JPH07335404A - Manufacture of positive temperature coefficient thermistor - Google Patents

Manufacture of positive temperature coefficient thermistor

Info

Publication number
JPH07335404A
JPH07335404A JP6122455A JP12245594A JPH07335404A JP H07335404 A JPH07335404 A JP H07335404A JP 6122455 A JP6122455 A JP 6122455A JP 12245594 A JP12245594 A JP 12245594A JP H07335404 A JPH07335404 A JP H07335404A
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient thermistor
calcined
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6122455A
Other languages
Japanese (ja)
Inventor
Taiji Goto
泰司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6122455A priority Critical patent/JPH07335404A/en
Publication of JPH07335404A publication Critical patent/JPH07335404A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a positive temperature coefficient thermistor having excellent electric characteristics, especially having a large positive resistance temperature coefficient and a high breakdown voltage, to be used as an exothermic substance or switching device. CONSTITUTION:This manufacturing method of a positive temperature coefficient thermistor is characterized by adding an excessive amount, 0.5-3.0mol%, of TiO2 powder against 1mol of a main component, to a calcined substance mainly composed of barium titanate and its solid solution and containing a very small amount of semiconductorizing elements, Si, Mn, and Al added. Besides, the ratio of DA to DB DA/DB is controlled into a range 0.5-1.0, when the average particle diameter of the calcined crushed powder at that time is represented by DA, and that of the excessive TiO2 powder by DB.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特定の温度で抵抗値が急
激に増大する正特性サーミスタにおいて、特に、抵抗温
度係数および耐電圧の大きな正特性サーミスタの製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a positive temperature coefficient thermistor having a resistance value rapidly increasing at a specific temperature, and more particularly to a method of manufacturing a positive temperature coefficient thermistor having a large resistance temperature coefficient and a large withstand voltage.

【0002】[0002]

【従来の技術】チタン酸バリウムにY,La,Ce等の
希土類元素或いはNb,Ta等の遷移金属を微量添加す
ると半導体化し、そのキュリー点付近の温度で正の抵抗
温度特性(Positive Temperature Coefficient;PTC
特性)を示すことは従来より広く知られている。そのP
TC特性を利用して、過電流保護用素子、温度制御用素
子、モータ起動用素子、ヒータ用素子といったさまざま
な用途に応用されてきている。
2. Description of the Related Art Barium titanate is converted into a semiconductor by adding a trace amount of a rare earth element such as Y, La or Ce or a transition metal such as Nb or Ta, and has a positive resistance temperature characteristic (Positive Temperature Coefficient; PTC
It is widely known in the past to exhibit the characteristics. That P
Utilizing the TC characteristics, it has been applied to various applications such as an overcurrent protection element, a temperature control element, a motor starting element, and a heater element.

【0003】一方、このような正特性サーミスタの製造
方法としては以下に記すものが一般的である。まず配合
された原料をボールミルやディスパーミルなどを用いて
混合し、フィルタープレス、ドラムドライヤー等で脱
水、乾燥した後、これらの混合粉末を仮焼する。次にこ
の仮焼粉末をボールミル等で粉砕し、ポリビニルアルコ
ール等の結合剤を加えスラリー状にしたものをスプレー
ドライヤー等により造粒し、所望の形状に成形する。さ
らに、この成形体を通常、空気中1300〜1400℃
の高温で本焼成を行い、得られた焼結体に電極を塗布し
最終製品とするものである。
On the other hand, as a method of manufacturing such a positive temperature coefficient thermistor, the following method is generally used. First, the blended raw materials are mixed using a ball mill, a disper mill or the like, dehydrated and dried with a filter press, a drum dryer or the like, and then these mixed powders are calcined. Next, the calcined powder is pulverized by a ball mill or the like, a binder such as polyvinyl alcohol is added to form a slurry, and the slurry is granulated by a spray dryer or the like to form a desired shape. Furthermore, this molded body is usually placed in the air at 1300 to 1400 ° C.
Main firing is carried out at a high temperature, and electrodes are applied to the obtained sintered body to obtain the final product.

【0004】[0004]

【発明が解決しようとする課題】このような正特性サー
ミスタに要求される特性の1つに高耐電圧化がある。
One of the characteristics required for such a positive temperature coefficient thermistor is to increase the withstand voltage.

【0005】これは、(1)高電圧回路への適用、
(2)素子の小型化(同一定格電圧の場合)等の利点が
あるためである。
This is (1) application to high voltage circuits,
(2) This is because there are advantages such as miniaturization of the element (when the rated voltage is the same).

【0006】この耐電圧の向上を達成するためには、セ
ラミックス自体の結晶粒子径をできるだけ小さくするこ
とが必要であり、従来からその組成面あるいはプロセス
面での種々の検討が行われてきている。
In order to achieve this improvement in withstand voltage, it is necessary to make the crystal grain diameter of the ceramics itself as small as possible, and various studies have been conventionally conducted in terms of its composition or process. .

【0007】組成面では、例えばCa等の粒成長抑制元
素を添加することで結晶粒子径を抑制することができる
が、常温での抵抗値が大きくなるなどの欠点がある。
In terms of composition, the grain size can be suppressed by adding a grain growth suppressing element such as Ca, but there is a drawback that the resistance value at room temperature becomes large.

【0008】一方、プロセス面からは焼成温度をできる
だけ低く設定することで粒成長を抑制することが可能で
あるが、PTC特性、特に抵抗温度係数の低下が顕著と
なってくる等の問題点が生じる。
On the other hand, from a process standpoint, it is possible to suppress grain growth by setting the firing temperature as low as possible, but there is a problem that the PTC characteristics, particularly the decrease of the temperature coefficient of resistance becomes remarkable. Occurs.

【0009】このような、耐電圧の問題の他に、特に正
特性サーミスタを温度制御用としてヒータ関係の製品に
使用する場合、使用電圧が異なると、その抵抗温度係数
の低下に起因する、所望の発熱温度を示さなくなる等の
課題が発生する。
In addition to such a problem of withstand voltage, when a positive temperature coefficient thermistor is used in a heater-related product for temperature control, if the working voltage is different, the temperature coefficient of resistance decreases, which is desirable. Problems such as not showing the exothermic temperature of occurs.

【0010】本発明は、このような点に鑑み、特に、抵
抗温度係数が大きく耐電圧の高い正特性サーミスタを提
供することを目的とするものである。
In view of the above points, it is an object of the present invention to provide a positive temperature coefficient thermistor having a large temperature coefficient of resistance and a high withstand voltage.

【0011】[0011]

【課題を解決するための手段】前記した目的を達成する
ために本発明は、チタン酸バリウム又はその固溶体から
なる主成分に、半導体化元素として、希土類元素あるい
はNb,Sb,Biの酸化物のうち少なくとも1種類を
含み、さらにSiO2、MnO2、Al23を添加した原
料を仮焼し、粉砕する際、さらにTiO2を添加し、次
に成形し、焼成後、電極を付与するものである。
In order to achieve the above-mentioned object, the present invention provides a main component composed of barium titanate or a solid solution thereof with a rare earth element or an oxide of Nb, Sb or Bi as a semiconducting element. A raw material containing at least one of these, and further added with SiO 2 , MnO 2 , and Al 2 O 3 is calcined, and when pulverized, TiO 2 is further added, and then molded and fired, and then an electrode is provided. It is a thing.

【0012】[0012]

【作用】次に本発明の作用について説明する。Next, the operation of the present invention will be described.

【0013】PTC特性の発現のメカニズムは、ポテン
シャル障壁のある粒界に起因していることは、古くより
Heywangにより指摘されていた。
It has long been pointed out by Heywang that the mechanism of manifestation of PTC characteristics is due to grain boundaries with potential barriers.

【0014】キュリー点以上の温度において、その障壁
が温度の上昇に伴い指数関数的に増大する。その粒界抵
抗は次式で示される。
At temperatures above the Curie point, the barrier increases exponentially with increasing temperature. The grain boundary resistance is shown by the following equation.

【0015】 p=p0 exp(φ/kT) (1) 但し、p0,k:定数 φ:ポテンシャルの障壁高さ T:絶対温度 さらに、その障壁の高さφは、 φ=e2 Ns2 /2ε1・ε0・Nd (2) e:電子の電荷、 Ns:アクセプター密度 Nd:ドナー密度、 ε1 :比誘電率 ε0 :真空の誘電率 である。P = p 0 exp (φ / kT) (1) where p 0 , k: constant φ: potential barrier height T: absolute temperature Further, the barrier height φ is φ = e 2 Ns. 2 / 2ε 1 · ε 0 · Nd (2) e: electron charge, Ns: acceptor density Nd: donor concentration, epsilon 1: a dielectric constant epsilon 0: the dielectric constant of a vacuum.

【0016】一方、キュリー点前後で結晶系が正方晶系
ペロブスカイト構造から立方晶系に相転移することが知
られている。
On the other hand, it is known that the crystal system undergoes a phase transition from a tetragonal perovskite structure to a cubic system around the Curie point.

【0017】従って、PTC特性における抵抗温度係数
を大きくすると言うことは、(1)式におけるφを大き
くすること、即ち(2)式におけるNsを大きくするこ
とが必要であり、また結晶構造的には、キュリー点前後
での相転移を阻害するような物質の生成を抑制し、相転
移速度を高めることが求められる。
Therefore, to increase the temperature coefficient of resistance in the PTC characteristic means to increase φ in the equation (1), that is, to increase Ns in the equation (2), and also in terms of crystal structure. Are required to suppress the production of substances that inhibit the phase transition around the Curie point and increase the phase transition rate.

【0018】このような観点にもとづき、組成面および
プロセス面において鋭意研究した結果本発明に至ったも
のである。その作用について以下に説明する。
Based on such a viewpoint, the present invention has been achieved as a result of earnest research on the composition side and the process side. The operation will be described below.

【0019】本発明の組成の中でAl,Mn,Siは特
に粒界部分に偏析しPTC特性に大きく影響する成分で
ある。これにTiを若干量過剰添加することで、Al,
Mnと反応しアクセプター濃度が高められ、その結果
(2)式のNsが増し抵抗温度係数が大きくなるものと
考えられる。さらに製造プロセスにおいては仮焼後に過
剰のTiを添加することで、より効果的に粒界のみ選択
的にこの機能を発現させることができる。一方、結晶構
造からは、通常の製造プロセスにより作製されたPTC
素子に認められる副生成物(Ba4Ti1330相やBa2
TiSi28相等の液相成分)の生成が仮焼時に既に認
められるが、本発明の製造方法をとることによりこれら
の副生成物の生成が抑制されるため相転移速度が大きく
なるものと考えられる。又、前述した液相成分の生成が
抑制されるため焼結時の粒成長が抑制され、結晶粒子径
が微細化された結果、耐電圧が向上するものと考えられ
る。
In the composition of the present invention, Al, Mn, and Si are components that segregate particularly in the grain boundary portion and greatly affect the PTC characteristics. By adding a slight excess of Ti to this, Al,
It is considered that the acceptor concentration is increased by reacting with Mn, and as a result, Ns in the equation (2) is increased and the resistance temperature coefficient is increased. Furthermore, in the manufacturing process, by adding excess Ti after calcination, it is possible to more effectively develop this function selectively only at the grain boundaries. On the other hand, from the crystal structure, PTC produced by a normal manufacturing process
By-products found in the device (Ba 4 Ti 13 O 30 phase and Ba 2
Although formation of liquid phase components such as TiSi 2 O 8 phase) is already recognized during the calcination, the production method of the present invention suppresses the formation of these by-products and thus the phase transition rate is increased. Conceivable. Further, it is considered that since the generation of the liquid phase component described above is suppressed, the grain growth at the time of sintering is suppressed, and the crystal grain size is made fine, so that the withstand voltage is improved.

【0020】以上詳述したように、本発明の正特性サー
ミスタの製造方法を用いることにより、PTC特性、特
に抵抗温度係数が大きく結晶粒子径の抑制された正特性
サーミスタを得ることができる。
As described above in detail, by using the method for manufacturing a PTC thermistor of the present invention, a PTC thermistor having a large PTC characteristic, particularly a large temperature coefficient of resistance and a suppressed crystal grain size can be obtained.

【0021】従って、PTC特性の電圧依存性が少な
く、耐電圧が向上されるので、より小型化および高電圧
化への適用が可能となる。
Therefore, since the PTC characteristic has little voltage dependency and the withstand voltage is improved, it can be applied to further miniaturization and higher voltage.

【0022】[0022]

【実施例】以下実施例により本発明について説明する。EXAMPLES The present invention will be described below with reference to examples.

【0023】(実施例1)(Ba0.8Pb0.1Ca0.1
TiO3+0.002Y23+0.02SiO2+0.0
005MnO2+0.01Al23の組成になるよう
に、それぞれ原料として炭酸バリウム(BaCO3)、
酸化チタン(TiO2)、酸化鉛(PbO)、炭酸カル
シウム(CaCO3)、酸化イットリウム(Y23)、
二酸化珪素(SiO2)、二酸化マンガン(MnO2)お
よび酸化アルミニウム(Al23)を秤量した。次に、
これらをボールミルにて湿式混合した後乾燥し、110
0℃で2時間仮焼した。その後、この仮焼した粉に過剰
のTiO2を添加し、ボールミルにて湿式粉砕し乾燥し
た。
(Example 1) (Ba 0.8 Pb 0.1 Ca 0.1 )
TiO 3 + 0.002Y 2 O 3 + 0.02SiO 2 +0.0
Barium carbonate (BaCO 3 ) as a raw material so as to have a composition of 005 MnO 2 + 0.01Al 2 O 3 ,
Titanium oxide (TiO 2 ), lead oxide (PbO), calcium carbonate (CaCO 3 ), yttrium oxide (Y 2 O 3 ),
Silicon dioxide (SiO 2 ), manganese dioxide (MnO 2 ) and aluminum oxide (Al 2 O 3 ) were weighed. next,
These are wet mixed in a ball mill and then dried,
It was calcined at 0 ° C. for 2 hours. Then, excess TiO 2 was added to the calcined powder, and the mixture was wet pulverized with a ball mill and dried.

【0024】次に、この粉砕粉に結合剤としてポリビニ
ルアルコールを5%加え造粒し、800kg/cm2
圧力でプレス成形した。この成形物を空気中で約135
0℃にて1時間焼成し、直径20mm、厚さ2.0mm
の円板状の焼結体を得た。さらに、この焼結体にNiメ
ッキを施した後、銀ペーストを塗布、焼付し電極とし
た。
Next, 5% of polyvinyl alcohol as a binder was added to this pulverized powder, and the mixture was granulated and press-molded at a pressure of 800 kg / cm 2 . This molded product is about 135 in air
Fired at 0 ° C for 1 hour, diameter 20mm, thickness 2.0mm
A disk-shaped sintered body of was obtained. Further, this sintered body was plated with Ni, and then silver paste was applied and baked to form an electrode.

【0025】次に、このようにして得られた試料の各種
電気特性を測定する。その抵抗温度特性曲線により、常
温抵抗値(R25)、抵抗温度係数(α)、耐電圧
(VBD)を評価した。その結果を(表1)に示した。
Next, various electrical characteristics of the sample thus obtained are measured. From the resistance-temperature characteristic curve, the room temperature resistance value (R 25 ), the resistance temperature coefficient (α), and the withstand voltage (V BD ) were evaluated. The results are shown in (Table 1).

【0026】[0026]

【表1】 [Table 1]

【0027】ここで、抵抗温度係数は次式に従い求め
た。 [ln(R2/R1)/(T2−T1)]×100(%/
℃) 但し、R1、T1;R25の2倍の抵抗値およびその時の温
度 R2、T2;(T1+10)℃の時の抵抗値およびその温
度 である。
Here, the temperature coefficient of resistance was determined according to the following equation. [Ln (R 2 / R 1 ) / (T 2 -T 1)] × 100 (% /
However, R 1 and T 1 are the resistance value twice that of R 25 and the temperature at that time R 2 and T 2 ; the resistance value and the temperature at (T 1 +10) ° C.

【0028】尚、試料番号1〜3,6,9,11,12
は本発明の比較例である。その中で試料番号3,6,9
は過剰TiO2量は本発明の範囲内であるが、原料の混
合時に添加したものであり、それ以外の比較例は過剰T
iO2量が本発明の範囲外のものである。
Sample numbers 1 to 3, 6, 9, 11, 12
Is a comparative example of the present invention. Sample number 3, 6, 9
Although the amount of excess TiO 2 is within the range of the present invention, it was added at the time of mixing the raw materials.
The amount of iO 2 is outside the range of the present invention.

【0029】(表1)より明らかなように過剰に添加す
るTiO2量が本発明の範囲内にあり、しかも仮焼後に
添加したものは抵抗温度係数が大きく結晶粒子径が抑制
され、耐電圧も高いことが認められる。
As is clear from (Table 1), the amount of TiO 2 added in excess is within the range of the present invention, and those added after calcination have a large temperature coefficient of resistance and a suppressed crystal grain size, resulting in a withstand voltage. Is also found to be high.

【0030】一方、本発明の範囲外の試料は、抵抗温度
係数および耐電圧の向上は認められず、特に、過剰Ti
2の多い試料番号11,12に関しては、常温抵抗値
が極端に高くなってしまう。
On the other hand, in the samples outside the range of the present invention, the temperature coefficient of resistance and the withstand voltage were not improved, and in particular, excess Ti
Regarding the sample numbers 11 and 12 containing a large amount of O 2 , the room temperature resistance value becomes extremely high.

【0031】(実施例2) (実施例1)と同様の組成となるように原料を配合しボ
ールミルにて湿式混合する。次にこの混合物を乾燥した
後、1100℃で2時間仮焼した。さらにこの仮焼粉に
1.0mol%のTiO2を添加しボールミルにて湿式
粉砕した。このときこの仮焼粉砕粉の平均粒子径を
A、過剰TiO2粉の平均粒子径をDBとした。
Example 2 Raw materials are blended so as to have the same composition as in Example 1 and wet mixed in a ball mill. Next, this mixture was dried and then calcined at 1100 ° C. for 2 hours. Further, 1.0 mol% of TiO 2 was added to this calcined powder, and wet pulverization was performed with a ball mill. At this time, the average particle size of the calcined pulverized powder was D A , and the average particle size of the excess TiO 2 powder was D B.

【0032】ここで、DAとDBとの比DA/DBを(表
2)の試料番号1〜9になるように試料の粉砕時間を調
整した。
Here, the crushing time of the sample was adjusted so that the ratio D A / D B of D A and D B would be the sample numbers 1 to 9 in (Table 2).

【0033】[0033]

【表2】 [Table 2]

【0034】さらにこの粉砕粉を(実施例1)と同様な
方法で造粒、成形、焼成し電極を形成した。次に、この
ように作製された試料の各種の電気特性を測定した。そ
の抵抗温度特性より(実施例1)と同様にR25、α、V
BDを評価した。その評価結果を(表2)に示した。
Further, this pulverized powder was granulated, molded and fired in the same manner as in (Example 1) to form an electrode. Next, various electrical characteristics of the sample thus manufactured were measured. From the resistance-temperature characteristic, R 25 , α, V
The BD was evaluated. The evaluation results are shown in (Table 2).

【0035】(表2)より明らかなようにDA/DB比が
本発明の範囲内である0.5〜1.0であると常温抵抗
値の上昇が抑えられしかも結晶粒子径が抑制され、抵抗
温度係数および耐電圧の向上が図られる。しかし、DA
/DB比が本発明の範囲外であるとR25が上昇すると同
時にαおよびVBDの低下が認められる。この理由は以下
の通りである。
As is clear from (Table 2), when the D A / D B ratio is within the range of the present invention of 0.5 to 1.0, the increase in the room temperature resistance value is suppressed and the crystal grain size is suppressed. Therefore, the temperature coefficient of resistance and the withstand voltage are improved. But D A
When the / D B ratio is out of the range of the present invention, R 25 increases and at the same time, α and V BD decrease. The reason for this is as follows.

【0036】一般的に、バリウムとチタンの固相反応
は、チタンからバリウムへの一方的なイオン拡散で進行
すると考えられている。従って、チタンの粒子径が小さ
いほどこの反応は容易に進行すると思われる。本発明で
は仮焼粉砕粉の平均粒子径を過剰添加のTiO2の平均
粒子径より小さくすることで、バリウムとの反応を抑制
し、粒界での反応をより効果的に行わせることができ、
さらに前述した副生成物を抑制する効果も有するため、
より一層の抵抗温度係数および耐電圧の向上が図られる
ものと考えられる。しかし、DA/DBが0.5より小さ
いと粒界での反応が不均一となるため、本発明の効果は
低減されるものと考えられる。
It is generally considered that the solid phase reaction between barium and titanium proceeds by unidirectional ion diffusion from titanium to barium. Therefore, it is considered that the smaller the particle size of titanium, the easier this reaction proceeds. In the present invention, by making the average particle size of the calcined pulverized powder smaller than the average particle size of TiO 2 with excessive addition, the reaction with barium can be suppressed and the reaction at the grain boundary can be carried out more effectively. ,
Furthermore, since it also has the effect of suppressing the above-mentioned by-products,
It is considered that the temperature coefficient of resistance and the withstand voltage can be further improved. However, if D A / D B is less than 0.5, the reaction at the grain boundaries becomes non-uniform, so the effect of the present invention is considered to be reduced.

【0037】[0037]

【発明の効果】以上の説明より明らかなように、本発明
は、チタン酸バリウムまたはその固溶体を主成分とし、
半導体化元素あるいはNb,Sb,Biの酸化物のうち
少なくとも1種類、Al,Mn,Siが添加されてなる
仮焼粉に、さらに、TiO2を主成分1molに対して
0.5〜3.0mol%添加し、さらに仮焼粉砕粉と過
剰TiO2の平均粒子径の比が0.5〜1.0となるよ
うにコントロールしたものでサーミスタ素子を形成する
ものである。その結果、結晶粒子径を抑制し均一な粒成
長を促し、耐電圧を向上させることができる。また、粒
界でのアクセプター密度が増大することにより抵抗温度
係数を向上させることができる。
As is apparent from the above description, the present invention comprises barium titanate or its solid solution as a main component,
0.5-3 semiconductive dopant or Nb, Sb, at least one of the oxides of Bi, Al, Mn, to the calcined powder Si is formed by adding, further, the TiO 2 with respect to the main component 1 mol. The thermistor element is formed by adding 0 mol% and controlling the ratio of the average particle size of the calcined pulverized powder to the excess TiO 2 to be 0.5 to 1.0. As a result, it is possible to suppress the crystal grain size, promote uniform grain growth, and improve the withstand voltage. Further, the temperature coefficient of resistance can be improved by increasing the acceptor density at the grain boundary.

【0038】従って、高電力回路への応用や素子の小型
化等が期待できるため、その工業的利用価値は大きい。
Therefore, since it can be expected to be applied to a high power circuit and miniaturization of elements, its industrial utility value is great.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸バリウム又はその固溶体からな
る主成分に、副成分として、希土類元素あるいはNb,
Sb,Biの酸化物のうち少なくとも1種類、さらにS
iO2、MnO2、Al23を添加した原料を仮焼し、次
に粉砕する際、さらにTiO2を添加し、その後成形、
焼成し、最後に電極を付与する正特性サーミスタの製造
方法。
1. A main component comprising barium titanate or a solid solution thereof, and a rare earth element or Nb,
At least one of Sb and Bi oxides, and further S
When the raw material added with iO 2 , MnO 2 , and Al 2 O 3 is calcined and then crushed, TiO 2 is further added, followed by molding,
A method for manufacturing a positive temperature coefficient thermistor, which comprises firing and finally applying an electrode.
【請求項2】 粉砕する際に添加するTiO2の平均粒
子径をDB、仮焼した原料の平均粒子径をDAとすると、
A/DBが0.5〜1.0となるようにする請求項1記
載の正特性サーミスタの製造方法。
2. When the average particle diameter of TiO 2 added during pulverization is D B and the average particle diameter of the calcined raw material is D A ,
The method for manufacturing a positive temperature coefficient thermistor according to claim 1, wherein D A / D B is set to 0.5 to 1.0.
【請求項3】 粉砕する際のTiO2の添加量を主成分
1molに対して0.5〜3.0mol%にする請求項
1または2記載の正特性サーミスタの製造方法。
3. The method for producing a positive temperature coefficient thermistor according to claim 1, wherein the amount of TiO 2 added during milling is 0.5 to 3.0 mol% with respect to 1 mol of the main component.
JP6122455A 1994-06-03 1994-06-03 Manufacture of positive temperature coefficient thermistor Pending JPH07335404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6122455A JPH07335404A (en) 1994-06-03 1994-06-03 Manufacture of positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6122455A JPH07335404A (en) 1994-06-03 1994-06-03 Manufacture of positive temperature coefficient thermistor

Publications (1)

Publication Number Publication Date
JPH07335404A true JPH07335404A (en) 1995-12-22

Family

ID=14836278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6122455A Pending JPH07335404A (en) 1994-06-03 1994-06-03 Manufacture of positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JPH07335404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012863A1 (en) * 1997-09-05 1999-03-18 Tdk Corporation Barium titanate-base semiconductor ceramic
US6071842A (en) * 1997-09-05 2000-06-06 Tdk Corporation Barium titanate-based semiconductor ceramic
US6221800B1 (en) 1997-09-05 2001-04-24 Tdk Corporation Method of producing PTC semiconducting ceramic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012863A1 (en) * 1997-09-05 1999-03-18 Tdk Corporation Barium titanate-base semiconductor ceramic
US6071842A (en) * 1997-09-05 2000-06-06 Tdk Corporation Barium titanate-based semiconductor ceramic
US6221800B1 (en) 1997-09-05 2001-04-24 Tdk Corporation Method of producing PTC semiconducting ceramic
CN1093100C (en) * 1997-09-05 2002-10-23 Tdk株式会社 Barium titanate-base semiconductor ceramic

Similar Documents

Publication Publication Date Title
US4384989A (en) Semiconductive barium titanate
KR101361358B1 (en) Semiconductor ceramic composition and method for producing the same
WO2008050875A1 (en) Semiconductor ceramic composition and method for producing the same
JPH0778703A (en) Positive temperature coefficient thermistor and manufacture thereof
WO2009119335A1 (en) Process for producing semiconductor porcelain composition/electrode assembly
CN101528632B (en) Semiconductor ceramic composition and method for producing the same
JPH075363B2 (en) PTC porcelain composition and method for producing the same
US6071842A (en) Barium titanate-based semiconductor ceramic
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP3039511B2 (en) Semiconductor ceramic and semiconductor ceramic element
JP4058140B2 (en) Barium titanate semiconductor porcelain
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JPH1092605A (en) Manufacture of positive temperature thermistor
JPH10152372A (en) Barium titanate-based semiconductor porcelain and its production
JP3699195B2 (en) Positive characteristic semiconductor porcelain and manufacturing method thereof
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPH1092604A (en) Positive temperature coefficient thermistor and its manufacture
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH10135006A (en) Positive temperature coefficient thermistor and manufacturing method thereof