead titanate-based semiconductor ceramic composition forms a perovskite crystal structure and the semiconductor temperature, thereby suppressing the evaporation of Pb during firing. is there. Also, the added lead borosilicate glass softens from around 340 ° C. and promotes uniform grain structure and grain growth by a viscous flow mechanism, and achieves densification at a lower temperature than before. As a result, it is presumed that the specific resistance is lower than that of the known sample, and the withstand voltage is high and good. In addition, the addition of high-concentration Nb 2 O 5 shows semiconductorization.
[0007]
Examples of the semiconducting agent in the present invention include at least one trivalent or pentavalent metal oxide such as Nb 2 O 5 , Y 2 O 3 , Sb 2 O 5 , and La 2 O 3 . When the addition amount of the semiconducting agent is excessively large or too small, the PTCR characteristic may not be exhibited. Therefore, the semiconducting agent is added in the range of 0.11 to 0.22 mol% with respect to the base. It is preferable to do this.
[0008]
The semiconductor ceramic produced by the composition of the present invention has a room temperature specific resistance (R 25 ) of 5 to 29000 Ω · cm, a resistance jump width of 3 to 5 digits and good PTCR characteristics, and particularly low A resistance element is obtained. In addition, the high withstand voltage enables high reliability and downsizing.
[0009]
In the barium lead titanate semiconductor ceramic composition of the present invention, the substitution amount of Pb is increased, the Tc is increased, and the jump width of resistance is increased. In particular, 60 to 90 mol% of Ba is substituted with Pb. Thus, a semiconductor ceramic composition having excellent PTCR characteristics when used at high temperatures can be provided.
[0010]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
[0011]
Example 1
Commercially available PbO, BaCO 3 , TiO 2 , Nb 2 O 5 , lead borosilicate glass (Part No. KF-27; manufactured by Iwaki Glass Co., Ltd .: Pb: Si: B = 83: 0.4: 12 (wt) %); Powder having a softening point of 340 ° C.) was weighed so as to have the composition shown in Table 1, and then ball mill mixing was performed for 18 hours. After removing the solvent, calcination was performed at 800 to 950 ° C. for 20 to 60 minutes.
The calcined powder was pulverized and mixed in a ball mill for 18 hours. After removing the solvent, an aqueous binder solution was added, evaporated to dryness, granulated with a sieve, and formed into 7 mmφ × 1.2 mmt pellets at a pressure of 200 kg / cm 2 . It was calcined in the atmosphere at a temperature of 1000 to 1200 ° C. for 1 hour. An ohmic silver electrode was applied to both surfaces of the sintered body, and electrode baking was performed at 620 ° C. for 10 minutes. Using the obtained sample, resistance-temperature characteristics and withstand voltage were measured. Table 2 shows the electrical characteristics and density. Similar effects were obtained with trivalent and pentavalent elements other than Nb as the semiconducting agent. In Tables 1 and 2, those marked with * are outside the scope of the present invention and are shown for comparison. The comparative sample was produced in the same manner as described in the examples.
Sample Nos. 1 to 4 added 0.13 mol% of Nb 2 O 5 as a semiconducting agent and 0.5 to 4.0 wt% of lead borosilicate glass as a semiconducting agent with respect to the base having 60 mol% of PbO. It is a thing.
[0012]
Sample Nos. 5 to 9 are based on 0.1% to 0.22 mol% of Nb 2 O 5 as a semiconducting agent and 1.0 wt% of lead borosilicate glass with respect to the total weight with respect to the base having 60 mol% of PbO. It is what was added.
Sample Nos. 10 to 14 are based on 0.1 to 0.16 mol% of Nb 2 O 5 as a semiconducting agent and lead borosilicate glass with respect to the total weight with respect to the base having 0 to 90 mol% of PbO. 0 wt% added.
Table 1 shows the raw material charging composition. Table 2 shows electrical characteristics and density.
Sample numbers 15 to 20 are cases in which other glass substances are used instead of lead borosilicate glass. The procedure was the same as in the case of Sample 2 except for the type of glass material and the amount added. Table 3 shows the types of glass substances, softening points, addition amounts, and specific resistances.
[0013]
As is apparent from Tables 1 to 3, 0.11 to 0.22 mol% of the semiconducting agent and 0.5 to 1.5 wt% of the glass material based on the total weight with respect to the lead barium titanate base. range added samples, Tc the room temperature resistivity (R 25) in the range of one hundred twenty-seven to four hundred and ninety ° C. was obtained PTCR characteristic having a value of 8~29000Ω · cm. Table 2 shows that the room temperature specific resistance is small and the withstand voltage is high.
[0014]
1 and 2 are SEMs showing the particle structures of a sintered body of a sample (sample number 2) to which 1.0 wt% of lead borosilicate glass is added based on the total weight and a conventionally known sample (boron nitride; BN). A photograph is shown. A conventionally known sample was prepared by the same method as Sample No. 2 except that Nb 2 O 5 was 0.13 mol% and BN was 0.085 wt% instead of lead borosilicate glass. In the conventionally known sample, particles having a size of about 2 μm to 20 μm are mixed, whereas those added with lead borosilicate glass form uniform particles of about 10 μm.
[0015]
FIG. 3 shows the room temperature specific resistance value and withstand voltage of a sample to which lead borosilicate glass is added and a conventionally known sample (BN addition; addition amount 0.067, 0.085, 0.17, 0.34 wt%). Show the relationship. From this, it can be seen that by adding lead borosilicate glass, uniform particle growth occurs, and the withstand voltage is improved with lower resistance than that of a conventionally known sample.
[0016]
When lead borosilicate glass is added in the range of 0.1 to 90 mol% of Pb with respect to the matrix according to the present invention, the Pb substitution amount is low in a wide range from a low concentration region to a high concentration region. It can be seen that the room temperature resistivity is particularly small in the region of 60 to 90 mol%. Therefore, not only a low-temperature PTCR material but also a high-temperature PTCR material having a high Curie temperature of 395 to 490 ° C. can be provided.
[0017]
FIG. 4 shows specific resistance-temperature characteristics of a semiconductor ceramic (sample numbers 2, 10 to 14) in which 0 to 90 mol% of Pb is added to the matrix according to the present invention.
[0018]
【The invention's effect】
By adding a glass material having a softening point of 950 ° C. or lower to lead barium titanate, a semiconductor ceramic having good PTCR characteristics having a small room temperature resistivity in a high temperature range of Tc = 120 to 490 ° C. can be provided. Further, by adding a glass material having a softening point of 950 ° C. or lower, a ceramic having a uniform particle diameter can be obtained, and a semiconductor ceramic having a high withstand voltage can be provided. Furthermore, it has a low specific resistance at room temperature and can be used as a current limiting element. Since this barium lead titanate-based semiconductor ceramic composition can be easily manufactured with an inexpensive raw material, the industrial value is particularly great as a PTCR material for high temperatures.
[0019]
[Table 1]
Figure 0004269485
[0020]
[Table 2]
Figure 0004269485
[0021]
[Table 3]
Figure 0004269485

[Brief description of the drawings]
FIG. 1 is a photograph instead of a drawing showing the particle structure of a sample of the present invention.
FIG. 2 is a photograph instead of a drawing showing the particle structure of a conventional sample.
FIG. 3 is a diagram showing a relationship between a room temperature specific resistance value and a withstand voltage of a sample added with lead borosilicate glass and a conventionally known sample.
FIG. 4 shows specific resistance-temperature characteristics of a sample of the present invention.

Claims (3)

(Ba1-xPbx)TiO3(式中、xは0≦x<1である。)を母体としたチタン酸バリウム鉛系半導体磁器組成物において、チタン酸バリウム鉛系半導体磁器組成物は、前記母体に半導体化剤軟化点が950℃以下のガラス物質とを混合し焼成したものであり、前記ガラス物質は母体に対して0.5〜3.0wt%の範囲であり、前記ガラス物質はホウケイ酸鉛ガラスであることを特徴とするチタン酸バリウム鉛系半導体磁器組成物。In the barium lead titanate semiconductor ceramic composition based on (Ba 1-x Pb x ) TiO 3 (where x is 0 ≦ x <1), the barium lead titanate semiconductor ceramic composition is: The base material is a mixture of a semiconducting agent and a glass material having a softening point of 950 ° C. or lower, which is fired. The glass material is in the range of 0.5 to 3.0 wt% relative to the base material, and the glass A barium lead titanate semiconductor ceramic composition characterized in that the material is lead borosilicate glass . (Ba 1-x Pb x )TiO 3 (式中、xは0≦x<1である。)を母体としたチタン酸バリウム鉛系半導体磁器組成物において、チタン酸バリウム鉛系半導体磁器組成物は、前記母体に半導体化剤と軟化点が950℃以下のガラス物質とを混合し焼成したものであり、前記ガラス物質は母体に対して0.5〜3.0wt%の範囲であり、前記ガラス物質はPb−Si、Pb−Ge、B−Si、B−Si−Pb、B−Ba及びBa−Pb−Siから選ばれる少なくとも1種以上であることを特徴とするチタン酸バリウム鉛系半導体磁器組成物。 In the barium lead titanate semiconductor ceramic composition based on (Ba 1-x Pb x ) TiO 3 (where x is 0 ≦ x <1), the barium lead titanate semiconductor ceramic composition is: The base material is a mixture of a semiconducting agent and a glass material having a softening point of 950 ° C. or lower, which is fired. The glass material is in the range of 0.5 to 3.0 wt% relative to the base material, and the glass The material is at least one selected from Pb-Si, Pb-Ge, B-Si, B-Si-Pb, B-Ba, and Ba-Pb-Si, and barium lead titanate semiconductor ceramics Composition. 半導体化剤を母体に対して0.11〜0.22モル%の範囲で混合する請求項1または2記載のチタン酸バリウム鉛系半導体磁器組成物。 The barium lead titanate-based semiconductor ceramic composition according to claim 1 or 2, wherein the semiconducting agent is mixed in a range of 0.11 to 0.22 mol% with respect to the base .
JP2000144807A 2000-05-17 2000-05-17 Lead barium titanate semiconductor ceramic composition Expired - Fee Related JP4269485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000144807A JP4269485B2 (en) 2000-05-17 2000-05-17 Lead barium titanate semiconductor ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000144807A JP4269485B2 (en) 2000-05-17 2000-05-17 Lead barium titanate semiconductor ceramic composition

Publications (2)

Publication Number Publication Date
JP2001328862A JP2001328862A (en) 2001-11-27
JP4269485B2 true JP4269485B2 (en) 2009-05-27

Family

ID=18651402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000144807A Expired - Fee Related JP4269485B2 (en) 2000-05-17 2000-05-17 Lead barium titanate semiconductor ceramic composition

Country Status (1)

Country Link
JP (1) JP4269485B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401236B (en) 2006-02-27 2013-07-11 Hitachi Metals Ltd Semiconductor porcelain composition
TW200903527A (en) * 2007-03-19 2009-01-16 Murata Manufacturing Co Laminated positive temperature coefficient thermistor
DE102007026924A1 (en) * 2007-06-12 2008-12-18 Epcos Ag Positive temperature coefficient material of electrical resistance and method of making the same
JP5494701B2 (en) 2012-03-08 2014-05-21 コニカミノルタ株式会社 Fixing apparatus and image forming apparatus

Also Published As

Publication number Publication date
JP2001328862A (en) 2001-11-27

Similar Documents

Publication Publication Date Title
JP3319314B2 (en) Barium titanate-based semiconductor porcelain composition
JP6337689B2 (en) Semiconductor porcelain composition and PTC thermistor
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP3376911B2 (en) Semiconductor ceramic and semiconductor ceramic element
JP5223927B2 (en) Barium titanate-based semiconductor ceramic composition and PTC thermistor
JP4269485B2 (en) Lead barium titanate semiconductor ceramic composition
JP6604653B2 (en) Semiconductor porcelain composition and method for producing the same
JP4788274B2 (en) Oxide conductor porcelain and resistor having CTR characteristics
JP5881169B2 (en) Method for producing semiconductor porcelain composition
KR100340668B1 (en) Laminated Type Semiconductor Ceramic Element and Production Method for the Laminated Type Semiconductor Ceramic Element
JP2014072374A (en) Barium titanate-based semiconductor porcelain composition and ptc thermistor using the same
JP3555395B2 (en) Barium lead titanate based semiconductor porcelain composition
JP5988388B2 (en) Semiconductor porcelain composition and method for producing the same
JP2016184694A (en) Semiconductor ceramic composition and ptc thermistor
JP4217337B2 (en) Manufacturing method of semiconductor porcelain
JP6075877B2 (en) Semiconductor porcelain composition and method for producing the same
JPH1112033A (en) Barium lead titanate-based semiconductor ceramic composition
JP3506044B2 (en) Semiconductor ceramic, semiconductor ceramic element, and circuit protection element
JPH07220902A (en) Barium titanate semiconductor ceramic
JPH1112030A (en) Barium lead titanate-based semiconductor ceramic composition
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JP4367803B2 (en) Semiconductor porcelain and thermistor using the same
JP3036128B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JP6369902B2 (en) Semiconductor porcelain composition and method for producing the same
JP4800956B2 (en) Barium titanate semiconductor porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees