JP2934388B2 - Manufacturing method of semiconductor porcelain - Google Patents

Manufacturing method of semiconductor porcelain

Info

Publication number
JP2934388B2
JP2934388B2 JP6282957A JP28295794A JP2934388B2 JP 2934388 B2 JP2934388 B2 JP 2934388B2 JP 6282957 A JP6282957 A JP 6282957A JP 28295794 A JP28295794 A JP 28295794A JP 2934388 B2 JP2934388 B2 JP 2934388B2
Authority
JP
Japan
Prior art keywords
compound
porcelain
semiconductor
raw material
calcining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6282957A
Other languages
Japanese (ja)
Other versions
JPH08124782A (en
Inventor
喜章 井口
慎太郎 林
典之 神津
喜佳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP6282957A priority Critical patent/JP2934388B2/en
Publication of JPH08124782A publication Critical patent/JPH08124782A/en
Application granted granted Critical
Publication of JP2934388B2 publication Critical patent/JP2934388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はコンデンサやバリスタに
使用されるSrTiO3 を主成分とする半導体磁器の製
造方法に関する。
The present invention relates to a method of manufacturing a semiconductor ceramic mainly composed of SrTiO 3 which is used in the capacitor and a varistor.

【0002】[0002]

【従来の技術】SrTiO3 を主成分とする半導体磁器
の従来の典型的な製造方法においては、SrCO3 とT
iO2 との混合物を仮焼してSrTiO3 を予め作り、
このSrTiO3 に対してY、La、Ce、Nb、T
a、W等の金属酸化物から成る原子価制御剤(半導体化
剤)及びその他の添加剤を添加したもので成形体を作
り、この成形体を焼成した。
2. Description of the Related Art In a conventional typical method for producing a semiconductor ceramic mainly composed of SrTiO 3 , SrCO 3 and Tr
The mixture with TiO 2 is calcined to make SrTiO 3 in advance,
Y for this SrTiO 3, La, Ce, Nb , T
A molded body was prepared from a material to which a valence controlling agent (semiconductor agent) composed of a metal oxide such as a and W and other additives were added, and the molded body was fired.

【0003】[0003]

【発明が解決しようとする課題】半導体磁器を利用して
粒界絶縁型のコンデンサやバリスタを作成する場合、良
好な電気的特性を得るためには半導体化を促進して粒内
の電気抵抗を十分低くすること及びできるだけ粒子を均
一にして負荷を分散することが必要になる。前者の半導
体化を促進するためには、原子価制御剤の添加量を増や
すことが有効だが、単に添加量を増やしても、従来の方
法ではSrTiO3 結晶粒内への固溶量に限界があり、
粒内抵抗が十分に低くならないばかりか過剰な添加剤が
粒界に偏析し粒界の絶縁化を阻害し耐電圧を低下させ
た。また、後者の焼結した磁器の結晶粒径を均一にする
ためには、SrTiO3 粉体の粒度分布を細かくシャー
プにする必要があるが、上記従来方法では粉体の粒径が
仮焼温度に対して敏感で制御が困難であった。
When a grain boundary insulating type capacitor or varistor is manufactured using semiconductor porcelain, in order to obtain good electrical characteristics, it is necessary to promote the formation of a semiconductor and reduce the electrical resistance in the grains. It is necessary to be sufficiently low and to distribute the load with as uniform a particle as possible. In order to promote the former semiconductor, it is effective to increase the addition amount of the valence controlling agent. However, even if the addition amount is simply increased, the amount of solid solution in the SrTiO 3 crystal grains is limited by the conventional method. Yes,
Not only did the intragranular resistance not become sufficiently low, but also excessive additives segregated at the grain boundaries, hindering the insulation of the grain boundaries and lowering the withstand voltage. Further, in order to make the crystal grain size of the sintered porcelain uniform, the particle size distribution of the SrTiO 3 powder needs to be fine and sharp. And was difficult to control.

【0004】そこで、本発明の目的は、磁器の結晶粒径
を均一にして特性のバラツキを抑えることができる半導
体磁器の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method of manufacturing a semiconductor porcelain capable of making the crystal grain size of the porcelain uniform and suppressing variations in characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、少なくともSrCO3 とTiO2 とを含む
主成分原料に対してYとTiの化合物、LaとTiの化
合物、及びCeとTiの化合物の内の少なくとも1種の
原子価制御剤を添加した半導体磁器原料を用意し、この
半導体磁器原料を仮焼する工程と、前記仮焼された磁器
原料を含む成形体を形成する工程と、前記成形体を前記
仮焼工程の温度よりも高い温度で焼成する工程とを有す
る半導体磁器の製造方法に係わるものである。なお、請
求項3に示すように原子価制御剤としてNbとSrの化
合物、TaとSrの化合物及びWとSrの化合物の内の
少なくとも1種とすることができる。また、請求項5に
示すように原子価制御剤としてYとTiの化合物、La
とTiの化合物及びCeとTiの化合物の内少なくとも
1種と、NbとSrの化合物、TaとSrの化合物及び
WとSrの化合物の内の少なくとも1種との両方を使用
することができる。また、請求項2、4、6に示すよう
にCaCO3 を添加することができる。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a compound of Y and Ti, a compound of La and Ti, and a compound of Ce and Y with respect to a main component material containing at least SrCO 3 and TiO 2. A step of preparing a semiconductor porcelain raw material to which at least one valence controlling agent among Ti compounds is added, calcining the semiconductor porcelain raw material, and forming a molded body containing the calcined porcelain raw material And a step of firing the compact at a temperature higher than the temperature of the calcining step. The valence controlling agent may be at least one of a compound of Nb and Sr, a compound of Ta and Sr, and a compound of W and Sr. Further, a compound of Y and Ti as a valence controlling agent, La
Both Ti and Ti compounds and Ce and Ti compounds and at least one of Nb and Sr compounds, Ta and Sr compounds and W and Sr compounds can be used. Further, CaCO 3 can be added as described in the second, fourth and sixth aspects.

【0006】[0006]

【発明の作用及び効果】各請求項の発明の方法によれ
ば、添加物質がSrTiO3 結晶を構成するTi又はS
rと化合しているため、その合成過程で結晶内に容易に
固溶し添加量に相当する原子価制御効果を発揮し電気抵
抗の低い半導体磁器が得られる。さらに添加したTi化
合物又はSr化合物は合成粉体の粒成長を抑制する効果
があり、仮焼時の温度分布や仮焼条件の変動に対して安
定して細かくシャープな粒度分布を有する合成粉体が容
易に得られ、これを焼成したときに均一な粒径の半導体
磁器を得ることができる。なお、請求項2、4、6に示
すようにCaCO3 を添加するとバリスタ特性が得られ
る。
According to the method of the present invention, the additive substance is Ti or S constituting SrTiO 3 crystal.
Since it is combined with r, a semiconductor porcelain having a low electric resistance can be obtained by easily forming a solid solution in the crystal during the synthesis process and exhibiting a valence controlling effect corresponding to the added amount. Further, the added Ti compound or Sr compound has an effect of suppressing grain growth of the synthetic powder, and has a fine and sharp particle size distribution that is stable with respect to fluctuations in temperature distribution and calcination conditions during calcination. Is easily obtained, and when this is fired, a semiconductor ceramic having a uniform particle size can be obtained. In addition, when CaCO 3 is added, varistor characteristics can be obtained.

【0007】[0007]

【第1の実施例】次に、本発明の第1の実施例に係わる
コンデンサの製造方法を説明する。半導体磁器原料を得
るために、SrTiO3 を得るための主成分としてのS
rCO3(炭酸ストロンチウム)及びTiO2 (酸化チ
タン)と、原子価制御剤(半導体化剤)としてのY(イ
ットリウム)、La(ランタン)、及びCe(セリウ
ム)とTi(チタン)との化合物であるY2 Ti
2 7 、La2 Ti2 7 、CeTiO4 と、比較例の
原子価制御剤としてのY2 3 とを用意し、これ等を次
の表1の組成となるように秤量した。
First Embodiment Next, a method of manufacturing a capacitor according to a first embodiment of the present invention will be described. In order to obtain a semiconductor ceramic raw material, S as a main component for obtaining SrTiO 3
Compounds of rCO 3 (strontium carbonate) and TiO 2 (titanium oxide), Y (yttrium) and La (lanthanum) as valence controlling agents (semiconductors), and Ce (cerium) and Ti (titanium) A certain Y 2 Ti
2 O 7 , La 2 Ti 2 O 7 , CeTiO 4 and Y 2 O 3 as a valence controlling agent of a comparative example were prepared, and these were weighed to have the composition shown in Table 1 below.

【0008】 表1 試料NO. SrCO3 TiO2 2 Ti2 7 La2 Ti2 7 CeTiO4 2 3 1 49.9 49.9 0.05 2 49.9 49.9 0.05 3 49.9 49.9 0.1 4 49.9 49.9 0.025 0.025 5 49.9 49.9 0.025 0.05 6 49.9 49.9 0.015 0.01 0.05 7 49.9 50.0 0.05 なお、各成分はモル部で示されている。Table 1 Sample No. SrCO 3 TiO 2 Y 2 Ti 2 O 7 La 2 Ti 2 O 7 CeTiO 4 Y 2 O 3 1 49.9 49.9 0.05 2 49.9 49.9 0.05 3 49.9 49.9 0.14 49.9 49.9 0.025 0.025 5 49.9 49.9 0.025 0.056 49.9 49.9 0.015 0.010 0.057 49.9 50.0 0.05 Each component is shown in molar part.

【0009】次に各試料の原料粉体を湿式ポットミルで
混合した後に乾燥した。次に、この混合粉体を大気中
(酸化性雰囲気中)で1200℃、2時間仮焼した。
Next, the raw material powder of each sample was mixed with a wet pot mill and then dried. Next, the mixed powder was calcined in the air (in an oxidizing atmosphere) at 1200 ° C. for 2 hours.

【0010】次に仮焼して得られた主成分と原子価制御
剤との混合物における100モル部のSr(ストロンチ
ウム)に対して0.2モル部の割合になるように焼結助
剤としてのSiO2 を添加し、これを再び湿式ポットミ
ルで粉砕混合した後に乾燥した。
Next, as a sintering aid, a mixture of the main component obtained by calcination and the valence controlling agent is in a ratio of 0.2 mol part to 100 mol part of Sr (strontium). added a SiO 2, which was dried again after pulverization and mixing in a wet pot mill.

【0011】次に、この粉砕した混合物に有機バインダ
ーとしてポリビニルアルコール水溶液を10重量%添加
し、混合し、造粒し、この造粒物を1ton /cm2 の圧力
で成形して直径10mm、厚さ0.5mmの円板状成形
体を得た。次に、この成形体を炉に入れて容積比で
2 :N2 =1.5:98.5のH2 +N2 混合ガス雰
囲気(非酸化性雰囲気又は還元性雰囲気)中で1420
℃で2時間焼成して焼結体から成る図1に示すSrTi
3 を主成分とする粒界絶縁型半導体磁器1を得た。
Next, 10% by weight of an aqueous solution of polyvinyl alcohol as an organic binder is added to the pulverized mixture, mixed and granulated, and the granulated product is molded under a pressure of 1 ton / cm 2 to have a diameter of 10 mm and a thickness of 10 mm. A disc-shaped molded body having a thickness of 0.5 mm was obtained. Next, the compact is placed in a furnace and placed in a H 2 + N 2 mixed gas atmosphere (non-oxidizing atmosphere or reducing atmosphere) of H 2 : N 2 = 1.5: 98.5 at a volume ratio of 1420.
SrTi as shown in FIG.
A grain boundary insulating semiconductor porcelain 1 containing O 3 as a main component was obtained.

【0012】次に、粒界絶縁化剤としてBi2 3 (酸
化ビスマス)に周知の糊成分を加えてペーストを作り、
これを図2に示すように磁器1の表面に塗布してペース
ト層2を形成し、これを炉に入れて大気中において12
00℃で2時間焼成し、磁器1の中にBi2 3 を拡散
させて粒界絶縁層を形成した。これにより得られた磁器
1aは図4に原理的に示すように結晶粒子10と粒界絶
縁層11とから成る。
Next, a known paste component is added to Bi 2 O 3 (bismuth oxide) as a grain boundary insulating agent to form a paste.
This was applied to the surface of the porcelain 1 to form a paste layer 2 as shown in FIG.
Baking was performed at 00 ° C. for 2 hours, and Bi 2 O 3 was diffused into the porcelain 1 to form a grain boundary insulating layer. The porcelain 1a thus obtained is composed of crystal grains 10 and a grain boundary insulating layer 11, as shown in principle in FIG.

【0013】次に、図3に示すように焼結体1aの一対
の主面に導電ペースト(銀ペースト)を塗布し、800
℃で焼付けて第1及び第2の電極3、4を形成し、各試
料のコンデンサを完成させた。なお、試料NO. 7の比較
例の場合には原子価制御剤としてのY2 3 を仮焼後の
原料にSiO2 と共に添加した。また、各試料をそれぞ
れ100個作った。
Next, as shown in FIG. 3, a conductive paste (silver paste) is applied to a pair of main surfaces of the sintered body 1a.
The first and second electrodes 3 and 4 were formed by baking at ℃, and the capacitors of each sample were completed. In the case of the comparative example of Sample No. 7, Y 2 O 3 as a valence controlling agent was added to the calcined raw material together with SiO 2 . In addition, each sample was made 100 pieces.

【0014】次に試料NO. 1〜7のコンデンサの静電容
量C、及び静電容量Cのバラツキ、誘電損失tan δ、絶
縁破壊電圧BDVを測定した。なお、静電容量C及び誘
電損失tan δは、25℃、周波数1kHz、電圧1Vの
条件で測定した。また、静電容量Cのバラツキは次式に
従って求めた。 バラツキ=(静電容量Cの標準偏差/静電容量Cの平均
値)×100(%)
Next, the capacitances C of the capacitors of Sample Nos. 1 to 7, the variation in the capacitance C, the dielectric loss tan δ, and the dielectric breakdown voltage BDV were measured. The capacitance C and the dielectric loss tan δ were measured under the conditions of 25 ° C., a frequency of 1 kHz, and a voltage of 1 V. The variation of the capacitance C was determined according to the following equation. Variation = (standard deviation of capacitance C / average value of capacitance C) × 100 (%)

【0015】 表2 試料NO. C(nF) Cのバラツキ(%) tan δ(%) BDV(V) 1 54.3 4.85 0.56 353 2 53.2 7.65 0.62 308 3 55.5 6.02 0.71 278 4 53.2 5.08 0.79 298 5 54.8 4.62 0.83 315 6 53.8 6.20 0.57 306 7 55.9 9.63 0.97 211Table 2 Sample No. C (nF) Variation of C (%) tan δ (%) BDV (V) 154.3.85 0.56 353 2 53.2 7.65 0.62 308 3 55.5 6.02 0.71 278 4 53.2 5.08 0.79 298 5 54.8 4.62 0.83 315 6 53.8 6.20 0.57 306 7 55.9 9.63 0.97 211

【0016】表2の本発明に従う試料NO. 1〜6と比較
例の試料NO. 7との比較から明らかなように本発明によ
れば従来と実質的に同一の静電容量値Cを維持しつつそ
のバラツキを小さくすることができ、且つ誘電損失を小
さくし、絶縁破壊電圧を大きくすることができる。
As is clear from the comparison between the samples Nos. 1 to 6 according to the present invention in Table 2 and the sample No. 7 of the comparative example, according to the present invention, the capacitance value C which is substantially the same as the conventional one is maintained. In addition, the variation can be reduced, the dielectric loss can be reduced, and the dielectric breakdown voltage can be increased.

【0017】[0017]

【第2の実施例】次に、本発明に従うバリスタの製造方
法を説明する。バリスタを製作するために表1と同一の
組成の主成分と原子価制御剤との混合物を7種類用意し
た。次に、各混合物を第1の実施例と同様に湿式ポット
ミルで混合した後に乾燥した。次に、この混合粉体を大
気中(酸化性雰囲気中)で1200℃、2時間仮焼し
た。
Second Embodiment Next, a method for manufacturing a varistor according to the present invention will be described. In order to manufacture varistors, seven kinds of mixtures of a main component having the same composition as in Table 1 and a valence controlling agent were prepared. Next, each mixture was mixed in a wet pot mill in the same manner as in the first example, and then dried. Next, the mixed powder was calcined in the air (in an oxidizing atmosphere) at 1200 ° C. for 2 hours.

【0018】次に、仮焼して得られた主成分と原子価制
御剤との混合物におけるSr(ストロンチウム)100
モル部に対して10モル部の割合になるように追加主成
分としてのCaTiO3 (チタン酸カルシウム)と、
0.2モル部の割合になるように焼結助剤としてのSi
2 とを添加し、これを再び湿式ポットミルで粉砕混合
した後に乾燥し、第1の実施例の試料NO. 1〜7に対応
する試料NO. 8〜14の7つの試料を得た。
Next, Sr (strontium) 100 in a mixture of the main component obtained by calcination and the valence controlling agent is used.
CaTiO 3 (calcium titanate) as an additional main component so as to have a ratio of 10 mole parts to mole parts,
Si as a sintering aid so as to have a ratio of 0.2 mole part
O 2 was added, and the mixture was pulverized and mixed again in a wet pot mill, and then dried to obtain seven samples Nos. 8 to 14 corresponding to Samples Nos. 1 to 7 in the first example.

【0019】次に、各試料の粉砕した混合物に有機バイ
ンダーとしてのポリビニールアルコール水溶液を5重量
%添加し、混合し、造粒し、この造粒物を1ton /cm2
の圧力で成形して直径10mm、厚さ0.5mmの円板
状成形体を得た。次に、この成形体を炉に入れて容積比
でH2 :N2 =1.5:98.5のH2 +N2 混合ガス
雰囲気(非酸化性雰囲気又は還元性雰囲気)中で142
0℃で2時間焼成して焼結体から成る図1と同様のSr
CaTiO3 を主成分とする粒界絶縁型半導体磁器を得
た。
Next, 5% by weight of an aqueous polyvinyl alcohol solution as an organic binder was added to the pulverized mixture of each sample, mixed and granulated, and the granulated product was added at 1 ton / cm 2.
To obtain a disk-shaped molded body having a diameter of 10 mm and a thickness of 0.5 mm. Next, the molded body is placed in a furnace in an H 2 + N 2 mixed gas atmosphere (non-oxidizing atmosphere or reducing atmosphere) of H 2 : N 2 = 1.5: 98.5 in volume ratio.
Sr similar to FIG. 1 made of a sintered body fired at 0 ° C. for 2 hours.
A grain boundary insulating semiconductor porcelain containing CaTiO 3 as a main component was obtained.

【0020】次に、Na2 O(酸化ナトリウム)に周知
の糊成分を5重量部加えて混合して均質な拡散組成物ペ
ーストを作り、これを図2と同様に磁器の表面に塗布し
てペースト層を形成し、これを炉に入れて大気中におい
て1100℃で2時間焼成し、磁器の中にNa2 Oを拡
散させた。これにより、粒界絶縁層が形成されると共に
NaまたはNa化合物が結晶の粒界に液相として拡散
し、隣接する粒子同志を強固に結合させる。
Next, 5 parts by weight of a well-known paste component is added to Na 2 O (sodium oxide) and mixed to form a homogeneous diffusion composition paste, which is applied to the surface of the porcelain in the same manner as in FIG. A paste layer was formed, and the paste layer was placed in a furnace and baked at 1100 ° C. for 2 hours in the air to diffuse Na 2 O into the porcelain. As a result, a grain boundary insulating layer is formed, and Na or a Na compound diffuses as a liquid phase at the grain boundaries of the crystal, thereby firmly bonding adjacent particles.

【0021】次に、図3と同様に焼結体の一対の主面に
導電ペースト(銀ペースト)を塗布し、焼付けて第1及
び第2の電極を形成し、試料NO. 8〜14の容量性バリ
スタ素子即ち半導体磁器バリスタを完成させた。
Next, as in FIG. 3, a conductive paste (silver paste) is applied to a pair of main surfaces of the sintered body and baked to form first and second electrodes. A capacitive varistor element, that is, a semiconductor porcelain varistor was completed.

【0022】次に、試料NO. 8〜14のバリスタ電圧V
1m、バリスタ電圧V1mのバラツキ、非直線係数α、エネ
ルギー耐量Eを求めた。ここで、バリタ電圧V1mはバリ
スタ素子の一対の電極間に1mAを流した時の一対の電
極間電圧である。電圧非直線係数αはバリスタ素子に1
mAを流した時の一対の電極間の電圧V1mと10mAを
流した時の一対の電極間の電圧V10m とに基づいて次式
で求めた。 α=1/{log (V10m /V1m)} エネルギー耐量Eは電圧Vのパルスを10秒間隔で2回
バリスタ素子に印加し、バリスタ電圧の変化率が5%以
内に収まる電圧Vを求め、次式で決定した。 E=1/2(CV2 )(joul) なお、バリスタ電圧のバラツキは次式で求めた。 V1mのバラツキ=(V1mの標準偏差/V1mの平均値)×
100(%) 次の表は試料NO. 8〜14の測定結果を示す。
Next, the varistor voltages V of the sample Nos. 8 to 14 were
1 m, the variation of the varistor voltage V1m, the nonlinear coefficient α, and the energy tolerance E were determined. Here, the varistor voltage V1m is a voltage between a pair of electrodes when 1 mA flows between the pair of electrodes of the varistor element. The voltage nonlinear coefficient α is 1 for the varistor element.
It was obtained by the following equation based on the voltage V1m between the pair of electrodes when mA was applied and the voltage V10m between the pair of electrodes when 10 mA was applied. α = 1 / {log (V10m / V1m)} The energy tolerance E is obtained by applying a pulse of the voltage V to the varistor element twice at intervals of 10 seconds to find a voltage V at which the rate of change of the varistor voltage falls within 5%. Determined by the formula. E = 1/2 (CV 2 ) (joul) The variation of the varistor voltage was obtained by the following equation. V1m variation = (standard deviation of V1m / average value of V1m) ×
100 (%) The following table shows the measurement results of Samples Nos. 8 to 14.

【0023】 表3 試料NO. V1m(V) V1mのバラツキ(%) α E(joul) 8 33.2 4.58 10.78 13.5 9 29.8 5.45 10.85 12.5 10 31.5 6.26 11.22 16.0 11 30.8 6.56 10.89 13.0 12 29.3 7.28 11.03 18.5 13 31.5 4.85 10.85 14.5 14 27.3 9.79 10.58 7.0Table 3 Sample No. V1m (V) Variation (%) of V1m α E (joul) 8 33.2 4.58 10.78 13.5 9 29.8 5.45 10.85 12.5 10 31.5 6.26 11.22 16.0 11 30.8 6.56 10.89 13.0 12 29.3 7.28 11.03 18.5 13 31.5 4.85 10.85 14. 514 27.3 9.79 10.58 7.0

【0024】表3の本発明に従う試料NO. 8〜13と比
較例の試料NO. 14との比較から明らかなように、本発
明によれば従来と実質的に同一のバリスタ電圧V1mと非
直線係数αを維持しつつ、バリスタ電圧のバラツキを小
さくし、且つエネルギー耐量を大幅に向上させることが
できる。
As is apparent from the comparison between the samples Nos. 8 to 13 according to the present invention in Table 3 and the sample No. 14 of the comparative example, according to the present invention, the varistor voltage V1m and the non-linear While maintaining the coefficient α, the variation in the varistor voltage can be reduced, and the energy withstand capability can be greatly improved.

【0025】[0025]

【第3の実施例】コンデンサにおいて、原子価制御剤と
してのNb(ニオブ)、Ta(タンタル)、W(タング
ステン)をSr化合物についても第1の実施例と同一の
作用効果が得られることを確かめるために、第1の実施
例におけるY2 Ti2 7 、La2 Ti2 7 、CeT
iO4 、Y2 3 をSr2 Nb2 7 、Sr2 Ta
2 O、SrWO4 、Nb2 5 に置換えた次の表4に示
す組成の7つの試料を用意した。
Third Embodiment In a capacitor, Nb (niobium), Ta (tantalum), W (tungsten) as a valence controlling agent and an Sr compound can be used to obtain the same operation and effect as in the first embodiment. In order to confirm, Y 2 Ti 2 O 7 , La 2 Ti 2 O 7 , CeT in the first embodiment were used.
iO 4 and Y 2 O 3 are converted to Sr 2 Nb 2 O 7 and Sr 2 Ta
Seven samples having the compositions shown in the following Table 4 were prepared by substituting 2 O, SrWO 4 , and Nb 2 O 5 .

【0026】 表4 試料NO. SrCO3 TiO2 Sr2 Nb2 7 Sr2 Ta2 7 SrWO4 Nb2 5 15 49.9 49.9 0.05 16 49.9 49.9 0.05 17 49.9 49.9 0.1 18 49.9 49.9 0.025 0.025 19 49.9 49.9 0.025 0.05 20 49.9 49.9 0.015 0.01 0.05 21 50.0 49.9 0.05 なお、表4の組成はモル部で示されている。Table 4 Sample No. SrCO 3 TiO 2 Sr 2 Nb 2 O 7 Sr 2 Ta 2 O 7 SrWO 4 Nb 2 O 5 15 49.9 49.9 0.05 16 49.9 49.9 0.05 17 49.9 49.9 0.1 18 49.9 49.9 0.025 0.025 19 49.9 49.9 0.025 0.05 20 49.9 49.9 0.015 0.010 0.05 21 50.0 49.9 0.05 The compositions in Table 4 are shown in parts by mole.

【0027】第1の実施例の表1の組成を表4の組成に
変えた他は第1の実施例と同一の方法でSrTiO3
主成分とする磁器コンデンサを作り、この特性を同一の
方法で測定したところ、次の表5の結果が得られた。
A ceramic capacitor mainly composed of SrTiO 3 was manufactured in the same manner as in the first embodiment except that the composition in Table 1 of the first embodiment was changed to the composition in Table 4, and the same characteristics were obtained. When measured by the method, the results in Table 5 below were obtained.

【0028】 表5 試料NO. C(nF) Cのバラツキ(%) tan δ(%) BDV(V) 15 51.3 4.35 0.53 365 16 49.8 5.78 0.42 318 17 48.5 4.58 0.62 329 18 50.2 5.08 0.54 345 19 51.5 6.08 0.70 328 20 50.8 6.82 0.47 358 21 55.9 8.28 0.85 206Table 5 Sample NO. C (nF) Variation of C (%) tan δ (%) BDV (V) 15 51.3 4.35 0.53 365 16 49.8 5.78 0.42 318 17 48.5 4.58 0.62 329 18 50.2 5.08 0.54 345 19 51.5 6.08 0.70 328 20 50.8 6.82 0.47 358 21 55.9 8.28 0.85 206

【0029】表5の本発明に従う試料NO. 15〜20と
比較例の試料NO. 21との比較から明らかなように第1
の実施例と同一の効果が得られる。
As apparent from the comparison between the sample Nos. 15 to 20 according to the present invention in Table 5 and the sample No. 21 of the comparative example, the first
The same effect as that of the embodiment can be obtained.

【0030】[0030]

【第4の実施例】バリスタにおいて、原子価制御剤とし
てのNb(ニオブ)、Ta(タンタル)、W(タングス
テン)をSr化合物としても第2の実施例と同一の作用
効果が得られることを確かめるために、第3の実施例に
おける表4の組成物と同一のものを用意し、第2の実施
例のY2 Ti2 7 、La2 Ti2 7 、CeTi
4 、Y2 3 をSr2 Nb2 7 、Sr2 Ta2 O、
SrWO4 、Nb2 5 に置換えた他は第2の実施例と
同一の方法で試料NO. 15〜21に対応する試料NO. 2
2〜28のSrCaTiO3 を主成分とする磁器バリス
タを作り、この特性を第2の実施例と同一の方法で測定
したところ、次の表6に示す結果が得られた。
Fourth Embodiment In a varistor, even if Nb (niobium), Ta (tantalum), and W (tungsten) are used as Sr compounds as valence controlling agents, the same operation and effects as in the second embodiment can be obtained. For confirmation, the same composition as in Table 4 in the third embodiment was prepared, and Y 2 Ti 2 O 7 , La 2 Ti 2 O 7 and CeTi of the second embodiment were prepared.
O 4 and Y 2 O 3 are converted to Sr 2 Nb 2 O 7 , Sr 2 Ta 2 O,
Sample No. 2 corresponding to Sample Nos. 15 to 21 in the same manner as in the second embodiment except that SrWO 4 and Nb 2 O 5 were substituted.
When 2 to 28 porcelain varistors containing SrCaTiO 3 as a main component were prepared and their characteristics were measured by the same method as in the second embodiment, the results shown in the following Table 6 were obtained.

【0031】 表6 試料NO. V1m(V) V1mのバラツキ(%) α E(joul) 22 32.5 5.02 11.28 16.0 23 31.8 6.34 10.89 14.5 24 33.2 7.28 11.35 12.0 25 31.6 5.50 10.81 13.5 26 33.7 6.59 10.96 11.5 27 31.2 4.81 11.05 13.0 28 29.7 9.83 10.02 7.5Table 6 Sample No. V1m (V) V1m variation (%) α E (joul) 22 32.5 5.02 11.28 16.0 23 31.8 6.34 10.89 14.5 24 33.2 7.28 11.35 12.0 25 31.6 5.50 10.81 13.5 26 33.7 6.59 10.96 11.5 27 31.2 4.81 11.05 13. 0 28 29.7 9.83 10.02 7.5

【0032】表6の本発明に従う試料NO. 22〜27と
比較例の試料NO. 28との比較から明らかなようにこの
第4の実施例によっても第2の実施例と同一の効果を得
ることができる。
As is apparent from the comparison between the samples Nos. 22 to 27 according to the present invention in Table 6 and the sample No. 28 of the comparative example, the same effect as that of the second embodiment can be obtained by the fourth embodiment. be able to.

【0033】[0033]

【第5の実施例】第1の実施例の表1に示す組成に、第
3の実施例の原子価制御剤としてのSr2 Nb2 7
Sr2 Ta2 7 、SrWO4 を追加しても第1の実施
例と同様な効果が得られることを確かめるために次の表
7に示す組成物を用意した。なお、表7において組成は
モル部で示される。
Fifth Embodiment Sr 2 Nb 2 O 7 as a valence controlling agent of the third embodiment was added to the composition shown in Table 1 of the first embodiment.
Compositions shown in the following Table 7 were prepared in order to confirm that the same effects as in the first example could be obtained even when Sr 2 Ta 2 O 7 and SrWO 4 were added. In Table 7, the composition is shown in parts by mole.

【0034】[0034]

【表1】 [Table 1]

【0035】第1の実施例における表1の組成を表7の
組成に変えた他は第1の実施例と同一の方法で試料NO.
29〜35のSrTiO3 を主成分とする磁器コンデン
サを作り、この特性を第1の実施例と同一の方法で測定
したところ、次の表8の結果が得られた。
Sample No. 1 was prepared in the same manner as in the first embodiment except that the composition in Table 1 in the first embodiment was changed to the composition in Table 7.
29 to 35 of SrTiO 3 as a main component were prepared and their characteristics were measured by the same method as in the first embodiment. The results shown in Table 8 below were obtained.

【0036】 表8 試料NO. C(nF) Cのバラツキ(%) tan δ(%) BDV(V) 29 51.3 5.55 0.73 323 30 49.2 5.35 0.88 318 31 51.5 5.72 0.82 319 32 50.2 5.28 0.79 332 33 51.8 5.61 0.78 319 34 50.8 5.13 0.75 316 35 55.9 9.25 0.92 278Table 8 Sample NO. C (nF) Variation of C (%) tan δ (%) BDV (V) 29 51.3 5.55 0.73 323 30 49.2 5.35 0.88 318 31 51.5 5.72 0.82 319 32 50.2 5.28 0.79 332 33 51.8 5.61 0.78 319 34 50.8 5.13 0.75 316 35 55.9 9.25 0.92 278

【0037】表8の本発明に従う試料NO. 29〜34と
比較例の試料NO. 35との比較から明らかなように第5
の実施例によっても第1の実施例と同一の効果が得られ
る。
As apparent from the comparison between the sample Nos. 29 to 34 according to the present invention in Table 8 and the sample No. 35 of the comparative example, the fifth sample
According to this embodiment, the same effect as that of the first embodiment can be obtained.

【0038】[0038]

【第6の実施例】第5の実施例における表8の試料NO.
29〜34の組成物に基づいてバリスタを作製すること
ができることを確かめるため、即ち、第2の実施例の原
子価制御剤に更にSr2 Nb2 7 、Sr2 Ta
2 7 、SrWO4 を追加しても第2の実施例と同様な
効果が得られることを確かめるために表7と同一の組成
物を用意し、第2の実施例における表1に従う組成を表
7の組成に変えた他は第2の実施例と同一の方法で試料
NO. 36〜42のSrCaTiO3 を主成分とする磁器
バリスタを作り、この特性を第2の実施例と同一の方法
で測定したところ、次の表9の結果が得られた。
[Sixth Embodiment] In the fifth embodiment, the sample NO.
In order to confirm that a varistor can be produced based on the compositions of Nos. 29 to 34, that is, the valence controlling agent of the second example was further added with Sr 2 Nb 2 O 7 and Sr 2 Ta.
In order to confirm that the same effect as in the second embodiment can be obtained even when 2 O 7 and SrWO 4 are added, the same composition as in Table 7 was prepared, and the composition according to Table 1 in the second embodiment was changed. A sample was prepared in the same manner as in the second embodiment except that the composition was changed to that shown in Table 7.
When a porcelain varistor mainly composed of SrCaTiO 3 of Nos. 36 to 42 was manufactured and its characteristics were measured by the same method as in the second embodiment, the results shown in Table 9 below were obtained.

【0039】 表9 試料NO. V1m(V) V1mのバラツキ(%) α E(joul) 36 28.2 6.32 11.22 15.37 37 27.8 6.48 11.06 14.29 38 28.4 6.56 11.35 15.78 39 26.8 6.27 11.33 13.45 40 27.3 6.19 11.43 14.67 41 26.9 6.57 11.25 16.71 42 31.3 9.32 10.88 8.27Table 9 Sample No. V1m (V) Variation (%) of V1m α E (joul) 36 28.2 6.32 11.22 15.37 377.8 7.48 11.06 14.29 38 28.4 6.56 11.35 15.78 39 26.8 6.27 11.33 13.45 40 27.3 6.19 11.43 14.67 41 26.9 6.57 11.25 16. 71 42 31.3 9.32 10.88 8.27

【0040】表9の本発明に従う試料NO. 36〜41と
比較例の試料NO. 42との比較から明らかなように第6
の実施例によっても第2の実施例と同一の効果が得られ
る。
As is clear from the comparison between the sample Nos. 36 to 41 according to the present invention shown in Table 9 and the sample No. 42 of the comparative example, the sixth sample was obtained.
According to this embodiment, the same effect as that of the second embodiment can be obtained.

【0041】[0041]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) 主成分はSrTiO3 、SrCaTiO3 に限
ることなく、ABO3(但しAはSr、Ca、Ba、M
gの内の1種又は複数種の元素、BはTi、Zrの1種
又は複数種の元素)で示すことができるチタンストロン
チウム系の成分とすることができる。 (2) 原子価制御剤として、Y、La、CeのTi化
合物及び/又はNb、Ta、WのSr化合物に加えて、
W、Ta、Nb及び希土類元素の酸化物の1種又は複数
種を使用することができる。 (3) 100モル部の主成分に対する原子価制御剤の
添加量を好ましくは0.01〜5.00モル部の範囲で
変えることができる。 (4) 磁器材料に対する焼結助剤としてAl2 3
SiO2 、CuO、MnO2 、Ag2 Oから選択された
1種又は複数種を100モル部のSrTiO3又は前述
のABO3 から成る主成分に対して好ましくは0.05
〜0.50モル部の範囲で添加することができる。 (5) 粒界の絶縁化剤としてのBi2 3 の代りにP
3 4 、B2 3 を使用すること、更にこれ等とMn
2 、CuO、Tl2 3 、Sb2 5 、Fe2 3
の金属酸化物から選択された1種又は複数種を使用して
金属酸化ペーストを作り、これを磁器に塗布することが
できる。 (6) 粒界絶縁化剤としてのBi2 3 、Pb
3 4 、B2 3 、MnO2、CuO等をペーストで塗
布する代りに焼成前の磁器原料に混合することができ
る。この場合には、焼成後に酸化雰囲気で熱処理する工
程(再酸化処理工程)を設ける。 (7) 磁器の製造の条件を種々変えることができる。
例えば、仮焼を1000〜1200℃の範囲で1〜5時
間とすること、非酸化性雰囲気での焼成を1300〜1
500℃、1〜5時間とすること、及び焼成後の再酸化
処理又は粒界絶縁化剤の拡散処理を800〜1300
℃、1〜5時間とすることができる。 (8) バリスタを作る時に添加するCaCO3 を仮焼
前にSrCO3 、TiO2 に対して添加してもよい。 (9) 磁器グリーンシート(生シート)に導電ペース
トを印刷したものを積層して焼成し、積層素子を作る場
合にも本発明を適用できる。
[Modifications] The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible. (1) The main component is not limited to SrTiO 3 and SrCaTiO 3 , but ABO 3 (where A is Sr, Ca, Ba, M
One or more elements of g, and B is one or more elements of Ti and Zr) may be a titanium-strontium-based component. (2) In addition to a Ti compound of Y, La, and Ce and / or a Sr compound of Nb, Ta, and W as a valence controlling agent,
One or a plurality of oxides of W, Ta, Nb and rare earth elements can be used. (3) The amount of the valence controlling agent to be added to 100 mole parts of the main component can be preferably changed in the range of 0.01 to 5.00 mole parts. (4) Al 2 O 3 as a sintering aid for porcelain materials;
One or more kinds selected from SiO 2 , CuO, MnO 2 , and Ag 2 O are preferably used in an amount of 0.05 mol% based on 100 mol parts of SrTiO 3 or the main component composed of ABO 3 described above.
It can be added in the range of 0.50 mol part. (5) Instead of Bi 2 O 3 as an insulating agent at the grain boundary, P
b 3 O 4 , B 2 O 3, and these and Mn
Making a metal oxide paste using one or more kinds selected from metal oxides such as O 2 , CuO, Tl 2 O 3 , Sb 2 O 5 , Fe 2 O 3 , and applying this to a porcelain Can be. (6) Bi 2 O 3 , Pb as grain boundary insulating agent
Instead of applying a paste such as 3 O 4 , B 2 O 3 , MnO 2 , CuO, etc., it can be mixed with the porcelain raw material before firing. In this case, a step of performing heat treatment in an oxidizing atmosphere after firing (re-oxidation processing step) is provided. (7) The manufacturing conditions of the porcelain can be variously changed.
For example, calcining is performed at 1000 to 1200 ° C. for 1 to 5 hours, and firing in a non-oxidizing atmosphere is performed at 1300 to 1 hour.
The temperature is set to 500 ° C. for 1 to 5 hours, and the reoxidation treatment or the diffusion treatment of the grain boundary insulating agent after firing is performed at 800 to 1300.
° C, for 1 to 5 hours. (8) CaCO 3 added at the time of forming a varistor may be added to SrCO 3 and TiO 2 before calcination. (9) The present invention can also be applied to a case where a laminate obtained by printing a conductive paste on a porcelain green sheet (raw sheet) and laminating the same to produce a laminated element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係わる磁器焼結体を示す正面
図である。
FIG. 1 is a front view showing a porcelain sintered body according to an embodiment of the present invention.

【図2】図1の焼結体に拡散組成物のペーストを塗布し
たものを示す正面図である。
FIG. 2 is a front view showing the sintered body of FIG. 1 coated with a paste of a diffusion composition.

【図3】完成したコンデンサを示す正面図である。FIG. 3 is a front view showing a completed capacitor.

【図4】磁器の内部構造を原理的に示す断面図である。FIG. 4 is a sectional view showing the internal structure of porcelain in principle.

【符号の説明】[Explanation of symbols]

1a 磁器 3、4 電極 1a Porcelain 3, 4 electrodes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 喜佳 東京都台東区上野6丁目16番20号 太陽 誘電株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01G 4/12 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kiyoshi Tanaka 6-16-20 Ueno, Taito-ku, Tokyo Taiyo Yuden Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) H01G 4 / 12

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してYとTiの化合物、LaとTiの
化合物、及びCeとTiの化合物の内の少なくとも1種
の原子価制御剤を添加した半導体磁器原料を用意し、こ
の半導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料を含む成形体を形成する工程
と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
1. A compound of Y and Ti, a compound of La and Ti, and at least one valence controlling agent of a compound of Ce and Ti with respect to a main component material containing at least SrCO 3 and TiO 2. Preparing the added semiconductor porcelain raw material, calcining the semiconductor porcelain raw material, forming a molded body containing the calcined porcelain raw material, and setting the molded body higher than the temperature of the calcining step Baking at a temperature.
【請求項2】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してYとTiの化合物、LaとTiの
化合物、及びCeとTiの化合物の内の少なくとも1種
の原子価制御剤を添加した半導体磁器原料を用意し、こ
の半導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料に少なくともCaCO3 を添加
して成形体を形成する工程と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
2. A compound containing Y and Ti, a compound containing La and Ti, and at least one valence controlling agent among compounds containing Ce and Ti are added to a main component material containing at least SrCO 3 and TiO 2. Preparing the added semiconductor ceramic raw material and calcining the semiconductor ceramic raw material; adding at least CaCO 3 to the calcined ceramic raw material to form a molded body; Baking at a temperature higher than the temperature of the step.
【請求項3】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してNbとSrの化合物、TaとSr
の化合物、及びWとSrの化合物の内の少なくとも1種
の原子価制御剤を添加した半導体磁器原料を用意し、こ
の半導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料を含む成形体を形成する工程
と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
3. A compound of Nb and Sr, a compound of Ta and Sr based on a main component material containing at least SrCO 3 and TiO 2.
Preparing a semiconductor porcelain raw material to which at least one kind of valence controlling agent among compounds of W and Sr is added, and calcining the semiconductor porcelain raw material; A method for manufacturing a semiconductor ceramic, comprising: a step of forming a molded body; and a step of firing the molded body at a temperature higher than the temperature of the calcining step.
【請求項4】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してNbとSrの化合物、TaとSr
の化合物、及びWとSrの化合物の内の少なくとも1種
の原子価制御剤を添加した半導体磁器原料を用意し、こ
の半導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料に少なくともCaCO3 を添加
して成形体を形成する工程と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
4. A compound of Nb and Sr, Ta and Sr based on a main component material containing at least SrCO 3 and TiO 2.
And a step of calcining the semiconductor ceramic raw material to which at least one valence controlling agent of the compound of W and Sr is added, and calcining the semiconductor ceramic raw material. A method for manufacturing a semiconductor ceramic, comprising: a step of forming a compact by adding CaCO 3 ; and a step of firing the compact at a temperature higher than the temperature of the calcining step.
【請求項5】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してYとTiの化合物、LaとTiの
化合物、及びCeとTiの化合物の内の少なくとも1種
の原子価制御剤とNbとSrの化合物、TaとSrの化
合物及びWとSrの化合物の内の少なくとも1種の原子
価制御剤とを添加した半導体磁器原料を用意し、この半
導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料を含む成形体を形成する工程
と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
5. A valence control agent of at least one of a compound of Y and Ti, a compound of La and Ti, and a compound of Ce and Ti with respect to a main component material containing at least SrCO 3 and TiO 2. Preparing a semiconductor porcelain material to which a compound of Nb and Sr, a compound of Ta and Sr, and at least one valence controlling agent among compounds of W and Sr are added, and calcining the semiconductor porcelain material; A method for manufacturing a semiconductor porcelain, comprising: a step of forming a molded body containing the calcined porcelain raw material; and a step of firing the molded body at a temperature higher than the temperature of the calcining step.
【請求項6】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してYとTiの化合物、LaとTiの
化合物、及びCeとTiの化合物の内の少なくとも1種
の原子価制御剤とNbとSrの化合物、TaとSrの化
合物及びWとSrの化合物の内の少なくとも1種の原子
価制御剤とを添加した半導体磁器原料を用意し、この半
導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料に少なくともCaCO3 を添加
して成形体を形成する工程と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
6. A valence control agent of at least one of a compound of Y and Ti, a compound of La and Ti, and a compound of Ce and Ti with respect to a main component material containing at least SrCO 3 and TiO 2. Preparing a semiconductor porcelain material to which a compound of Nb and Sr, a compound of Ta and Sr, and at least one valence controlling agent among compounds of W and Sr are added, and calcining the semiconductor porcelain material; A semiconductor comprising: a step of adding at least CaCO 3 to the calcined porcelain raw material to form a molded body; and a step of firing the molded body at a temperature higher than the temperature of the calcining step. Method of manufacturing porcelain.
JP6282957A 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain Expired - Fee Related JP2934388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6282957A JP2934388B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6282957A JP2934388B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Publications (2)

Publication Number Publication Date
JPH08124782A JPH08124782A (en) 1996-05-17
JP2934388B2 true JP2934388B2 (en) 1999-08-16

Family

ID=17659320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6282957A Expired - Fee Related JP2934388B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Country Status (1)

Country Link
JP (1) JP2934388B2 (en)

Also Published As

Publication number Publication date
JPH08124782A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
JP3046436B2 (en) Ceramic capacitors
JP2001506425A (en) Ceramic multilayer capacitors
US4898844A (en) Process for manufacturing a ceramic body having multiple barium-titanate phases
US3962146A (en) Ptc thermistor composition and method of making the same
US4308571A (en) Low temperature-sinterable dielectric composition and thick film capacitor using the same
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
US6376079B1 (en) Semiconducting ceramic and semiconducting ceramic electronic element
JPS623569B2 (en)
JP2614228B2 (en) Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor
JP2779740B2 (en) Dielectric porcelain and porcelain capacitor
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JPH0687364B2 (en) High dielectric constant porcelain composition
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JP2970405B2 (en) Grain boundary insulating semiconductor porcelain composition and method for producing the same
JPH027166B2 (en)
JPH0761897B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH0521265A (en) Manufacture of capacitor
JPS6126207B2 (en)
JP2784864B2 (en) Dielectric porcelain and porcelain capacitor
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0761898B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees