JPH08167501A - Positive thermistor and its manufacture - Google Patents

Positive thermistor and its manufacture

Info

Publication number
JPH08167501A
JPH08167501A JP6307400A JP30740094A JPH08167501A JP H08167501 A JPH08167501 A JP H08167501A JP 6307400 A JP6307400 A JP 6307400A JP 30740094 A JP30740094 A JP 30740094A JP H08167501 A JPH08167501 A JP H08167501A
Authority
JP
Japan
Prior art keywords
thermistor
temperature coefficient
positive temperature
cazro
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6307400A
Other languages
Japanese (ja)
Inventor
Taiji Goto
泰司 後藤
Fusako Hatano
惣子 幡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6307400A priority Critical patent/JPH08167501A/en
Publication of JPH08167501A publication Critical patent/JPH08167501A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a positive thermistor with little degradation of its characteristics and yet high reliability even it is used in a reducing atmosphere. CONSTITUTION: An electrode is formed after a positive thermistor is formed of material comprising a main component of barium titanate or its solid solution, a composition of an element to form a semiconductor and each oxide of Mn, Al, and Si to which 0.05 to 0.025mol of CaZrO3 , has been added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特定の温度で抵抗値が急
激に増大する正特性サーミスタに関するものであり、特
に還元性雰囲気下で使用された場合に特性劣化の少ない
高信頼性の正特性サーミスタおよびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor in which a resistance value rapidly increases at a specific temperature, and in particular, a highly reliable positive temperature coefficient characteristic with less characteristic deterioration when used in a reducing atmosphere. The present invention relates to a thermistor and a manufacturing method thereof.

【0002】[0002]

【従来の技術】チタン酸バリウムにY,La,Ce等の
希土類元素あるいはNb,Ta等の金属酸化物を微量添
加すると半導体化し、そのキュリー点付近の温度で抵抗
値が急激に増大し正の抵抗温度特性(Positive
Temperature Coefficient:
PTC特性)を示すことは従来より広く知られている。
そのPTC特性を利用して、過電流保護用素子、温度制
御用素子、モータ起動用素子、ヒータ用といったさまざ
まな用途に応用されてきている。一方、このような正特
性サーミスタの製造方法としては、以下に示した方法が
一般に用いられている。まず所定の組成となるように配
合されたセラミック原料を湿式ボールミルやディスパー
ミルなどを用いて混合し、フィルタープレス、ドラムド
ライヤー等で脱水、乾燥した後、これらの混合粉末を仮
焼する。次にこの仮焼粉末を湿式ボールミルやサンドミ
ル等により粉砕し、バインダーを加えスラリー状にした
ものをスプレードライヤー等により造粒し、所望の形状
に成形した後、本焼成を行い、得られた焼結体に電極を
形成させ最終製品とするものである。一般に本焼成は大
気中で行われるが、低抵抗化を要求されている素子の中
には、一度還元雰囲気中で熱処理した後、再酸化処理す
ることも行われているものもある。また、昨今ではこの
ような素子の使用される環境条件も厳しく、特に耐還元
性能が要求される用途も多岐にわたってきており、組成
面及びプロセス面での検討が活発になされてきている。
2. Description of the Related Art Barium titanate is converted into a semiconductor by adding a trace amount of a rare earth element such as Y, La or Ce or a metal oxide such as Nb or Ta, and its resistance value rapidly increases at a temperature near its Curie point. Resistance temperature characteristics (Positive
Temperature Coefficient:
It has been widely known that it exhibits PTC characteristics.
Utilizing the PTC characteristics, it has been applied to various applications such as an overcurrent protection element, a temperature control element, a motor starting element, and a heater. On the other hand, as a method of manufacturing such a PTC thermistor, the following method is generally used. First, ceramic raw materials that have been compounded to have a predetermined composition are mixed using a wet ball mill, a disper mill or the like, dehydrated and dried with a filter press, a drum dryer or the like, and then these mixed powders are calcined. Next, this calcined powder is pulverized by a wet ball mill, a sand mill, or the like, and a binder is added to form a slurry, which is then granulated by a spray dryer or the like into a desired shape, followed by main calcination, and the obtained calcination The final product is formed by forming electrodes on the united body. Generally, the main calcination is performed in the air, but some elements that are required to have a low resistance may be subjected to a heat treatment in a reducing atmosphere and then a reoxidation treatment. Further, recently, environmental conditions in which such elements are used are severe, and there are various applications in which reduction resistance is particularly required, and studies on composition and process have been actively conducted.

【0003】[0003]

【発明が解決しようとする課題】このような正特性サー
ミスタの特性は結晶粒界に依存することが古くから指摘
されているが、還元性雰囲気や中性雰囲気中で使用した
場合には、抵抗値が大きく低下したり、抵抗温度係数が
著しく小さくなってしまうなどの特性劣化を起こす。な
かでも特にヒータ素子を用いた機器の使用条件下では、
薬剤、衣類の柔軟仕上げ剤、ガソリンや機械油、食用
油、調味料などの有機成分からなり素子に付着し、素子
の発熱状態ではこれらの有機成分の燃焼に伴う還元作用
を引き起こし、種々の特性が劣化してしまう恐れがあ
り、そのためこういった有機成分との接触あるいは付着
を防止する必要があり、その使用用途が限定されてい
た。
It has long been pointed out that the characteristics of such a positive temperature coefficient thermistor depend on the grain boundaries, but when used in a reducing atmosphere or a neutral atmosphere, the resistance The value deteriorates significantly, and the temperature coefficient of resistance is significantly reduced, resulting in deterioration of characteristics. Above all, especially under the use condition of the device using the heater element,
It consists of chemicals, fabric softening agents, organic components such as gasoline and machine oils, edible oils, and seasonings, and adheres to the element.When the element heats up, it causes a reducing action due to the combustion of these organic components, resulting in various characteristics. May deteriorate, and therefore, it is necessary to prevent contact or adhesion with such organic components, and its use is limited.

【0004】また、還元性雰囲気中でのPTC特性劣化
機構は、一般に酸素欠陥の生成により発生した電子が導
電性に寄与するためと考えられている。
The mechanism of PTC characteristic deterioration in a reducing atmosphere is generally considered to be that electrons generated by the generation of oxygen defects contribute to conductivity.

【0005】従って、耐還元性能を向上させるために
は、 (1)酸素欠陥が生成しないような(酸素を放出しにく
い)結晶構造にする (2)還元性物質等が素子の内部に侵入しにくい緻密化
された微細構造にする (3)発生した電子をトラップするアクセプター的役割
をする元素を導入する 等が考えられる。
Therefore, in order to improve the reduction resistance performance, (1) a crystal structure in which oxygen defects are not generated (oxygen is hardly released) (2) a reducing substance or the like enters the inside of the element It is considered to be difficult to make a dense and fine structure. (3) It is possible to introduce an element that acts as an acceptor that traps generated electrons.

【0006】そこで本発明はこれらのことを考慮して上
記のような用途に適合できる、耐還元性能に優れた正特
性サーミスタを提供することを目的とするものである。
In view of the above, the present invention has an object to provide a positive temperature coefficient thermistor which is suitable for the above-mentioned applications and has excellent reduction resistance.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明は、チタン酸バリウムまたはその固溶体からな
る主成分1molに対して、副成分として希土類元素あ
るいはNb,Sb,Biの金属酸化物を少なくとも1種
類と、さらにSi,Mn,Alの各酸化物とを添加して
仮焼し、次にこの仮焼粉にCaZrO3を0.05〜
0.25mol添加混合し、成形後、焼成し、電極を形
成するものである。
To achieve this object, the present invention provides a rare earth element or a metal oxide of Nb, Sb or Bi as a sub-component for 1 mol of the main component consisting of barium titanate or a solid solution thereof. And at least one oxide of Si, Mn, and Al are added for calcination, and CaZrO 3 is added to the calcination powder in an amount of 0.05 to 0.05%.
0.25 mol is added and mixed, and after molding, firing is performed to form an electrode.

【0008】[0008]

【作用】PTC特性の劣化は、その発現部である粒界の
ポテンシャルエネルギーの低下と考えることができる。
つまり還元性の物質が素子の表面と接触し粒界近傍を拡
散しポテンシャル障壁の形成に寄与している吸着酸素が
放出され伝導電子が増加するため特性が劣化すると考え
られる。さらに強い還元状態になると格子上の酸素まで
も解離してしまい電子濃度が一層増加し特性が劣化する
ものと思われる。
The deterioration of the PTC characteristic can be considered as a decrease in the potential energy of the grain boundary where the PTC characteristic is generated.
That is, it is considered that the reducing substance comes into contact with the surface of the device, diffuses in the vicinity of the grain boundary, releases adsorbed oxygen that contributes to the formation of the potential barrier, and increases conduction electrons, which deteriorates the characteristics. It is considered that when the state is further reduced, even oxygen on the lattice is dissociated, the electron concentration is further increased, and the characteristics are deteriorated.

【0009】従って、本発明によると、サーミスタ素子
にCaZrO3を添加することにより焼結体自体の緻密
化が進み、還元性の物質との接触度合いが低減し、単位
格子自体のパッキング性が向上したため吸着酸素や格子
位置の酸素が放出されにくくなったため耐還元性能が向
上する。
Therefore, according to the present invention, by adding CaZrO 3 to the thermistor element, the sintered body itself is densified, the degree of contact with a reducing substance is reduced, and the packing property of the unit cell itself is improved. Therefore, the adsorbed oxygen and the oxygen at the lattice position are less likely to be released, and the reduction resistance performance is improved.

【0010】その結果、本発明の正特性サーミスタを、
還元性雰囲気中等で使用しても、抵抗値が大きく低下し
たり、抵抗温度係数が著しく低下するなどのPTC特性
の劣化がないため、従来のように使用範囲が限定される
ことなく、その用途展開が拡大されるものと期待でき
る。
As a result, the positive temperature coefficient thermistor of the present invention is
Even when used in a reducing atmosphere, there is no deterioration in PTC characteristics such as a large decrease in resistance value or a significant decrease in temperature coefficient of resistance. It can be expected that the expansion will be expanded.

【0011】一方、従来から、還元性雰囲気より素子を
保護するために保護ケース等のカバーを設けたり、ある
いは密閉構造にしたりと構造設計上さまざまな工夫を行
っていたが、本発明の正特性サーミスタを使用すること
により、これらの構造設計が不要となるため、その工数
の低減およびコストダウンが可能となり、その工業的利
用価値は大きい。さらに安全性の面でも本発明の正特性
サーミスタは特性の劣化がないために熱暴走し、正特性
サーミスタが破壊するということがなく、信頼性の極め
て高いものである。
On the other hand, conventionally, various measures have been taken in the structural design such as providing a cover such as a protective case for protecting the element from a reducing atmosphere, or making a sealed structure. By using the thermistor, these structural designs are unnecessary, so that the number of steps can be reduced and the cost can be reduced, and its industrial utility value is great. Further, in terms of safety, the PTC thermistor of the present invention is extremely reliable because it does not cause thermal runaway and destruction of the PTC thermistor because there is no deterioration in its characteristics.

【0012】[0012]

【実施例】以下実施例により本発明について説明する。EXAMPLES The present invention will be described below with reference to examples.

【0013】(実施例1)最終組成が(化1)となるよ
うに各原料を秤量する。
(Example 1) Each raw material is weighed so that the final composition is (Chemical formula 1).

【0014】[0014]

【化1】 Embedded image

【0015】同時にCaZrO3を(表1)の試料番号
2〜7に示す組成で秤量しすべての原料を同時にボール
ミルにて湿式混合する。
At the same time, CaZrO 3 was weighed with the composition shown in sample Nos. 2 to 7 of (Table 1), and all the raw materials were simultaneously wet-mixed in a ball mill.

【0016】[0016]

【表1】 [Table 1]

【0017】次にこの混合物を乾燥した後、1050℃
で2時間仮焼する。その後、この仮焼粉をボールミルに
て湿式粉砕する。この粉砕物を乾燥した後、結合剤とし
てポリビニルアルコールを5%加え造粒し、800kg/
cm2の圧力でプレス成形した。この成形物を約1300
℃で空気中にて1時間焼成し、直径20mm、厚さ2.
0mmの円板状の正特性サーミスタ素子を得た。さらに
これらの焼結体にNiめっきを施した後、銀ペーストを
塗布し、その後、焼きつけすることにより電極を形成し
た。
The mixture is then dried and then 1050 ° C.
Calcination for 2 hours. Then, the calcined powder is wet-milled with a ball mill. After drying this pulverized product, 5% of polyvinyl alcohol was added as a binder and granulated to give 800 kg /
Press molding was performed at a pressure of cm 2 . This molded product is about 1300
1. Calcination in air at ℃ for 1 hour, diameter 20mm, thickness 2.
A 0 mm disk-shaped positive temperature coefficient thermistor element was obtained. Further, these sintered bodies were plated with Ni, coated with a silver paste, and then baked to form electrodes.

【0018】次に、このようにして得られた各試料の各
種電気特性を評価した。その抵抗温度特性曲線により、
常温抵抗値(R25)、抵抗変化幅(Ψ)を評価した後、
耐還元性の評価として、窒素ガス中で100時間、10
0Vの電圧を印加して、再び、R25、Ψを測定した。
Next, various electrical characteristics of each sample thus obtained were evaluated. By its resistance temperature characteristic curve,
After evaluating the room temperature resistance value (R 25 ) and the resistance change width (Ψ),
As evaluation of reduction resistance, 100 hours in nitrogen gas, 10
A voltage of 0 V was applied, and R 25 and Ψ were measured again.

【0019】その結果を(表2)に示す。The results are shown in (Table 2).

【0020】[0020]

【表2】 [Table 2]

【0021】ここで抵抗変化幅とは最大抵抗値を最小抵
抗値で除算した数値の常用対数値であり、(数1)で表
される。
Here, the resistance change width is a common logarithm of a value obtained by dividing the maximum resistance value by the minimum resistance value, and is represented by (Equation 1).

【0022】[0022]

【数1】 [Equation 1]

【0023】(表1)の試料番号1,2および7につい
ては本発明の範囲外の組成であり、試料番号3〜6は本
発明の範囲内の組成である。
Sample Nos. 1, 2 and 7 in Table 1 are compositions outside the scope of the present invention, and Sample Nos. 3 to 6 are compositions within the scope of the present invention.

【0024】(表2)の試料番号1〜7の特性値を比較
して明らかなように、組成が本発明の範囲内である試料
番号3〜6については特性の劣化が認められず、耐還元
性能に優れていることがわかる。
As is clear from the comparison of the characteristic values of the sample numbers 1 to 7 in (Table 2), the sample numbers 3 to 6 whose compositions are within the range of the present invention show no deterioration in the characteristics and are resistant to deterioration. It can be seen that the reducing performance is excellent.

【0025】(実施例2)最終組成が(化2)となるよ
うに各原料を秤量する。
Example 2 Each raw material is weighed so that the final composition becomes (Chemical Formula 2).

【0026】[0026]

【化2】 Embedded image

【0027】また、CaZrO3およびPbSiO3
(表1)の試料番号8〜15になるように秤量し、すべ
ての原料を同時にボールミルにて湿式混合する。その後
の試料作製工程および評価は(実施例1)と同様に行う
ものとする。
Further, CaZrO 3 and PbSiO 3 are weighed so as to be sample numbers 8 to 15 in (Table 1), and all raw materials are wet mixed at the same time with a ball mill. The subsequent sample preparation process and evaluation shall be performed in the same manner as in (Example 1).

【0028】その評価結果を(表2)の試料番号8〜1
5に示した。(表2)の試料番号8〜15の特性値を比
較して明らかなように、組成が本発明の範囲内にある試
料番号10〜13については特性の劣化が認められず、
耐還元性能に優れていることがわかる。
The evaluation results are shown in sample numbers 8 to 1 of (Table 2).
5 shows. As is clear by comparing the characteristic values of the sample numbers 8 to 15 in (Table 2), deterioration of the characteristic was not observed for the sample numbers 10 to 13 whose compositions are within the range of the present invention.
It can be seen that the reduction resistance is excellent.

【0029】(実施例3)まず、(化3)の組成となる
ように各原料を秤量しボールミルにて湿式混合する。
Example 3 First, each raw material is weighed so as to have the composition of (Chemical formula 3) and wet-mixed by a ball mill.

【0030】[0030]

【化3】 Embedded image

【0031】次にこの混合物を乾燥した後、1050℃
で2時間仮焼する。この仮焼粉にCaZrO3を(表
1)の試料番号16〜20の組成になるように秤量、添
加しボールミルにて湿式混合する。その混合物を乾燥し
た後、(実施例1)と同様に、造粒、成形、焼成し電極
を形成して正特性サーミスタを得る。得られた正特性サ
ーミスタの電気特性および耐還元性能の評価を(実施例
1)と同様に実施する。その評価結果を(表2)の試料
番号16〜20に示した。
The mixture is then dried and then 1050 ° C.
Calcination for 2 hours. CaZrO 3 is weighed and added to the calcined powder so as to have the composition of sample Nos. 16 to 20 in (Table 1), and wet mixed in a ball mill. After the mixture is dried, it is granulated, shaped and fired to form an electrode in the same manner as in (Example 1) to obtain a positive temperature coefficient thermistor. The electrical characteristics and reduction resistance performance of the obtained PTC thermistor are evaluated in the same manner as in (Example 1). The evaluation results are shown in Sample Nos. 16 to 20 of (Table 2).

【0032】これらの結果より、本発明の範囲内におい
てCaZrO3を仮焼後に添加することにより、さらに
耐還元性能に優れた正特性サーミスタを得られることが
わかった。
From these results, it was found that by adding CaZrO 3 after calcination within the scope of the present invention, a positive temperature coefficient thermistor having further excellent reduction resistance performance can be obtained.

【0033】(実施例4)(化4)の組成となるように
各原料を秤量しボールミルにて湿式混合する。
(Embodiment 4) Each raw material is weighed so as to have the composition of (Chemical formula 4) and wet-mixed by a ball mill.

【0034】[0034]

【化4】 [Chemical 4]

【0035】次にこの混合物を乾燥した後、1050℃
で2時間仮焼する。この仮焼粉にCaZrO3およびP
bSiO3を(表1)の試料番号21〜28の組成にな
るように秤量、添加しボールミルにて湿式混合する。そ
の混合物を乾燥した後、(実施例1)と同様に、造粒、
成形、焼成し、電極を形成して正特性サーミスタを得
る。得られた正特性サーミスタの電気特性および耐還元
性能の評価を(実施例1)と同様に実施する。その評価
結果を(表2)の試料番号21〜28に示した。
Next, after drying this mixture, 1050 ° C.
Calcination for 2 hours. CaZrO 3 and P were added to this calcined powder.
bSiO 3 is weighed and added so as to have the composition of sample Nos. 21 to 28 in (Table 1), and wet mixed in a ball mill. After drying the mixture, granulation, as in (Example 1),
The PTC thermistor is obtained by forming and firing and forming electrodes. The electrical characteristics and reduction resistance performance of the obtained PTC thermistor are evaluated in the same manner as in (Example 1). The evaluation results are shown in sample numbers 21 to 28 of (Table 2).

【0036】これらの結果より、本発明の範囲内におい
てCaZrO3およびPbSiO3を仮焼後に添加するこ
とにより、さらに耐還元性能に優れた正特性サーミスタ
を得ることができることがわかる。
From these results, it is understood that by adding CaZrO 3 and PbSiO 3 after calcination within the scope of the present invention, a positive temperature coefficient thermistor having further excellent reduction resistance can be obtained.

【0037】(実施例5)(実施例4)における、仮焼
粉に添加するCaZrO3およびPbSiO3の添加量お
よび粒径を(表3)に示す粒径比になるように調整し、
(実施例4)と同様に試料を作製する。
(Example 5) In (Example 4), the amounts of CaZrO 3 and PbSiO 3 added to the calcined powder and the particle size were adjusted so that the particle size ratio shown in Table 3 was obtained.
A sample is prepared in the same manner as in (Example 4).

【0038】[0038]

【表3】 [Table 3]

【0039】さらに得られた正特性サーミスタの電気特
性および耐還元性能の評価を(実施例1)と同様に実施
する。その評価結果を(表4)に示した。
Further, the electrical characteristics and reduction resistance performance of the obtained positive temperature coefficient thermistor are evaluated in the same manner as in (Example 1). The evaluation results are shown in (Table 4).

【0040】[0040]

【表4】 [Table 4]

【0041】これらの結果より、本発明の範囲内におい
てCaZrO3およびPbSiO3の粒径をコントロール
することにより、耐還元性能に優れた正特性サーミスタ
を得ることができることがわかる。
From these results, it is understood that by controlling the particle sizes of CaZrO 3 and PbSiO 3 within the scope of the present invention, a positive temperature coefficient thermistor having excellent reduction resistance can be obtained.

【0042】[0042]

【発明の効果】以上、本発明の構成をとることにより耐
還元性能が向上する。その理由は、CaZrO3を添加
することにより焼結体自体の緻密化が進み、還元性の物
質との接触度合いが低減したことや単位格子自体のパッ
キング性が向上したため吸着酸素や格子位置の酸素が放
出されにくくなったためと考えられる。
As described above, the reduction resistance performance is improved by adopting the constitution of the present invention. The reason is that the addition of CaZrO 3 promotes the densification of the sintered body itself, the degree of contact with the reducing substance is reduced, and the packing property of the unit cell itself is improved. It is thought that this is because it became difficult to release.

【0043】その結果、本発明の正特性サーミスタを用
いることにより、還元性雰囲気中等で使用しても、抵抗
値が大きく低下したり、抵抗温度係数が著しく低下する
などのPTC特性の劣化がないため、従来のように使用
範囲が限定されることなく、その用途展開が拡大される
ものと期待できる。
As a result, by using the positive temperature coefficient thermistor of the present invention, even when used in a reducing atmosphere or the like, there is no deterioration in PTC characteristics such as a large decrease in resistance value or a marked decrease in resistance temperature coefficient. Therefore, it can be expected that the range of use will be expanded without limiting the range of use as in the past.

【0044】一方、従来から、還元性雰囲気より素子を
保護するために保護ケース等のカバーを設けたり、ある
いは密閉構造にしたりと構造設計上さまざまな工夫を行
っていたが、本発明の正特性サーミスタを使用すること
により、これらの構造設計が不要となるため、その工数
の低減およびコストダウンが可能となり、その工業的利
用価値は大きい。さらに安全性の面でも本発明の正特性
サーミスタは特性の劣化がないために熱暴走し、正特性
サーミスタが破壊するということがなく、信頼性の極め
て高いものである。
On the other hand, conventionally, various measures have been taken in structural design such as providing a cover such as a protective case for protecting the element from a reducing atmosphere, or making a sealed structure. By using the thermistor, these structural designs are unnecessary, so that the number of steps can be reduced and the cost can be reduced, and its industrial utility value is great. Further, in terms of safety, the PTC thermistor of the present invention is extremely reliable because it does not cause thermal runaway and destruction of the PTC thermistor because there is no deterioration in its characteristics.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 サーミスタ素子と、このサーミスタ素子
の表面に設けた電極とを備え、前記サーミスタ素子は、
チタン酸バリウムまたはその固溶体からなる主成分1m
olに対して、副成分として希土類元素の酸化物あるい
はNb,Sb,Biの酸化物のうち少なくとも1種類
と、Si,Mn,Alの各酸化物と、CaZrO3
0.05〜0.25mol含有させたもので形成した正
特性サーミスタ。
1. A thermistor element and an electrode provided on the surface of the thermistor element, wherein the thermistor element comprises:
Main component 1m consisting of barium titanate or its solid solution
With respect to ol, at least one kind of oxides of rare earth elements or oxides of Nb, Sb, and Bi as auxiliary components, oxides of Si, Mn, and Al, and CaZrO 3 of 0.05 to 0.25 mol. A positive temperature coefficient thermistor formed of the contained one.
【請求項2】 サーミスタ素子と、このサーミスタ素子
の表面に設けた電極とを備え、前記サーミスタ素子は、
チタン酸バリウムまたはその固溶体からなる主成分1m
olに対して、副成分として希土類元素の酸化物あるい
はNb,Sb,Biの酸化物のうち少なくとも1種類
と、Mn,Alの各酸化物と、CaZrO 3を0.05
〜0.25mol、PbSiO3を0.005〜0.0
4mol含有させたもので形成した正特性サーミスタ。
2. A thermistor element and the thermistor element
And an electrode provided on the surface of, the thermistor element,
Main component 1m consisting of barium titanate or its solid solution
or an oxide of a rare earth element as an accessory component to ol
Is at least one of Nb, Sb, and Bi oxides
And Mn and Al oxides and CaZrO 3To 0.05
~ 0.25 mol, PbSiO30.005-0.0
A positive temperature coefficient thermistor formed by containing 4 mol.
【請求項3】 チタン酸バリウムまたはその固溶体から
なる主成分に対して、副成分として希土類元素の酸化物
あるいはNb,Sb,Biの酸化物のうち少なくとも1
種類と、Si,Mn,Alの各酸化物とを添加して仮焼
し、次に、この仮焼粉にCaZrO3を前記主成分1m
olに対して0.05〜0.25mol添加混合して成
形し、焼成した後電極を形成する正特性サーミスタの製
造方法。
3. At least one of an oxide of a rare earth element or an oxide of Nb, Sb, Bi as a subcomponent with respect to the main component made of barium titanate or a solid solution thereof.
Calcination is performed by adding the types and oxides of Si, Mn, and Al, and then CaZrO 3 is added to the calcined powder as the main component 1 m.
A method for producing a positive temperature coefficient thermistor, in which 0.05 to 0.25 mol is added to and mixed with ol, and the mixture is molded and fired to form an electrode.
【請求項4】 CaZrO3は、その粒径が仮焼粉の粒
径よりも大きいものを用いる請求項3記載の正特性サー
ミスタの製造方法。
4. The method for manufacturing a positive temperature coefficient thermistor according to claim 3, wherein CaZrO 3 has a particle size larger than that of the calcined powder.
【請求項5】 チタン酸バリウムまたはその固溶体から
なる主成分に対して、副成分として希土類元素の酸化物
あるいはNb,Sb,Biの酸化物のうち少なくとも1
種類と、Mn,Alの各酸化物とを添加して仮焼し、次
に、この仮焼粉に、前記主成分1molに対して、Ca
ZrO3を0.05〜0.25mol、PbSiO3
0.005〜0.04mol添加混合して成形し、焼成
した後電極を形成する正特性サーミスタの製造方法。
5. At least one of an oxide of a rare earth element or an oxide of Nb, Sb, or Bi as a subcomponent with respect to the main component made of barium titanate or a solid solution thereof.
Calcination is performed by adding the kind and each oxide of Mn and Al. Then, Ca is added to the calcined powder with respect to 1 mol of the main component.
A method for manufacturing a positive temperature coefficient thermistor, in which ZrO 3 is added in an amount of 0.05 to 0.25 mol, PbSiO 3 is added in an amount of 0.005 to 0.04 mol, and the mixture is molded and fired to form an electrode.
【請求項6】 CaZrO3とPbSiO3とは、これら
の粒径が仮焼粉の粒径よりも大きいものを用いる請求項
5記載の正特性サーミスタの製造方法。
6. The method for producing a positive temperature coefficient thermistor according to claim 5, wherein CaZrO 3 and PbSiO 3 have a particle size larger than that of the calcined powder.
JP6307400A 1994-12-12 1994-12-12 Positive thermistor and its manufacture Pending JPH08167501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6307400A JPH08167501A (en) 1994-12-12 1994-12-12 Positive thermistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6307400A JPH08167501A (en) 1994-12-12 1994-12-12 Positive thermistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH08167501A true JPH08167501A (en) 1996-06-25

Family

ID=17968600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6307400A Pending JPH08167501A (en) 1994-12-12 1994-12-12 Positive thermistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH08167501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218087A (en) * 2019-07-05 2019-09-10 威海市科博乐汽车电子有限公司 The preparation method of negative temperature coefficient heat-sensitive resistance material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218087A (en) * 2019-07-05 2019-09-10 威海市科博乐汽车电子有限公司 The preparation method of negative temperature coefficient heat-sensitive resistance material
CN110218087B (en) * 2019-07-05 2021-12-07 威海市科博乐汽车电子有限公司 Preparation method of negative temperature coefficient thermistor material

Similar Documents

Publication Publication Date Title
JP3141642B2 (en) Manufacturing method of PTC thermistor
KR20170094085A (en) Semiconductor ceramic composition and ptc thermistor
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP6604653B2 (en) Semiconductor porcelain composition and method for producing the same
KR101545763B1 (en) Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
JP5881169B2 (en) Method for producing semiconductor porcelain composition
JPH08167501A (en) Positive thermistor and its manufacture
JP5988388B2 (en) Semiconductor porcelain composition and method for producing the same
JPH08306509A (en) Positive temperature coefficient thermistor and its manufacturing method
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JP6075877B2 (en) Semiconductor porcelain composition and method for producing the same
JPH1070006A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH1092605A (en) Manufacture of positive temperature thermistor
JP2012209292A (en) Positive thermistor
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH10135006A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH11116326A (en) Thermistor with positive characteristic and its production
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JPH11214204A (en) Positive temperature coefficient thermistor and manufacture thereof
WO2012036142A1 (en) Positive characteristic thermistor and method for manufacturing positive characteristic thermistor
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH10152372A (en) Barium titanate-based semiconductor porcelain and its production
JPH10294202A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor