JPH08306509A - Positive temperature coefficient thermistor and its manufacturing method - Google Patents

Positive temperature coefficient thermistor and its manufacturing method

Info

Publication number
JPH08306509A
JPH08306509A JP7111460A JP11146095A JPH08306509A JP H08306509 A JPH08306509 A JP H08306509A JP 7111460 A JP7111460 A JP 7111460A JP 11146095 A JP11146095 A JP 11146095A JP H08306509 A JPH08306509 A JP H08306509A
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient thermistor
oxides
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7111460A
Other languages
Japanese (ja)
Inventor
Taiji Goto
泰司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7111460A priority Critical patent/JPH08306509A/en
Publication of JPH08306509A publication Critical patent/JPH08306509A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a high-reliability positive temperature coefficient thermistor usable for heating elements or switching elements the characteristics of which little deteriorates even when used in a reducing atmosphere. CONSTITUTION: To a main component composed of Ba titanate or its solid soln. a semiconductor element, oxides of Mn, Al and Si, and Ba(1+ X) TiO3 powder (X ranges between 0.05 and 0.03) 0.5-30mol% are added to form a compact and it is baked and electrodes are formed thereafter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特定の温度で抵抗値が急
激に増大する正特性サーミスタに関するものであり、特
に還元性雰囲気下で使用された場合に特性劣化の少ない
高信頼性の正特性サーミスタおよびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor in which a resistance value rapidly increases at a specific temperature, and in particular, a highly reliable positive temperature coefficient characteristic with less characteristic deterioration when used in a reducing atmosphere. The present invention relates to a thermistor and a manufacturing method thereof.

【0002】[0002]

【従来の技術】チタン酸バリウムにY,La,Ce等の
希土類元素あるいはNb,Ta等の金属酸化物を微量添
加すると半導体化し、そのキュリー点付近の温度で抵抗
値が急激に増大し正の抵抗温度特性(Positive
Temperature Coefficient:
PTC特性)を示すことは従来より広く知られている。
そのPTC特性を利用して、過電流保護用素子、温度制
御用素子、モータ起動用素子、ヒータ用といったさまざ
まな用途に応用されてきている。一方、このような正特
性サーミスタの製造方法としては、以下に示した方法が
一般に用いられている。まず所定の組成となるように配
合されたセラミックス原料を湿式ボールミルやディスパ
ーミルなどを用いて混合し、フィルタープレス、ドラム
ドライヤー等で脱水、乾燥した後、これらの混合粉末を
仮焼する。次にこの仮焼粉末を湿式ボールミルやサンド
ミル等により粉砕し、バインダーを加えスラリー状にし
たものをスプレードライヤー等により造粒し、所望の形
状に成形した後、本焼成を行い、得られた焼結体に電極
を形成させ最終製品とするものである。一般に本焼成は
大気中で行われるが、低抵抗化を要求されている素子の
中には、一度還元雰囲気中で熱処理した後、再酸化処理
することも行われているものもある。また、昨今ではこ
のような素子の使用される環境条件も厳しく、特に耐還
元性能が要求される用途も多岐にわたってきており、組
成面及びプロセス面での検討が活発になされてきてい
る。
2. Description of the Related Art Barium titanate is converted into a semiconductor by adding a trace amount of a rare earth element such as Y, La or Ce or a metal oxide such as Nb or Ta, and its resistance value rapidly increases at a temperature near its Curie point. Resistance temperature characteristics (Positive
Temperature Coefficient:
It has been widely known that it exhibits PTC characteristics.
Utilizing the PTC characteristics, it has been applied to various applications such as an overcurrent protection element, a temperature control element, a motor starting element, and a heater. On the other hand, as a method of manufacturing such a PTC thermistor, the following method is generally used. First, ceramic raw materials mixed to have a predetermined composition are mixed using a wet ball mill, a disper mill, etc., dehydrated and dried with a filter press, a drum dryer, etc., and then these mixed powders are calcined. Next, this calcined powder is pulverized by a wet ball mill, a sand mill, or the like, and a binder is added to form a slurry, which is then granulated by a spray dryer or the like into a desired shape, followed by main calcination, and the obtained calcination The final product is formed by forming electrodes on the united body. Generally, the main calcination is performed in the air, but some elements that are required to have a low resistance may be subjected to a heat treatment in a reducing atmosphere and then a reoxidation treatment. Further, recently, environmental conditions in which such elements are used are severe, and there are various applications in which reduction resistance is particularly required, and studies on composition and process have been actively conducted.

【0003】[0003]

【発明が解決しようとする課題】このような正特性サー
ミスタの特性は結晶粒界に依存することが古くから指摘
されているが、還元性雰囲気や中性雰囲気中で使用した
場合には、抵抗値が大きく低下したり、抵抗温度係数が
著しく小さくなってしまうなどの特性劣化を起こす。な
かでも特にヒータ素子を用いた機器の使用条件下では、
薬剤、衣類の柔軟仕上げ剤、ガソリンや機械油、食用
油、調味料などの有機成分からなり素子に付着し、素子
の発熱状態ではこれらの有機成分の燃焼に伴う還元作用
を引き起こし、特性劣化につながる危険性がある。製品
保証の点からも、こういった有機成分との接触あるいは
付着を防止する必要があり、その使用用途が限定されて
いた。そこで本発明は上記のような用途に適合できる、
耐還元性能に優れた正特性サーミスタの製造方法を提供
することを目的とするものである。
It has long been pointed out that the characteristics of such a positive temperature coefficient thermistor depend on the grain boundaries, but when used in a reducing atmosphere or a neutral atmosphere, the resistance The value deteriorates significantly, and the temperature coefficient of resistance is significantly reduced, resulting in deterioration of characteristics. Above all, especially under the use condition of the device using the heater element,
It consists of chemicals, fabric softeners, organic components such as gasoline, machine oil, edible oil, seasonings, etc., and adheres to the element. There is a risk of connection. Also from the viewpoint of product assurance, it is necessary to prevent contact or adhesion with such organic components, and their intended use was limited. Therefore, the present invention can be applied to the above-mentioned applications,
It is an object of the present invention to provide a method for manufacturing a positive temperature coefficient thermistor having excellent reduction resistance.

【0004】[0004]

【課題を解決するための手段】還元性雰囲気中でのPT
C特性劣化機構は、一般に酸素欠陥の生成により発生し
た電子が導電性に寄与するためと考えられている。
[Means for Solving the Problems] PT in a reducing atmosphere
The mechanism of C characteristic deterioration is generally considered to be that electrons generated by the generation of oxygen defects contribute to conductivity.

【0005】従って、耐還元性能を向上させるために
は、 (1)酸素欠陥が生成しないような(酸素を放出しにく
い)結晶構造にする (2)還元性物質等が素子の内部に侵入しにくい緻密化
された微細構造にする (3)発生した電子をトラップするアクセプター的役割
をする元素を導入する 等が考えられる。
Therefore, in order to improve the reduction resistance performance, (1) a crystal structure in which oxygen defects are not generated (oxygen is hardly released) (2) a reducing substance or the like enters the inside of the element It is considered to be difficult to make a dense and fine structure. (3) It is possible to introduce an element that acts as an acceptor that traps generated electrons.

【0006】本発明は、このような材料設計にもとづき
組成面および製造方法において鋭意研究した結果であ
る。
The present invention is the result of intensive studies on the composition and manufacturing method based on such material design.

【0007】そして上記目的を達成するために本発明の
正特性サーミスタは素子と、この素子の表面に設けた電
極とを備え、前記素子はチタン酸バリウムまたはその固
溶体からなる主成分に半導体化元素としてY,La,S
m等の希土類元素の酸化物あるいはNb,Sb,Bi等
の金属酸化物を少なくとも1種類と、さらにSi,M
n,Alの各酸化物と、前記主成分1molに対してB
(1+X)TiO3粉末(但し、0.005≦X≦0.0
3)を0.005〜0.30mol含有させたことを特
徴とするものである。
In order to achieve the above object, the positive temperature coefficient thermistor of the present invention comprises an element and an electrode provided on the surface of the element, the element being composed of barium titanate or a solid solution thereof as a main component and a semiconducting element. As Y, La, S
At least one kind of oxide of rare earth element such as m or metal oxide such as Nb, Sb, Bi, and Si, M
n and Al oxides, and B for 1 mol of the main component
a (1 + X) TiO 3 powder (however, 0.005 ≦ X ≦ 0.0
3) is contained in an amount of 0.005 to 0.30 mol.

【0008】[0008]

【作用】PTC特性の劣化は、その発現部である粒界の
ポテンシャルエネルギーの低下と考えることができる。
つまり還元性の物質が素子の表面と接触し粒界近傍を拡
散しポテンシャル障壁の形成に寄与している吸着酸素が
放出され伝導電子が増加するため特性が劣化すると考え
られる。さらに強い還元状態になると格子上の酸素まで
も解離してしまい電子濃度が一層増加し特性が劣化する
ものと思われる。
The deterioration of the PTC characteristic can be considered as a decrease in the potential energy of the grain boundary where the PTC characteristic is generated.
That is, it is considered that the reducing substance comes into contact with the surface of the device, diffuses in the vicinity of the grain boundary, releases adsorbed oxygen that contributes to the formation of the potential barrier, and increases conduction electrons, which deteriorates the characteristics. It is considered that when the state is further reduced, even oxygen on the lattice is dissociated, the electron concentration is further increased, and the characteristics are deteriorated.

【0009】従って、本発明の構成をとることにより耐
還元性能が向上した理由は、Ba(1 +X)TiO3(但し、
0.005≦X≦0.03)を添加することにより焼結
体自体の緻密化が進み、還元性の物質との接触度合いが
低減したことや単位格子自体のパッキング性が向上した
ため吸着酸素や格子位置の酸素が放出されにくくなった
ためと考えられる。本発明の正特性サーミスタを用いる
ことにより、還元性雰囲気中等で使用しても、抵抗値が
大きく低下したり、抵抗温度係数が著しく低下するなど
のPTC特性の劣化がないため、従来のように使用範囲
が限定されることなく、その用途展開が拡大されるもの
と期待できる。
Therefore, the reason why the reduction resistance performance is improved by adopting the constitution of the present invention is that Ba (1 + X) TiO 3 (however,
0.005 ≤ X ≤ 0.03) promotes the densification of the sintered body itself, which reduces the degree of contact with the reducing substance and improves the packing property of the unit cell itself. It is thought that this is because oxygen at the lattice position is less likely to be released. By using the positive temperature coefficient thermistor of the present invention, even when used in a reducing atmosphere or the like, there is no deterioration in PTC characteristics such as a large decrease in resistance value or a remarkable decrease in temperature coefficient of resistance. It is expected that the range of applications will be expanded without limiting the range of use.

【0010】一方、従来から、還元性雰囲気より素子を
保護するために保護ケース等のカバーを設けたり、ある
いは密閉構造にしたりと構造設計上さまざまな工夫を行
っていたが、本発明の素子を使用することにより、これ
らの構造設計が不要となるため、その工数の低減および
コストダウンが可能となり、その工業的利用価値は大き
い。さらに安全性の面でも本発明の素子は特性の劣化が
ないために熱暴走し、素子が破壊したりすることがな
く、信頼性の極めて高いものである。
On the other hand, conventionally, various measures have been taken in structural design such as providing a cover such as a protective case for protecting the element from a reducing atmosphere, or making a sealed structure. By using them, the structural design becomes unnecessary, so that the man-hours can be reduced and the cost can be reduced, and the industrial utility value thereof is great. Further, in terms of safety, the element of the present invention has no deterioration of characteristics, so that it does not run away due to thermal runaway and the element is not destroyed, and is highly reliable.

【0011】[0011]

【実施例】以下実施例により本発明について説明する。EXAMPLES The present invention will be described below with reference to examples.

【0012】(実施例1)最終組成が(Ba0.8
0.2)TiO3+0.002Y23+0.02SiO2
+0.0008MnO2+0.005Al23(単位は
mol)となるように各原料を秤量する。同時にBa
(1+X)TiO3粉末を(表1)の試料番号1〜16に示す
組成で秤量しすべての原料を同時にボールミルにて湿式
混合する。
Example 1 The final composition is (Ba 0.8 P)
b 0.2 ) TiO 3 + 0.002Y 2 O 3 + 0.02SiO 2
Each raw material is weighed so as to be +0.0008 MnO 2 +0.005 Al 2 O 3 (unit is mol). At the same time Ba
(1 + X) TiO 3 powder is weighed with the composition shown in Sample Nos. 1 to 16 of (Table 1), and all the raw materials are simultaneously wet mixed in a ball mill.

【0013】[0013]

【表1】 [Table 1]

【0014】次にこの混合物を乾燥した後、1050℃
で2時間仮焼する。その後、この仮焼粉をボールミルに
て湿式粉砕する。この粉砕物を乾燥した後、結合剤とし
てポリビニルアルコールを5wt%加え造粒し、800
kg/cm2の圧力でプレス成形した。この成形物を約
1300℃で空気中にて1時間焼成し、直径20mm、
厚さ2.0mmの円板状の正特性サーミスタ素子を得
た。さらにこれらの焼結体にNiめっきを施した後、銀
ペーストを塗布し、その後、焼きつけすることにより電
極を形成した。
Next, after drying this mixture, 1050 ° C.
Calcination for 2 hours. Then, the calcined powder is wet-milled with a ball mill. After drying this pulverized product, 5 wt% of polyvinyl alcohol was added as a binder and granulated to obtain 800
Press molding was performed at a pressure of kg / cm 2 . This molded product was fired in air at about 1300 ° C. for 1 hour to give a diameter of 20 mm,
A disk-shaped positive temperature coefficient thermistor element having a thickness of 2.0 mm was obtained. Further, these sintered bodies were plated with Ni, coated with a silver paste, and then baked to form electrodes.

【0015】この電極はオーミック性の金属、例えばN
i,Al,Zn,Cu等であれば構わない。
This electrode is made of an ohmic metal such as N.
Any material such as i, Al, Zn, Cu may be used.

【0016】次に、このようにして得られた各試料の各
種電気特性を評価した。その抵抗温度特性曲線により、
常温抵抗値(R25)、抵抗温度係数(α)、抵抗変化幅
(Ψ)を評価した後、耐還元性の評価として、窒素ガス
中で100時間、100Vの電圧を印加して、再び、R
25、α、Ψを測定した。
Next, various electrical characteristics of each sample thus obtained were evaluated. By its resistance temperature characteristic curve,
After evaluating the room temperature resistance value (R 25 ), the resistance temperature coefficient (α), and the resistance change width (Ψ), as a reduction resistance evaluation, a voltage of 100 V was applied for 100 hours in nitrogen gas, and the R
25 , α and Ψ were measured.

【0017】さらに、焼結体の緻密性の評価として気孔
率を測定した。その結果を(表2)に示す。
Further, the porosity was measured as an evaluation of the compactness of the sintered body. The results are shown in (Table 2).

【0018】[0018]

【表2】 [Table 2]

【0019】ここで抵抗変化幅とは最大抵抗値を最小抵
抗値で除算した数値の常用対数値であり、下記の式で表
される。
Here, the resistance change width is a common logarithm of a numerical value obtained by dividing the maximum resistance value by the minimum resistance value, and is represented by the following formula.

【0020】 抵抗変化幅Ψ=Log10(最大抵抗値/最小抵抗値) (表1)の試料番号1〜4、8〜10及び15,16に
ついては本発明の範囲外の組成であり、それ以外の試料
番号は本発明の範囲内の組成である。
Resistance change width Ψ = Log 10 (maximum resistance value / minimum resistance value) Sample numbers 1 to 4, 8 to 10 and 15, 16 of (Table 1) are compositions outside the scope of the present invention. Sample numbers other than are compositions within the scope of the present invention.

【0021】(表2)の特性値を比較して明らかなよう
に、組成が本発明の範囲内である試料については特性の
劣化が認められず、耐還元性能に優れていることがわか
る。
As is clear from comparison of the characteristic values in (Table 2), it can be seen that the samples having the composition within the range of the present invention show no deterioration in the characteristics and have excellent reduction resistance performance.

【0022】(実施例2)まず、(Ba0.8Pb0.2)T
iO3+0.002Y23+0.02SiO2+0.00
08MnO2+0.005Al23(単位はmol)の
組成となるように各原料を秤量しボールミルにて湿式混
合する。次にこの混合物を乾燥した後、1050℃で2
時間仮焼する。この仮焼粉にこの仮焼粉の粒径よりも大
きい粒径を有するBa(1+X)TiO3を(表1)の試料番
号17〜21の組成になるように秤量、添加しボールミ
ルにて湿式混合する。その混合物を乾燥した後(実施例
1)と同様に、造粒、成形、焼成し電極を形成させ正特
性サーミスタ素子を得る。得られた素子の電気特性およ
び耐還元性能の評価を(実施例1)と同様に実施する。
その評価結果を(表2)の試料番号17〜21に示し
た。これらの結果より、本発明の範囲内においてBa
(1+X)TiO3を仮焼後に添加することにより、さらに耐
還元性能に優れた素子を得ることがわかった。
(Example 2) First, (Ba 0.8 Pb 0.2 ) T
iO 3 + 0.002Y 2 O 3 + 0.02SiO 2 +0.00
Each raw material is weighed so as to have a composition of 08MnO 2 + 0.005Al 2 O 3 (the unit is mol), and wet mixed by a ball mill. The mixture is then dried and then at 1050 ° C for 2
Calcination for an hour. Ba (1 + X) TiO 3 having a particle size larger than the particle size of the calcined powder is weighed and added to the composition of sample Nos. 17 to 21 (Table 1) in a ball mill. Wet mix. After the mixture is dried (Example 1), granulation, molding and firing are performed in the same manner to form electrodes to obtain a positive temperature coefficient thermistor element. The electrical characteristics and reduction resistance performance of the obtained device are evaluated in the same manner as in (Example 1).
The evaluation results are shown in sample numbers 17 to 21 of (Table 2). From these results, within the scope of the present invention, Ba
It was found that by adding (1 + X) TiO 3 after calcination, a device having further excellent reduction resistance performance was obtained.

【0023】また仮焼粉の粒径よりも大きい粒径を有す
るBa(1+X)TiO3(0.005≦X≦0.03)を添
加することにより、仮焼粉とBa(1+X)TiO3の反応が
促進される。
By adding Ba (1 + X) TiO 3 (0.005 ≦ X ≦ 0.03) having a particle size larger than that of the calcined powder, the calcined powder and Ba (1+ ) are added. X) The reaction of TiO 3 is promoted.

【0024】なお、実施例1、2においては、主成分B
aTiO3のBaの一部をPbで置換したものを用いた
が、Pbの他にSr,Caで置換したものを用いたとし
ても同様の効果が得られる。
In Examples 1 and 2, the main component B
Although a portion of aTiO 3 in which Ba is partially substituted with Pb was used, the same effect can be obtained by using a substance in which Sr and Ca are substituted in addition to Pb.

【0025】また半導体化元素としてY23を用いた
が、これ以外にもLa,Sm,Dy等の希土類元素の酸
化物あるいはNb,Sb,Biの酸化物のうちから少な
くとも一種類以上を用いれば構わない。そしてその添加
量は主成分〔本実施例においては(Ba0.8Pb0.2)T
iO3〕1molに対して、0.001〜0.005m
olの範囲が好ましい。
Although Y 2 O 3 is used as a semiconductor element, at least one or more kinds of oxides of rare earth elements such as La, Sm and Dy or oxides of Nb, Sb and Bi are also used. You can use it. The addition amount of the main component is ((Ba 0.8 Pb 0.2 ) T in this embodiment).
0.003 to 0.005 m for 1 mol of iO 3 ].
The range of ol is preferable.

【0026】さらに、Siは0.005〜0.05mo
l、Mnは0.001〜0.0015mol、Alは
0.0005〜0.005molの範囲で添加すること
が好ましい。またMnのような微量添加物は水溶液の形
で原料を混合することにより、均一に混合しやすい。
Further, Si is 0.005 to 0.05 mo.
It is preferable to add 1 and Mn in the range of 0.001 to 0.0015 mol and Al in the range of 0.0005 to 0.005 mol. Further, a trace amount of additive such as Mn is easily mixed uniformly by mixing the raw materials in the form of an aqueous solution.

【0027】そして、原料は酸化物に限らず、炭酸塩、
硝酸塩、水酸化物等焼成した時に酸化物となるものであ
れば構わない。
The raw material is not limited to oxides, but carbonates,
Any nitrate, hydroxide or the like that becomes an oxide when fired may be used.

【0028】また素子の形状も円板状に限らず、どのよ
うな形状でも同様の効果が得られる。
The shape of the element is not limited to the disk shape, and the same effect can be obtained with any shape.

【0029】[0029]

【発明の効果】以上、詳述したように本発明を用いるこ
とにより、還元性雰囲気中で使用されても特性劣化の少
ない正特性サーミスタを得ることができ、その工業的利
用価値は大きい。
As described above, by using the present invention, it is possible to obtain a positive temperature coefficient thermistor with less characteristic deterioration even when used in a reducing atmosphere, and its industrial utility value is great.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 素子と、この素子表面に設けた電極とを
備え、前記素子はチタン酸バリウムまたはその固溶体か
らなる主成分に対して、半導体化元素として希土類元素
の酸化物あるいはNb,Sb,Biの酸化物のうち少な
くとも1種類と、Si,Mn,Alの各酸化物と、Ba
(1+X)TiO3粉末(但し、0.005≦X≦0.03)
を前記主成分1molに対して0.005〜0.30m
ol含有させたことを特徴とする正特性サーミスタ。
1. An element and an electrode provided on the surface of the element, wherein the element is an oxide of a rare earth element or Nb, Sb as a semiconducting element with respect to a main component made of barium titanate or a solid solution thereof. At least one of Bi oxides, Si, Mn, and Al oxides;
(1 + X) TiO 3 powder (however, 0.005 ≦ X ≦ 0.03)
0.005 to 0.30 m with respect to 1 mol of the main component
A positive temperature coefficient thermistor characterized by containing ol.
【請求項2】 チタン酸バリウムまたはその固溶体から
なる主成分に対して、半導体化元素として希土類元素の
酸化物あるいはNb,Sb,Biの酸化物のうち少なく
とも1種類と、Si,Mn,Alの各酸化物を含む仮焼
粉に対して、Ba(1+X)TiO3粉末(但し、0.005
≦X≦0.03)を前記主成分1molに対して0.0
05〜0.30mol添加、混合して、次に成形し、焼
成後、この焼結体に電極を形成することを特徴とする正
特性サーミスタの製造方法。
2. A main component consisting of barium titanate or a solid solution thereof, and at least one of oxides of rare earth elements or oxides of Nb, Sb, Bi as a semiconducting element, and Si, Mn, Al. For the calcined powder containing each oxide, Ba (1 + X) TiO 3 powder (however, 0.005
≦ X ≦ 0.03) is 0.0 with respect to 1 mol of the main component.
A method for producing a positive temperature coefficient thermistor, which comprises adding 05 to 0.30 mol, mixing, molding, firing, and then forming an electrode on this sintered body.
【請求項3】 仮焼粉の粒径よりも大きい粒径のBa
(1+X)TiO3を用いる請求項2記載の正特性サーミスタ
の製造方法。
3. Ba having a particle size larger than that of the calcined powder.
The method for manufacturing a positive temperature coefficient thermistor according to claim 2, wherein (1 + X) TiO 3 is used.
JP7111460A 1995-05-10 1995-05-10 Positive temperature coefficient thermistor and its manufacturing method Pending JPH08306509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111460A JPH08306509A (en) 1995-05-10 1995-05-10 Positive temperature coefficient thermistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111460A JPH08306509A (en) 1995-05-10 1995-05-10 Positive temperature coefficient thermistor and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH08306509A true JPH08306509A (en) 1996-11-22

Family

ID=14561804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111460A Pending JPH08306509A (en) 1995-05-10 1995-05-10 Positive temperature coefficient thermistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH08306509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034505A (en) * 2012-08-10 2014-02-24 Nichicon Corp Semiconductor ceramic composition and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034505A (en) * 2012-08-10 2014-02-24 Nichicon Corp Semiconductor ceramic composition and method of producing the same

Similar Documents

Publication Publication Date Title
JP3141642B2 (en) Manufacturing method of PTC thermistor
JP5327555B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JPWO2010067868A1 (en) Semiconductor ceramic and positive temperature coefficient thermistor
US3996168A (en) Ceramic electrical resistor
JPH11340009A (en) Nonlinear resistor
KR20170094085A (en) Semiconductor ceramic composition and ptc thermistor
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP3223830B2 (en) Varistor element manufacturing method
JP4788274B2 (en) Oxide conductor porcelain and resistor having CTR characteristics
JPH08306509A (en) Positive temperature coefficient thermistor and its manufacturing method
JPH06199570A (en) Composite perovskite type ceramic body
JP5988388B2 (en) Semiconductor porcelain composition and method for producing the same
JPH08167501A (en) Positive thermistor and its manufacture
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH1070006A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JPH11116326A (en) Thermistor with positive characteristic and its production
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPH10135006A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH11292622A (en) Semiconductor ceramic and semiconductor ceramic element
JP2010138044A (en) Semiconductor ceramic and positive temperature coefficient thermistor
JPH10294202A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof