JP2934387B2 - Manufacturing method of semiconductor porcelain - Google Patents

Manufacturing method of semiconductor porcelain

Info

Publication number
JP2934387B2
JP2934387B2 JP6282956A JP28295694A JP2934387B2 JP 2934387 B2 JP2934387 B2 JP 2934387B2 JP 6282956 A JP6282956 A JP 6282956A JP 28295694 A JP28295694 A JP 28295694A JP 2934387 B2 JP2934387 B2 JP 2934387B2
Authority
JP
Japan
Prior art keywords
sample
mol part
mol
cuzro
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6282956A
Other languages
Japanese (ja)
Other versions
JPH08124781A (en
Inventor
隆行 狩野
喜佳 田中
徳之 真渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP6282956A priority Critical patent/JP2934387B2/en
Publication of JPH08124781A publication Critical patent/JPH08124781A/en
Application granted granted Critical
Publication of JP2934387B2 publication Critical patent/JP2934387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁器コンデンサ、磁器
バリスタ等のための半導体磁器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing semiconductor porcelain for porcelain capacitors, porcelain varistors and the like.

【0002】[0002]

【従来の技術】SrTiO3 を主成分とする半導体磁器
は、コンデンサ、バリスタ、サーミスタ等の素体として
広く使用されている。これ等の半導体磁器の製造方法の
1つとして、SrTiO3 から成る主成分に、Nb、T
a、希土類元素の化合物等の原子価制御剤(半導体化
剤)と、Cu、Bi、Pb、Mnの酸化物から成る粒界
絶縁化剤と、SiO2 、Al2 3 、MnO2 等の焼結
助剤とを添加した混合物を用意し、この成形体を形成
し、これを還元性雰囲気で1350〜1450℃、2時
間程度焼成し、しかる後、結晶粒界絶縁化のために大気
中で950〜1200℃、2時間程度熱処理する方法が
ある。
2. Description of the Related Art Semiconductor ceramics containing SrTiO 3 as a main component are widely used as elements such as capacitors, varistors and thermistors. As one of the methods of manufacturing these semiconductor porcelains, a main component made of SrTiO 3 is made of Nb, T
a, a valence controlling agent (semiconductor agent) such as a compound of a rare earth element, a grain boundary insulating agent composed of an oxide of Cu, Bi, Pb, and Mn, and a SiO 2 , Al 2 O 3 , MnO 2, etc. A mixture to which a sintering aid is added is prepared to form a molded body, which is baked in a reducing atmosphere at 1350 to 1450 ° C. for about 2 hours. At 950 to 1200 ° C. for about 2 hours.

【0003】[0003]

【発明が解決しようとする課題】ところで、原子価制御
剤又は粒界絶縁化剤又は焼結助剤としてのCu、Bi、
Pb、Mn等の酸化物は還元性雰囲気での焼成時又は酸
化性雰囲気の熱処理時に蒸発する。そして、この蒸発量
は焼成時又は熱処理時の温度及び/又は時間のバラツキ
に応じて変化する。この結果、半導体磁器の見掛上の誘
電率等の特性バラツキが生じる。
By the way, Cu, Bi, as a valence controlling agent or a grain boundary insulating agent or a sintering aid are used.
Oxides such as Pb and Mn evaporate during firing in a reducing atmosphere or during heat treatment in an oxidizing atmosphere. The amount of evaporation changes depending on the temperature and / or time during firing or heat treatment. As a result, characteristic variations such as the apparent dielectric constant of the semiconductor porcelain occur.

【0004】そこで、本発明の目的は添加剤の蒸発を抑
制して特性のバラツキを少なくすることができる半導体
磁器の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor porcelain capable of suppressing the evaporation of additives and reducing the variation in characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、ABO3 (但し、AはSr、Ba、Ca、
Mgの内のいずれか1種又は複数種の元素、BはTi、
Zrの内のいずれか1種又は複数種の元素、Oは酸素を
示す。)から成る主成分又は前記主成分を得ることがで
きる原料と原子価制御剤と粒界絶縁化剤とを含む成形体
を形成する工程と、前記成形体を還元性雰囲気で焼成す
る工程と、酸化性雰囲気で熱処理する工程とを有する半
導体磁器の製造方法において、前記粒界絶縁化剤の少な
くとも1種をジルコン酸塩又はチタン酸塩又はケイ酸塩
とする半導体磁器の製造方法に係わるものである。な
お、請求項2に示すように、原子価制御剤(例えばB
i、Mn)をジルコン酸塩又はチタン酸塩又はケイ酸塩
とすることができる。また、請求項3に示すように、焼
結助剤(例えばMn)をジルコン酸塩又はチタン酸塩又
はケイ酸塩とすることができる。本発明における前記主
成分を得ることができる原料とは、例えばSrTiO3
を得るためのSrCO3 とTiO2 、(SrCa)Ti
3 を得るためのSrCO3 とCaCO3 とTiO2
BaTiO3 を得るためのBaCO3 とTiO2等であ
る。前記原子価制御剤(半導体化剤)はNb(ニオ
ブ)、Ta(タンタル)、W(タングステン)及び希土
類元素(Y、La、Ce等)の化合物の1種又は複数種
である。前記粒界絶縁化剤として機能する金属とは、例
えばCu(銅)、Pb(鉛)、Bi(ビスマス)、Mn
(マンガン)、Tl(タリウム)、Sb(アンチモ
ン)、Fe(鉄)である。また、ジルコン酸塩は、例え
ばCuZrO3 、PbZrO3 、Bi4 Zr3 12、M
nZnO3 である。またチタン酸塩は、例えばCuTi
3 、PbTiO3 、Bi4 Ti3 13、MnTiO3
である。またケイ酸塩は、例えばCuSiO3 、PbS
iO3 、Bi4 Si3 12、MnSiO3 である。半導
体磁器の各成分の好ましい割合は、次の通りである。 主成分 100モル部 半導体化剤 0.1〜5.0モル部 粒界絶縁化剤 0.05〜5.0モル部 還元性雰囲気の焼成は好ましくは1300〜1500℃
で1〜5時間なす。また、酸化性雰囲気中での熱処理は
好ましくは700〜1200℃で1〜5時間なす。
In order to achieve the above object, the present invention provides ABO 3 (where A is Sr, Ba, Ca,
Any one or more elements of Mg, B is Ti,
O represents one or more elements of Zr, and O represents oxygen. A) forming a molded body containing a main component or a raw material capable of obtaining the main component, a valence controlling agent and a grain boundary insulating agent; and firing the molded body in a reducing atmosphere. Heat treating in an oxidizing atmosphere, the method comprising the steps of: producing a semiconductor porcelain wherein at least one of the grain boundary insulating agents is zirconate, titanate or silicate. is there. In addition, as shown in claim 2, a valence controlling agent (for example, B
i, Mn) can be zirconate or titanate or silicate. Further, as described in claim 3, the sintering aid (for example, Mn) can be zirconate, titanate or silicate. The raw material from which the main component can be obtained in the present invention is, for example, SrTiO 3
SrCO 3 and TiO 2 , (SrCa) Ti to obtain
SrCO 3 , CaCO 3 and TiO 2 to obtain O 3 ,
BaCO 3 and TiO 2 for obtaining BaTiO 3 . The valence controlling agent (semiconductor agent) is one or a plurality of compounds of Nb (niobium), Ta (tantalum), W (tungsten), and rare earth elements (Y, La, Ce, etc.). Examples of the metal that functions as the grain boundary insulating agent include Cu (copper), Pb (lead), Bi (bismuth), and Mn.
(Manganese), Tl (thallium), Sb (antimony), and Fe (iron). The zirconate is, for example, CuZrO 3 , PbZrO 3 , Bi 4 Zr 3 O 12 , M
nZnO 3 . Titanate is, for example, CuTi
O 3 , PbTiO 3 , Bi 4 Ti 3 O 13 , MnTiO 3
It is. Silicates include, for example, CuSiO 3 , PbS
iO 3 , Bi 4 Si 3 O 12 and MnSiO 3 . The preferred ratio of each component of the semiconductor porcelain is as follows. Main component 100 mol part Semiconducting agent 0.1-5.0 mol part Grain boundary insulating agent 0.05-5.0 mol part Firing in a reducing atmosphere is preferably 1300-1500 ° C.
For 1-5 hours. The heat treatment in an oxidizing atmosphere is preferably performed at 700 to 1200 ° C. for 1 to 5 hours.

【0006】[0006]

【発明の作用及び効果】各請求項の発明に従って、蒸発
しやすい粒界絶縁化剤、又は原子価制御剤、又は焼結助
剤を金属のジルコン酸塩又はチタン酸塩又はケイ酸塩で
添加すれば、従来の金属酸化物で添加する場合に比べて
蒸発が少なくなる。即ち、ジルコン酸塩又はチタン酸塩
又はケイ酸塩は粒界に安定的に存在でき且つ主成分に固
溶することもできるジルコン又はチタン又はケイ素を含
んでいるので、これ等と化合している金属も粒界に安定
的に存在し、これ等の蒸発が少なくなる。また、金属は
ジルコン(Zr)、又はチタン(Ti)、又はケイ素
(Si)から分離しにくいため、この蒸発が抑制され
る。従って、焼成条件又は熱処理条件の変動が生じても
添加物の量の変化が少なくなり、特性のバラツキが少な
くなる。また、蒸発が抑えられるために目標とする特性
を得ることができる。
According to the invention of each claim, a grain boundary insulating agent or a valence controlling agent or a sintering aid which is easy to evaporate is added with a metal zirconate, titanate or silicate. Then, the evaporation is reduced as compared with the case where the conventional metal oxide is added. That is, zirconate, titanate, or silicate contains zircon, titanium, or silicon, which can be stably present at the grain boundary and can be dissolved in the main component, and is combined with these. Metals are also stably present at grain boundaries, and their evaporation is reduced. Further, since the metal is difficult to separate from zircon (Zr), titanium (Ti), or silicon (Si), the evaporation is suppressed. Therefore, even if the firing conditions or the heat treatment conditions fluctuate, the change in the amount of the additive is reduced, and the variation in the characteristics is reduced. Further, since evaporation is suppressed, target characteristics can be obtained.

【0007】[0007]

【第1の実施例】次に、本発明の実施例に係わるコンデ
ンサ用半導体磁器及びコンデンサの製造方法を説明す
る。
First Embodiment Next, a method for manufacturing a semiconductor ceramic for a capacitor and a capacitor according to an embodiment of the present invention will be described.

【0008】一般式ABO3 のAがSr(ストロンチウ
ム)、BがTi(チタン)のSrTiO3 (主成分)
と、原子価制御剤としての希土類元素化合物であるY2
3 (酸化イットリウム)と、主として粒界絶縁化剤と
して機能するCu(銅)のジルコン酸塩であるCuZr
3 と、焼結助剤としてのSiO2 とを、 SrTiO3 100モル部 Y2 3 0.6モル部 CuZrO3 0.05〜3.00モル部 SiO2 0.2モル部 の割合となるように用意し、これ等をボールミルで15
時間湿式混合し、次に乾燥して原料混合物の粉末を得
た。なお、CuZrO3 を0.05モル部、0.50モ
ル部、1.00モル部、3.00モル部の4段階に変え
てNO. 1〜NO. 4の4種類の試料を作った。
In the general formula ABO 3 , S is Sr (strontium) and B is Ti (titanium). SrTiO 3 (main component)
And Y 2 which is a rare earth element compound as a valence controlling agent
O 3 (yttrium oxide) and CuZr, a zirconate of Cu (copper) that mainly functions as a grain boundary insulating agent
O 3 and SiO 2 as a sintering aid were mixed in a proportion of SrTiO 3 100 mol part Y 2 O 3 0.6 mol part CuZrO 3 0.05 to 3.00 mol part SiO 2 0.2 mol part And prepare them using a ball mill.
The mixture was wet-mixed for hours and then dried to obtain a powder of the raw material mixture. In addition, four kinds of samples of NO. 1 to NO. 4 were prepared by changing CuZrO 3 into four stages of 0.05 mol part, 0.50 mol part, 1.00 mol part, and 3.00 mol part.

【0009】次に、各試料の原料混合物に有機バインダ
としてのポリビニルアルコールの水溶液を10重量%添
加して混合し、造粒し、この造粒物を1ton /cm2 の圧
力で成形して直径10mm、厚さ0.5mmの円板状成
形体を得た。次に、この成形体を炉にいれて容積比でN
2 :H2 =99:1のN2 +H2 混合ガス雰囲気(非酸
化性雰囲気又は還元性雰囲気)中で1350〜1450
℃で2時間焼成し、その後、大気(酸化性雰囲気)中で
950〜1200℃、2時間の加熱処理を施して結晶粒
界に絶縁層を形成し、各試料の半導体磁器を完成させ
た。焼成後の半導体磁器の直径は約8mm、厚さは約
0.4mmであった。なお、図1に模式的に示すように
半導体磁器1は、半導体結晶粒子2と粒界絶縁層3とで
示すことができる。
Next, an aqueous solution of polyvinyl alcohol as an organic binder was added to the raw material mixture of each sample in an amount of 10% by weight, mixed and granulated, and the granulated product was formed under a pressure of 1 ton / cm 2 to form a diameter. A disk-shaped molded body having a thickness of 10 mm and a thickness of 0.5 mm was obtained. Next, this compact is placed in a furnace and the volume ratio of N
2 : 1350 to 1450 in an N 2 + H 2 mixed gas atmosphere (non-oxidizing atmosphere or reducing atmosphere) of H 2 = 99: 1.
C. for 2 hours, and then heat-treated at 950 to 1200.degree. C. for 2 hours in the air (oxidizing atmosphere) to form an insulating layer on the crystal grain boundaries, thereby completing the semiconductor porcelain of each sample. After firing, the semiconductor ceramic had a diameter of about 8 mm and a thickness of about 0.4 mm. In addition, as schematically shown in FIG. 1, the semiconductor porcelain 1 can be represented by semiconductor crystal grains 2 and a grain boundary insulating layer 3.

【0010】次に、各試料の半導体磁器1の両主面に銀
ペースト(導電ペースト)を印刷法で塗布し、大気中で
800℃、1時間の焼付け処理を施して一対の電極4、
5を形成し、コンデンサを完成させた。なお、特性のバ
ラツキを調べるために各試料について同一構成のコンデ
ンサを100個作った。
Next, a silver paste (conductive paste) is applied to both main surfaces of the semiconductor porcelain 1 of each sample by a printing method, and is baked at 800 ° C. for 1 hour in the air to form a pair of electrodes 4.
5 was formed, and the capacitor was completed. In addition, 100 capacitors having the same configuration were manufactured for each sample in order to examine the variation in characteristics.

【0011】次に各試料のコンデンサの見掛誘電率
(ε)、誘電損失(tan δ)、絶縁抵抗(IR)及び見
掛誘電率εの歩留指数(バラツキ)を測定したところ、
次の表1に示す結果が得られた。なお、見掛誘電率ε及
び誘電損失tan δは25℃、周波数1kHz、電圧1V
の条件で測定した。また絶縁抵抗IRは25℃において
DC50Vを1分間印加した後に測定した。また歩留指
数は次式に従って求めた。
Next, the apparent dielectric constant (ε), dielectric loss (tan δ), insulation resistance (IR), and yield index (variation) of the apparent dielectric constant ε of the capacitor of each sample were measured.
The results shown in the following Table 1 were obtained. The apparent dielectric constant ε and dielectric loss tan δ are 25 ° C., frequency 1 kHz, voltage 1 V
It measured on condition of. The insulation resistance IR was measured after applying DC 50 V for 1 minute at 25 ° C. The yield index was determined according to the following equation.

【0012】 歩留指数=誘電率εの標準偏差/誘電率εの平均値Yield index = standard deviation of permittivity ε / average value of permittivity ε

【0013】 表1 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 1 41×103 1.1 21×104 0.04 2 49×103 0.5 17×104 0.05 3 52×103 0.7 16×104 0.04 4 48×103 1.1 15×104 0.05[0013] Table 1 Sample NO. Ε tan δ (%) IR (MΩ) yield index 1 41 × 10 3 1.1 21 × 10 4 0.04 2 49 × 10 3 0.5 17 × 10 4 0. 05 3 52 × 10 3 0.7 16 × 10 4 0.04 4 48 × 10 3 1.1 15 × 10 4 0.05

【0014】比較のために試料NO. 1〜4におけるCu
ZrO3 の変わりに従来の添加物であるCuOを0.0
5モル部、0.50モル部、1.00モル部、3.00
モル部に変えた他は試料NO. 1〜4と同一の組成且つ同
一の方法で試料NO. 5、6、7、8のコンデンサを作
り、同一の方法で特性を測定したところ、次の表2の結
果が得られた。
For comparison, Cu in Samples Nos. 1-4 was
Instead of ZrO 3 , the conventional additive CuO is added to 0.0
5 mol parts, 0.50 mol parts, 1.00 mol parts, 3.00 mol parts
Except that the molar part was changed, capacitors of sample Nos. 5, 6, 7, and 8 were made with the same composition and the same method as sample Nos. 1 to 4, and the characteristics were measured by the same method. 2 results were obtained.

【0015】 表2 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 5 42×103 1.2 20×104 0.07 6 45×103 0.7 17×104 0.06 7 50×103 0.7 16×104 0.09 8 44×103 0.9 16×104 0.11Table 2 Sample No. ε tan δ (%) IR (MΩ) Yield index 542 × 10 3 1.2 20 × 10 4 0.07 645 × 10 3 0.7 17 × 10 4 0. 06 7 50 × 10 3 0.7 16 × 10 4 0.09 8 44 × 10 3 0.9 16 × 10 4 0.11

【0016】また、試料NO. 1〜8において焼成前のC
u(銅)の量と焼成及び酸化加熱処理後のCuの量の割
合を求めたところ、本発明に従う試料NO. 1〜4では8
0〜90%であるのに対して比較例の試料NO. 5〜8で
は65〜75%であり、本発明に従う方法によれば焼成
及び酸化加熱処理時におけるCuの飛散即ち蒸発が従来
よりも少なかった。
In Samples Nos. 1 to 8, C before firing was
When the ratio of the amount of u (copper) to the amount of Cu after the calcination and the heat treatment for oxidation was determined, it was 8 in the samples Nos. 1 to 4 according to the present invention.
On the other hand, it is 65 to 75% in the sample Nos. 5 to 8 of the comparative example, and the scattering or evaporation of Cu during the calcination and the oxidative heat treatment is smaller than that of the conventional sample. There were few.

【0017】表1と表2の対比から明らかなように、本
発明に従う試料NO. 1〜4の歩留指数は比較例を示す試
料NO. 5〜8の歩留指数よりも小さい。このように歩留
指数が小さいことは、εのバラツキが少ないことを意味
する。本発明に従ってεのバラツキが小さくなるのは、
Cuをこの酸化物として添加させないで蒸発しにくいC
uのジルコン酸塩であるCuZrO3 で添加したためで
ある。εのバラツキが小さくなると、コンデンサの良品
率すなわち歩留が向上し、コストの低減を図ることがで
きる。また、試料NO. 1〜4ではCuの蒸発が抑制され
ているので、ε、tan δ、IRが試料NO. 5〜8と同一
又はこれよりも優れている。
As is evident from the comparison between Tables 1 and 2, the yield indices of Samples Nos. 1 to 4 according to the present invention are smaller than those of Samples Nos. 5 to 8 which are comparative examples. Such a small yield index means that there is little variation in ε. According to the present invention, the variation in ε is reduced because
C that is difficult to evaporate without adding Cu as this oxide
This is because CuZrO 3 which is a zirconate salt of u was added. When the variation in ε is small, the yield of the capacitor, that is, the yield is improved, and the cost can be reduced. In Samples Nos. 1 to 4, Cu evaporation was suppressed, so that ε, tan δ, and IR were the same as or superior to Sample Nos. 5 to 8.

【0018】[0018]

【第2の実施例】CuZrO3 の代りに、Pb(鉛)の
ジルコン酸塩であるPbZrO3 を使用してもCuZr
3 と同一の作用効果が得られることを確かめるため
に、第1の実施例におけるCuZrO3 を0.05モル
部、0.50モル部、1.00モル部、3.00モル部
のPbZrO3 に置き換えた他は第1の実施例と同一の
組成且つ同一の方法で試料NO. 9、10、11、12の
コンデンサを作り、第1の実施例と同一の方法で特性を
測定したところ、次の表3に示す結果が得られた。
Second Embodiment CuZr can also be obtained by using Pb (lead) zirconate PbZrO 3 instead of CuZrO 3.
In order to confirm that the same operation and effect as O 3 were obtained, 0.05 mol part, 0.50 mol part, 1.00 mol part, and 3.00 mol part of CuZrO 3 in the first embodiment were added. The capacitors of Sample Nos. 9, 10, 11, and 12 were made with the same composition and the same method as in the first embodiment except that the capacitor was replaced with 3 , and the characteristics were measured by the same method as in the first embodiment. The results shown in the following Table 3 were obtained.

【0019】 表3 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 9 43×103 1.1 21×104 0.06 10 41×103 0.7 20×104 0.05 11 45×103 0.6 18×104 0.05 12 47×103 0.9 21×104 0.06Table 3 Sample NO. Ε tan δ (%) IR (MΩ) Yield index 943 × 10 3 1.1 21 × 10 4 0.06 10 41 × 10 3 0.7 20 × 10 4 0. 05 11 45 × 10 3 0.6 18 × 10 4 0.05 12 47 × 10 3 0.9 21 × 10 4 0.06

【0020】また、試料NO. 9〜12と比較するため
に、PbZrO3 の代りにPbOを0.05モル部、
0.50モル部、1.00モル部、3.00モル部添加
した他は試料NO. 9〜12と同一の方法で試料NO. 1
3、14、15、16のコンデンサを作り、試料NO. 9
〜12と同一の方法で特性を測定したところ、次の表4
の結果が得られた。
For comparison with Sample Nos. 9 to 12, 0.05 mol part of PbO was used instead of PbZrO 3 ,
Sample No. 1 was prepared in the same manner as Sample Nos. 9 to 12, except that 0.50 mol part, 1.00 mol part, and 3.00 mol part were added.
Make capacitors of 3, 14, 15, and 16 and use sample No. 9
When the characteristics were measured in the same manner as in Tables 1 to 12, the following Table 4 was obtained.
Was obtained.

【0021】 表4 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 13 41×103 1.3 20×104 0.06 14 42×103 0.8 21×104 0.08 15 42×103 0.7 19×104 0.10 16 42×103 1.0 19×104 0.11Table 4 Sample No. ε tan δ (%) IR (MΩ) Yield index 13 41 × 10 3 1.3 20 × 10 4 0.06 14 42 × 10 3 0.8 21 × 10 4 0. 08 15 42 × 10 3 0.7 19 × 10 4 0.10 16 42 × 10 3 1.0 19 × 10 4 0.11

【0022】表3と表4との比較から明らかなように、
本発明に従う試料NO. 9〜12によれば、Pbの蒸発が
第1の実施例のCuと同様に抑制され、歩留指数が従来
の値以下になり、第1の実施例と同一の作用効果が得ら
れる。
As is clear from the comparison between Table 3 and Table 4,
According to the samples Nos. 9 to 12 according to the present invention, the evaporation of Pb was suppressed in the same manner as in the Cu of the first embodiment, and the yield index became lower than the conventional value, and the same operation as in the first embodiment. The effect is obtained.

【0023】[0023]

【第3の実施例】第1の実施例のCuZrO3 の代り
に、Bi(ビスマス)のジルコン酸塩であるBi4 Zr
3 12を使用しても第1の実施例のCuZrO3 と同一
の作用効果が得られることを確かめるために、第1の実
施例におけるCuZrO3 を0.05モル部、0.50
モル部、1.00モル部、3.00モル部のBi4 Zr
3 12に置き換えた他は第1の実施例と同一の組成且つ
同一の方法で試料NO. 17、18、19、20のコンデ
ンサを作り、第1の実施例と同一の方法で特性を測定し
たところ、次の表5に示す結果が得られた。
Third Embodiment Instead of CuZrO 3 of the first embodiment, Bi 4 Zr which is a zirconate salt of Bi (bismuth) is used.
In order to confirm that the same operation and effect as those of CuZrO 3 of the first embodiment can be obtained even when 3 O 12 is used, 0.05 mol part of CuZrO 3 in the first embodiment, 0.50
Mol part, 1.00 mol part, 3.00 mol part of Bi 4 Zr
Capacitors of sample Nos. 17, 18, 19 and 20 were made with the same composition and the same method as in the first embodiment except that 3 O 12 was replaced, and the characteristics were measured by the same method as in the first embodiment. As a result, the results shown in the following Table 5 were obtained.

【0024】 表5 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 17 42×103 1.3 20×104 0.05 18 45×103 0.5 20×104 0.04 19 41×103 0.4 20×104 0.06 20 42×103 0.9 21×104 0.06[0024] Table 5 Sample NO. Ε tan δ (%) IR (MΩ) yield index 17 42 × 10 3 1.3 20 × 10 4 0.05 18 45 × 10 3 0.5 20 × 10 4 0. 04 19 41 × 10 3 0.4 20 × 10 4 0.06 20 42 × 10 3 0.9 21 × 10 4 0.06

【0025】また、試料NO. 17〜20と比較するため
に、Bi4 Zr3 12の代りに従来のBi2 3 を0.
05モル部、0.50モル部、1.00モル部、3.0
0モル部添加した他は試料NO. 17〜20と同一の方法
で試料NO. 21、22、23、24のコンデンサを作
り、試料NO. 17〜20と同一の方法で特性を測定した
ところ、次の表6の結果が得られた。
For comparison with Samples Nos. 17 to 20, conventional Bi 2 O 3 was used instead of Bi 4 Zr 3 O 12 .
05 mol parts, 0.50 mol parts, 1.00 mol parts, 3.0
Except that 0 mol part was added, capacitors of Sample Nos. 21, 22, 23 and 24 were made in the same manner as Samples Nos. 17 to 20, and the characteristics were measured by the same method as Samples Nos. 17 to 20. The results in Table 6 below were obtained.

【0026】 表6 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 21 40×103 1.1 19×104 0.07 22 45×103 0.8 20×104 0.07 23 43×103 0.8 17×104 0.08 24 41×103 0.9 17×104 0.12Table 6 Sample No. ε tan δ (%) IR (MΩ) Yield index 2140 × 10 3 1.1 19 × 10 4 0.07 22 45 × 10 3 0.8 20 × 10 4 0. 07 23 43 × 10 3 0.8 17 × 10 4 0.08 24 41 × 10 3 0.9 17 × 10 4 0.12

【0027】表5と表6との比較から明らかなように、
本発明に従う試料NO. 17〜20によれば、Biの蒸発
が第1の実施例のCuと同様に抑制され、歩留指数が従
来の値以下になり、第1の実施例と同一の作用効果が得
られる。
As is clear from the comparison between Table 5 and Table 6,
According to the sample Nos. 17 to 20 according to the present invention, the evaporation of Bi is suppressed as in the case of Cu of the first embodiment, and the yield index becomes equal to or less than the conventional value, and the same operation as that of the first embodiment. The effect is obtained.

【0028】[0028]

【第4の実施例】第1の実施例のCuZrO3 の代り
に、粒界絶縁化剤及び焼結助剤及び原子価制御剤として
機能するMn(マンガン)のジルコン酸塩であるMnZ
rO3 を使用してもCuZrO3 と同一の作用効果が得
られることを確かめるために、第1の実施例におけるC
uZrO3 を0.05モル部、0.50モル部、1.0
0モル部、3.00モル部のMnZrO3 に置き換えた
他は第1の実施例と同一の組成且つ同一の方法で試料N
O. 25、26、27、28のコンデンサを作り、第1
の実施例と同一の方法で特性を測定したところ、次の表
7に示す結果が得られた。
Fourth Embodiment Instead of CuZrO 3 of the first embodiment, MnZ which is a zirconate of Mn (manganese) which functions as a grain boundary insulating agent, a sintering aid and a valence controlling agent.
In order to confirm that the same operation and effect as CuZrO 3 can be obtained by using rO 3 , the C
0.05 mol part, 0.50 mol part, 1.0 mol of uZrO 3
Sample N was prepared in the same manner and in the same manner as in the first embodiment except that 0 mol part and 3.00 mol part of MnZrO 3 were used.
O. Making capacitors of 25, 26, 27 and 28
When the characteristics were measured by the same method as in Example 1, the results shown in the following Table 7 were obtained.

【0029】 表7 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 25 47×103 0.8 20×104 0.05 26 52×103 0.5 19×104 0.05 27 46×103 0.7 22×104 0.05 28 41×103 0.9 21×104 0.06[0029] Table 7 Sample NO. Ε tan δ (%) IR (MΩ) yield index 25 47 × 10 3 0.8 20 × 10 4 0.05 26 52 × 10 3 0.5 19 × 10 4 0. 05 27 46 × 10 3 0.7 22 × 10 4 0.05 28 41 × 10 3 0.9 21 × 10 4 0.06

【0030】また、試料NO. 25〜28と比較するため
に、MnZrO3 の代りにMnの酸化物であるMnO2
を0.05モル部、0.50モル部、1.00モル部、
3.00モル部添加した他は試料NO. 25〜28と同一
の方法で試料NO. 29、30、31、32のコンデンサ
を作り、試料NO. 25〜28と同一の方法で特性を測定
したところ、次の表8の結果が得られた。
For comparison with Sample Nos. 25 to 28, MnO 2 which is an oxide of Mn was used instead of MnZrO 3 .
Is 0.05 mol part, 0.50 mol part, 1.00 mol part,
Capacitors of Sample Nos. 29, 30, 31, and 32 were made in the same manner as Samples Nos. 25 to 28 except that 3.00 mol was added, and the characteristics were measured in the same manner as Samples Nos. 25 to 28. However, the results in Table 8 below were obtained.

【0031】 表8 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 29 48×103 0.9 19×104 0.05 30 50×103 0.8 19×104 0.06 31 43×103 0.9 20×104 0.06 32 45×103 1.0 21×104 0.08Table 8 Sample No. ε tan δ (%) IR (MΩ) Yield index 2948 × 10 3 0.9 19 × 10 4 0.05 30 50 × 10 3 0.8 19 × 10 4 0. 06 31 43 × 10 3 0.9 20 × 10 4 0.06 32 45 × 10 3 1.0 21 × 10 4 0.08

【0032】表7と表8との比較から明らかなように、
本発明に従う試料NO. 25〜28によれば、Mnの蒸発
が第1の実施例のCuと同様に抑制され、歩留指数が従
来の値以下になり、第1の実施例と同一の作用効果が得
られる。
As is clear from the comparison between Table 7 and Table 8,
According to the sample Nos. 25 to 28 according to the present invention, the evaporation of Mn is suppressed as in the case of Cu of the first embodiment, and the yield index becomes equal to or less than the conventional value, and the same operation as that of the first embodiment. The effect is obtained.

【0033】[0033]

【第5の実施例】第1〜第4の実施例のCuZrO3
PbZrO3 、Bi4 Zr3 12、MnZrO3 の代り
に、これ等から選択された複数種類を添加しても第1〜
第4の実施例と同様な作用効果が得られることを確かめ
るために、第1の実施例のCuZrO3 を、0.5モル
部のCuZrO3 と0.5モル部のPbZrO3 との混
合物(試料NO. 33)、0.5モル部のCuZrO3
0.5モル部のBi4 Zr3 12との混合物(試料NO.
34)、0.5モル部のCuZrO3 と0.5モル部の
MnZrO3 との混合物(試料NO. 35)、0.5モル
部のPbZrO3 と0.5モル部のBi4 Zr3 12
の混合物(試料NO. 36)、0.5モル部のPbZrO
3 と0.5モル部のMnZrO3 との混合物(試料NO.
37)、0.5モル部のBi4 Zr3 12と0.5モル
部のMnZrO3 との混合物(試料NO. 38)に置き換
えた他は第1の実施例と同一の組成且つ同一の方法でコ
ンデンサを作り、第1の実施例と同一の方法で特性を測
定したところ、次の表9に示す結果が得られた。
Fifth Embodiment The CuZrO 3 of the first to fourth embodiments,
Instead of PbZrO 3 , Bi 4 Zr 3 O 12 , and MnZrO 3 , even if a plurality of types selected from these are added,
In order to confirm that the same operation and effect as those of the fourth embodiment can be obtained, the mixture of CuZrO 3 of the first embodiment with 0.5 mol part of CuZrO 3 and 0.5 mol part of PbZrO 3 ( Sample No. 33), a mixture of 0.5 mol part of CuZrO 3 and 0.5 mol part of Bi 4 Zr 3 O 12 (Sample No. 33)
34), a mixture of 0.5 mol part of CuZrO 3 and 0.5 mol part of MnZrO 3 (sample No. 35), 0.5 mol part of PbZrO 3 and 0.5 mol part of Bi 4 Zr 3 O 12 (Sample No. 36), 0.5 mol part of PbZrO
3 and 0.5 mol parts of MnZrO 3 (sample NO.
37), the same composition and the same composition as in the first example except that the mixture was replaced with a mixture of 0.5 mol part of Bi 4 Zr 3 O 12 and 0.5 mol part of MnZrO 3 (sample No. 38). A capacitor was made by the method, and characteristics were measured by the same method as in the first embodiment. The results shown in Table 9 below were obtained.

【0034】 表9 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 33 51×103 0.8 19×104 0.04 34 52×103 0.5 17×104 0.04 35 54×103 0.7 16×104 0.06 36 51×103 0.8 17×104 0.05 37 52×103 0.8 19×104 0.04 38 46×103 0.6 21×104 0.06[0034] Table 9 Sample NO. Ε tan δ (%) IR (MΩ) yield index 33 51 × 10 3 0.8 19 × 10 4 0.04 34 52 × 10 3 0.5 17 × 10 4 0. 04 35 54 × 10 3 0.7 16 × 10 4 0.06 36 51 × 10 3 0.8 17 × 10 4 0.05 37 52 × 10 3 0.8 19 × 10 4 0.04 38 46 × 10 3 0.6 21 × 10 4 0.06

【0035】また、試料NO. 33〜38と比較するため
に、試料NO. 33〜38のCu、Pb、Bi、Mnのジ
ルコン酸塩をこれ等の酸化物に置き換えた他は試料NO.
33〜38と同一の方法で試料NO. 39、40、41、
42、43、44のコンデンサを作り、試料NO. 33〜
38と同一の方法で特性を測定したところ、次の表10
の結果が得られた。
For comparison with Samples Nos. 33 to 38, Samples Nos. 33 to 38 were prepared by replacing the zirconates of Cu, Pb, Bi and Mn with these oxides.
Samples Nos. 39, 40, 41, in the same manner as 33-38
Sample No. 33 ~
The characteristics were measured in the same manner as in Example 38.
Was obtained.

【0036】 表10 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 39 50×103 0.8 17×104 0.10 40 48×103 0.7 17×104 0.12 41 50×103 0.7 16×104 0.08 42 48×103 0.7 16×104 0.12 43 50×103 0.7 17×104 0.09 44 48×103 0.8 17×104 0.10Table 10 Sample No. ε tan δ (%) IR (MΩ) Yield index 3950 × 10 3 0.8 17 × 10 4 0.10 40 48 × 10 3 0.7 17 × 10 4 0. 12 41 50 × 10 3 0.7 16 × 10 4 0.08 42 48 × 10 3 0.7 16 × 10 4 0.12 43 50 × 10 3 0.7 17 × 10 4 0.094 44 48 × 10 3 0.8 17 × 10 4 0.10

【0037】表9と表10との比較から明らかなよう
に、本発明に従う試料NO. 33〜38によれば、Cu、
Pb、Bi、Mnの複数種類のジルコン酸塩を添加して
もCu、Pb、Bi、Mnの蒸発が抑制され、歩留指数
が従来の値以下になり、第1〜第4の実施例と同一の作
用効果が得られる。
As is apparent from the comparison between Tables 9 and 10, according to the samples Nos. 33 to 38 according to the present invention, Cu,
Even when a plurality of types of zirconates of Pb, Bi, and Mn are added, evaporation of Cu, Pb, Bi, and Mn is suppressed, and the yield index becomes equal to or less than a conventional value. The same operation and effect can be obtained.

【0038】[0038]

【第6の実施例】第1の実施例のCuZrO3 の代り
に、Cuのチタン酸塩であるCuTiO3を使用しても
CuZrO3 と同一の作用効果が得られることを確かめ
るために、第1の実施例におけるCuZrO3 を0.0
5モル部、0.50モル部、1.00モル部、3.00
モル部のCuTiO3 に置き換えた他は第1の実施例と
同一の組成且つ同一の方法で試料NO. 45、46、4
7、48のコンデンサを作り、第1の実施例と同一の方
法で特性を測定したところ、次の表11に示す結果が得
られた。
Sixth Embodiment In order to confirm that the same function and effect as CuZrO 3 can be obtained by using CuTiO 3 which is a Cu titanate instead of CuZrO 3 of the first embodiment, CuZrO 3 in Example 1 was changed to 0.0
5 mol parts, 0.50 mol parts, 1.00 mol parts, 3.00 mol parts
Samples Nos. 45, 46, and 4 were prepared in the same manner and in the same manner as in the first embodiment except that the molar part of CuTiO 3 was used.
When the capacitors of Nos. 7 and 48 were manufactured and their characteristics were measured by the same method as in the first embodiment, the results shown in the following Table 11 were obtained.

【0039】 表11 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 45 40×103 1.1 20×104 0.04 46 52×103 0.7 17×104 0.05 47 50×103 0.7 17×104 0.06 48 48×103 0.9 16×104 0.06Table 11 Sample No. ε tan δ (%) IR (MΩ) Yield index 45 40 × 10 3 1.1 20 × 10 4 0.04 46 52 × 10 3 0.7 17 × 10 4 0. 05 47 50 × 10 3 0.7 17 × 10 4 0.06 48 48 × 10 3 0.9 16 × 10 4 0.06

【0040】表11と表2との比較から明らかなよう
に、本発明に従う試料NO. 45〜48によれば、試料N
O. 5〜8のCuOを使用する場合に比べてCuの蒸発
が第1の実施例と同様に抑制され、歩留指数が従来の値
以下になり、第1の実施例と同一の作用効果が得られ
る。
As is clear from the comparison between Table 11 and Table 2, according to Sample Nos. 45 to 48 according to the present invention, Sample N
O. Compared to the case of using CuO of 5 to 8, the evaporation of Cu is suppressed in the same manner as in the first embodiment, and the yield index becomes equal to or less than the conventional value, and the same operation and effect as in the first embodiment. Is obtained.

【0041】[0041]

【第7の実施例】第1の実施例のCuZrO3 の代り
に、Pb(鉛)のチタン酸塩であるPbTiO3 を使用
してもCuZrO3 と同一の作用効果が得られることを
確かめるために、第1の実施例におけるCuZrO3
0.05モル部、0.50モル部、1.00モル部、
3.00モル部のPbTiO3 に置き換えた他は第1の
実施例と同一の組成且つ同一の方法で試料NO. 49、5
0、51、52のコンデンサを作り、第1の実施例と同
一の方法で特性を測定したところ、次の表12に示す結
果が得られた。
Seventh Embodiment In order to confirm that the same function and effect as CuZrO 3 can be obtained by using PbTiO 3 which is a titanate of Pb (lead) instead of CuZrO 3 of the first embodiment. In the first embodiment, 0.05 mol part, 0.50 mol part, 1.00 mol part of CuZrO 3 in the first embodiment,
3.00 Other replaced with PbTiO 3 molar portion sample NO in the first embodiment the same composition as and the same method. 49,5
When capacitors 0, 51, and 52 were made and their characteristics were measured in the same manner as in the first embodiment, the results shown in the following Table 12 were obtained.

【0042】 表12 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 49 41×103 1.2 22×104 0.06 50 45×103 0.7 20×104 0.06 51 42×103 0.7 18×104 0.07 52 42×103 0.9 19×104 0.07Table 12 Sample No. ε tan δ (%) IR (MΩ) Yield index 49 41 × 10 3 1.2 22 × 10 4 0.065 50 45 × 10 3 0.7 20 × 10 4 0. 06 51 42 × 10 3 0.7 18 × 10 4 0.07 52 42 × 10 3 0.9 19 × 10 4 0.07

【0043】表12と表4との比較から明らかなよう
に、本発明に従う試料NO. 49〜52によれば、試料N
O. 13〜16のPbOの場合に比べてPbの蒸発が第
1の実施例のCuと同様に抑制され、歩留指数が従来の
値以下になり、第1及び第2の実施例と同一の作用効果
が得られる。
As is clear from the comparison between Table 12 and Table 4, according to Sample Nos. 49 to 52 according to the present invention, Sample N
O. Compared to the case of PbO of 13 to 16, the evaporation of Pb is suppressed as in the case of Cu of the first embodiment, and the yield index is lower than the conventional value, which is the same as that of the first and second embodiments. The operation and effect of the invention are obtained.

【0044】[0044]

【第8の実施例】第1の実施例のCuZrO3 の代り
に、粒界絶縁化剤及び原子価制御剤として機能するBi
(ビスマス)のチタン酸塩であるBi4 Zr3 12を使
用してもCuZrO3 と同一の作用効果が得られること
を確かめるために、第1の実施例におけるCuZrO3
を0.05モル部、0.50モル部、1.00モル部、
3.00モル部のBi4 Zr3 12に置き換えた他は第
1の実施例と同一の組成且つ同一の方法で試料NO. 5
3、54、55、56のコンデンサを作り、第1の実施
例と同一の方法で特性を測定したところ、次の表13に
示す結果が得られた。
Eighth Embodiment Instead of CuZrO 3 of the first embodiment, Bi which functions as a grain boundary insulating agent and a valence controlling agent is used.
To confirm that the same effects as CuZrO 3 be used Bi 4 Zr 3 O 12 is a titanate of (bismuth) is obtained, CuZrO 3 in the first embodiment
Is 0.05 mol part, 0.50 mol part, 1.00 mol part,
Sample No. 5 having the same composition and the same method as the first embodiment except that 3.00 mol part of Bi 4 Zr 3 O 12 was used.
3, 54, 55, and 56 capacitors were manufactured, and the characteristics were measured by the same method as in the first embodiment. The results shown in Table 13 below were obtained.

【0045】 表13 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 53 42×103 1.0 19×104 0.05 54 45×103 0.8 19×104 0.06 55 45×103 0.7 20×104 0.07 56 41×103 0.9 21×104 0.07Table 13 Sample No. ε tan δ (%) IR (MΩ) Yield index 5342 × 10 3 1.0 19 × 10 4 0.05 54 45 × 10 3 0.8 19 × 10 4 0. 06 55 45 × 10 3 0.7 20 × 10 4 0.07 56 41 × 10 3 0.9 21 × 10 4 0.07

【0046】表13と表6との比較から明らかなよう
に、本発明に従う試料NO. 53〜56によれば、表6の
Bi2 3 の場合に比べてBiの蒸発が第1の実施例の
Cuと同様に抑制され、歩留指数が従来の値以下にな
り、第1及び第3の実施例と同一の作用効果が得られ
る。
As is clear from the comparison between Table 13 and Table 6, according to the samples Nos. 53 to 56 according to the present invention, the first embodiment showed that the evaporation of Bi was smaller than that of Bi 2 O 3 in Table 6. Similarly to the Cu of the example, the yield index is reduced to a value less than the conventional value, and the same operation and effect as those of the first and third embodiments can be obtained.

【0047】[0047]

【第9の実施例】第1の実施例のCuZrO3 の代り
に、粒界絶縁化剤及び焼結助剤として機能するMnのチ
タン酸塩であるMnTiO3 を使用してもCuZrO3
と同一の作用効果が得られることを確かめるために、第
1の実施例におけるCuZrO3 を0.05モル部、
0.50モル部、1.00モル部、3.00モル部のM
nTiO3 に置き換えた他は第1の実施例と同一の組成
且つ同一の方法で試料NO. 57、58、59、60のコ
ンデンサを作り、第1の実施例と同一の方法で特性を測
定したところ、次の表14に示す結果が得られた。
Instead of CuZrO 3 of the ninth embodiment] first embodiment, CuZrO be used MnTiO 3 is a titanate of Mn which acts as a grain boundary insulation agent and sintering aid 3
In order to confirm that the same function and effect as described above were obtained, 0.05 mol part of CuZrO 3 in the first embodiment was added.
0.50 mol part, 1.00 mol part, 3.00 mol part of M
Capacitors of sample Nos. 57, 58, 59 and 60 were made with the same composition and the same method as in the first embodiment except that nTiO 3 was used, and the characteristics were measured by the same method as in the first embodiment. However, the results shown in the following Table 14 were obtained.

【0048】 表14 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 57 50×103 0.9 19×104 0.04 58 52×103 0.8 18×104 0.05 59 45×103 0.8 20×104 0.05 60 48×103 1.0 21×104 0.06Table 14 Sample No. ε tan δ (%) IR (MΩ) Yield index 57 50 × 10 3 0.9 19 × 10 4 0.04 58 52 × 10 3 0.8 18 × 10 4 0. 05 59 45 × 10 3 0.8 20 × 10 4 0.05 60 48 × 10 3 1.0 21 × 10 4 0.06

【0049】表14と表8との比較から明らかなよう
に、本発明に従う試料NO. 57〜60によれば、Mnの
蒸発が第1の実施例のCuと同様に抑制され、歩留指数
が従来の値以下になり、第1及び第4の実施例と同一の
作用効果が得られる。
As is clear from the comparison between Table 14 and Table 8, according to the samples Nos. 57 to 60 according to the present invention, the evaporation of Mn was suppressed as in the case of Cu of the first embodiment, and the yield index was increased. Is less than the conventional value, and the same operational effects as those of the first and fourth embodiments can be obtained.

【0050】[0050]

【第10の実施例】第6〜第9の実施例のCuTi
3 、PbTiO3 、Bi4 Ti3 12、MnTiO3
の代りに、これ等から選択された複数種類を添加しても
第6〜第9の実施例と同様な作用効果が得られることを
確かめるために、第1の実施例のCuZrO3 を、0.
5モル部のCuTiO3 と0.5モル部のPbTiO3
との混合物(試料NO. 61)、0.5モル部のCuTi
3 と0.5モル部のBi4 Ti3 12との混合物(試
料NO. 62)、0.5モル部のCuTiO3 と0.5モ
ル部のMnTiO3 との混合物(試料NO. 63)、0.
5モル部のPbTiO3 と0.5モル部のBi4 Ti3
12との混合物(試料NO. 64)、0.5モル部のPb
TiO3 と0.5モル部のMnTiO3 との混合物(試
料NO. 65)、0.5モル部のBi4 Ti3 12と0.
5モル部のMnTiO3 との混合物(試料NO. 66)に
置き換えた他は第1の実施例と同一の組成且つ方法でコ
ンデンサを作り、第1の実施例と同一の方法で特性を測
定したところ、次の表15に示す結果が得られた。
Tenth Embodiment CuTi of the Sixth to Ninth Embodiments
O 3 , PbTiO 3 , Bi 4 Ti 3 O 12 , MnTiO 3
In order to confirm that the same operation and effect as those of the sixth to ninth embodiments can be obtained even if a plurality of types selected from these are added instead of CuZrO 3 of the first embodiment, .
5 mol parts of CuTiO 3 and 0.5 mol parts of PbTiO 3
(Sample No. 61), 0.5 mol part of CuTi
A mixture of O 3 and 0.5 mol part of Bi 4 Ti 3 O 12 (sample No. 62), a mixture of 0.5 mol part of CuTiO 3 and 0.5 mol part of MnTiO 3 (sample NO. 63) ), 0.
5 mol parts of PbTiO 3 and 0.5 mol parts of Bi 4 Ti 3
Mixture with O 12 (sample no. 64), 0.5 mol part Pb
A mixture of TiO 3 and 0.5 mol part of MnTiO 3 (Sample No. 65), 0.5 mol part of Bi 4 Ti 3 O 12 and 0.1 mol part of MnTiO 3 .
A capacitor was made with the same composition and method as in the first embodiment except that the mixture was replaced with a mixture with 5 mol parts of MnTiO 3 (sample No. 66), and the characteristics were measured by the same method as in the first embodiment. However, the results shown in the following Table 15 were obtained.

【0051】 表15 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 61 51×103 0.7 17×104 0.04 62 52×103 0.7 17×104 0.05 63 50×103 0.7 17×104 0.06 64 50×103 0.8 16×104 0.06 65 51×103 0.7 18×104 0.06 66 48×103 0.7 17×104 0.06Table 15 Sample No. ε tan δ (%) IR (MΩ) Yield index 61 51 × 10 3 0.7 17 × 10 4 0.04 62 52 × 10 3 0.7 17 × 10 4 0. 05 63 50 × 10 3 0.7 17 × 10 4 0.06 64 50 × 10 3 0.8 16 × 10 4 0.06 65 51 × 10 3 0.7 18 × 10 4 0.066 66 48 × 10 3 0.7 17 × 10 4 0.06

【0052】表5と従来例を示す表10との比較から明
らかなように、Cu、Pb、Bi、Mnのチタン酸塩の
複数種を混合した場合においてもCu、Pb、Bi、M
nの蒸発が抑制され、歩留指数が従来の値以下になり、
第1及び第6〜第9と同一の作用効果が得られる。
As is clear from the comparison between Table 5 and Table 10 showing the conventional example, Cu, Pb, Bi, M, and Mn were mixed even when a plurality of types of titanates of Cu, Pb, Bi, and Mn were mixed.
n is suppressed, the yield index becomes less than the conventional value,
The same functions and effects as those of the first and sixth to ninth embodiments are obtained.

【0053】[0053]

【第11の実施例】第1の実施例のCuZrO3 の代り
に、Cuのケイ酸塩であるCuSiO3 を使用してもC
uZrO3 と同一の作用効果が得られることを確かめる
ために、第1の実施例におけるCuZrO3 を0.05
モル部、0.50モル部、1.00モル部、3.00モ
ル部のCuSiO3 に置き換えた他は第1の実施例と同
一の組成且つ同一の方法で試料NO. 67、68、69、
70のコンデンサを作り、第1の実施例と同一の方法で
特性を測定したところ、次の表16に示す結果が得られ
た。
To the eleventh embodiment of] Instead of CuZrO 3 of the first embodiment, the use of Cusio 3 is a silicate of Cu C
In order to confirm that the same operation and effect as uZrO 3 can be obtained, CuZrO 3 in
Samples Nos. 67, 68, and 69 were prepared in the same manner and in the same manner as in the first embodiment except that the mole parts, 0.50 mole parts, 1.00 mole parts, and 3.00 mole parts of CuSiO 3 were used. ,
When a capacitor of No. 70 was manufactured and its characteristics were measured by the same method as in the first embodiment, the results shown in the following Table 16 were obtained.

【0054】 表16 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 67 41×103 1.2 22×104 0.05 68 51×103 0.8 18×104 0.05 69 50×103 0.8 19×104 0.06 70 46×103 1.1 17×104 0.06Table 16 Sample No. ε tan δ (%) IR (MΩ) Yield index 67 41 × 10 3 1.2 22 × 10 4 0.05 68 51 × 10 3 0.8 18 × 10 4 0. 05 69 50 × 10 3 0.8 19 × 10 4 0.06 70 46 × 10 3 1.1 17 × 10 4 0.06

【0055】表16と従来例の表2との比較から明らか
なように、本発明に従う試料NO. 67〜70によれば、
Cuの蒸発が第1の実施例と同様に抑制され、歩留指数
が従来の値以下になり、第1の実施例と同一の作用効果
が得られる。
As is clear from the comparison between Table 16 and Table 2 of the conventional example, according to the samples Nos. 67 to 70 according to the present invention,
The evaporation of Cu is suppressed in the same manner as in the first embodiment, the yield index becomes equal to or less than the conventional value, and the same operation and effect as in the first embodiment can be obtained.

【0056】[0056]

【第12の実施例】第1の実施例のCuZrO3 の代り
に、Pb(鉛)のケイ酸塩であるPbSiO3 を使用し
てもCuZrO3 と同一の作用効果が得られることを確
かめるために、第1の実施例におけるCuZrO3
0.05モル部、0.50モル部、1.00モル部、
3.00モル部のPbSiO3 に置き換えた他は第1の
実施例と同一の組成且つ同一の方法で試料NO. 71、7
2、73、74のコンデンサを作り、第1の実施例と同
一の方法で特性を測定したところ、次の表17に示す結
果が得られた。
Instead of CuZrO 3 of the twelfth embodiment A first embodiment, Pb To confirm that the same effects as CuZrO 3 be used PbSiO 3 is a silicate (Pb) is obtained In the first embodiment, 0.05 mol part, 0.50 mol part, 1.00 mol part of CuZrO 3 in the first embodiment,
Samples Nos. 71 and 7 were prepared in the same manner and in the same manner as in the first embodiment except that 3.00 mol parts of PbSiO 3 were used.
2, 73 and 74 were made and the characteristics were measured by the same method as in the first embodiment. The results shown in the following Table 17 were obtained.

【0057】 表17 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 71 41×103 1.2 24×104 0.06 72 43×103 0.7 22×104 0.06 73 41×103 0.7 19×104 0.06 74 42×103 1.0 20×104 0.07Table 17 Sample No. ε tan δ (%) IR (MΩ) Yield index 71 41 × 10 3 1.2 24 × 10 4 0.06 72 43 × 10 3 0.7 22 × 10 4 0. 06 73 41 × 10 3 0.7 19 × 10 4 0.067 4 42 × 10 3 1.0 20 × 10 4 0.07

【0058】表17と従来例を示す表4との比較から明
らかなように、本発明に従う試料NO. 71〜74によれ
ば、Pbの蒸発が第1の実施例のCuと同様に抑制さ
れ、歩留指数が従来の値以下になり、第1及び第2の実
施例と同一の作用効果が得られる。
As is clear from the comparison between Table 17 and Table 4 showing the conventional example, according to the samples Nos. 71 to 74 according to the present invention, the evaporation of Pb was suppressed similarly to the Cu of the first embodiment. , The yield index becomes equal to or less than the conventional value, and the same operation and effect as those of the first and second embodiments can be obtained.

【0059】[0059]

【第13の実施例】第1の実施例のCuZrO3 の代り
に、Biのケイ酸塩であるBi4 Si3 12を使用して
もCuZrO3 と同一の作用効果が得られることを確か
めるために、第1の実施例におけるCuZrO3 を0.
05モル部、0.50モル部、1.00モル部、3.0
0モル部のBi4 Si3 12に置き換えた他は第1の実
施例と同一の組成且つ同一の方法で試料NO. 75、7
6、77、78のコンデンサを作り、第1の実施例と同
一の方法で特性を測定したところ、次の表18に示す結
果が得られた。
Thirteenth Embodiment It is confirmed that the same function and effect as CuZrO 3 can be obtained by using Bi 4 Si 3 O 12 which is a silicate of Bi instead of CuZrO 3 of the first embodiment. For this reason, CuZrO 3 in the first embodiment is set to 0.
05 mol parts, 0.50 mol parts, 1.00 mol parts, 3.0
Samples Nos. 75 and 7 were prepared in the same manner and in the same manner as in the first embodiment, except that 0 mol parts of Bi 4 Si 3 O 12 were used.
6, 77 and 78 were made and their characteristics were measured in the same manner as in the first embodiment. The results shown in the following Table 18 were obtained.

【0060】 表18 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 75 40×103 1.0 20×104 0.05 76 43×103 0.8 20×104 0.06 77 43×103 0.7 21×104 0.06 78 40×103 1.0 21×104 0.06Table 18 Sample No. ε tan δ (%) IR (MΩ) Yield index 75 40 × 10 3 1.0 20 × 10 4 0.05 76 43 × 10 3 0.8 20 × 10 4 0. 06 77 43 × 10 3 0.7 21 × 10 4 0.06 78 40 × 10 3 1.0 21 × 10 4 0.06

【0061】表18と表6との比較から明らかなよう
に、本発明に従う試料NO. 75〜78によれば、Biの
蒸発が第1の実施例のCuと同様に抑制され、歩留指数
が従来の値以下になり、第1及び第3の実施例と同一の
作用効果が得られる。
As is clear from the comparison between Table 18 and Table 6, according to the samples Nos. 75 to 78 according to the present invention, the evaporation of Bi was suppressed as in the case of Cu of the first embodiment, and the yield index was increased. Is less than the conventional value, and the same operation and effect as those of the first and third embodiments can be obtained.

【0062】[0062]

【第14の実施例】第1の実施例のCuZrO3 の代り
に、Mnのケイ酸塩であるMnSiO3 を使用してもC
uZrO3 と同一の作用効果が得られることを確かめる
ために、第1の実施例におけるCuZrO3 を0.05
モル部、0.50モル部、1.00モル部、3.00モ
ル部のMnSiO3 に置き換えた他は第1の実施例と同
一の組成且つ同一の方法で試料NO. 79、80、81、
82のコンデンサを作り、第1の実施例と同一の方法で
特性を測定したところ、次の表19に示す結果が得られ
た。
To the fourteenth embodiment of] Instead of CuZrO 3 of the first embodiment, the use of MnSiO 3 is a silicate of Mn C
In order to confirm that the same operation and effect as uZrO 3 can be obtained, CuZrO 3 in
Molar parts, 0.50 part by mol 1.00 mol part, sample 3.00 molar parts other replaced with MnSiO 3 of the first embodiment the same composition as and the same methods NO. 79,80,81 ,
When the capacitors of No. 82 were manufactured and their characteristics were measured by the same method as in the first embodiment, the results shown in the following Table 19 were obtained.

【0063】 表19 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 79 48×103 0.9 19×104 0.05 80 51×103 0.8 17×104 0.05 81 48×103 0.8 21×104 0.05 82 48×103 1.0 20×104 0.06Table 19 Sample No. ε tan δ (%) IR (MΩ) Yield index 79 48 × 10 3 0.9 19 × 10 4 0.05 80 51 × 10 3 0.8 17 × 10 4 0. 05 81 48 × 10 3 0.8 21 × 10 4 0.05 82 48 × 10 3 1.0 20 × 10 4 0.06

【0064】表19と表8との比較から明らかなよう
に、本発明に従う試料NO. 79〜82によれば、Mnの
蒸発が第1の実施例のCuと同様に抑制され、歩留指数
が従来の値以下になり、第1及び第4の実施例と同一の
作用効果が得られる。
As is clear from the comparison between Table 19 and Table 8, according to the samples Nos. 79 to 82 according to the present invention, the evaporation of Mn was suppressed as in the case of Cu of the first embodiment, and the yield index was reduced. Is less than the conventional value, and the same operational effects as those of the first and fourth embodiments can be obtained.

【0065】[0065]

【第15の実施例】第11〜14の実施例のCuSiO
3 、PbSiO3 、Bi4 Si3 12、MnSiO3
代りに、これ等から選択された複数種類を添加しても第
11〜第14の実施例と同様な作用効果が得られること
を確かめるために、第1の実施例のCuZrO3 を、
0.5モル部のCuSiO3 と0.5モル部のPbSi
3 との混合物(試料NO. 83)、0.5モル部のCu
SiO3 と0.5モル部のBi 4 Si3 12との混合物
(試料NO. 84)、0.5モル部のCuSiO3 と0.
5モル部のMnSiO3 との混合物(試料NO. 85)、
0.5モル部のPbSiO3 と0.5モル部のBi4
3 12との混合物(試料NO. 86)、0.5モル部の
PbSiO3 と0.5モル部のMnSiO3 との混合物
(試料NO. 87)、0.5モル部のBi4 Si3 12
0.5モル部のMnSiO3 との混合物(試料NO. 8
8)に置き換えた他は第1の実施例と同一の組成且つ同
一の方法でコンデンサを作り、第1の実施例と同一の方
法で特性を測定したところ、次の表20の結果が得られ
た。
Fifteenth Embodiment CuSiO of the eleventh to fourteenth embodiments
Three, PbSiOThree, BiFourSiThreeO12, MnSiOThreeof
Alternatively, adding a plurality of types selected from these
The same operational effects as in the eleventh to fourteenth embodiments can be obtained.
In order to confirm that CuZrO of the first embodimentThreeTo
0.5 mol part of CuSiOThreeAnd 0.5 mol part of PbSi
OThree(Sample No. 83), 0.5 mol part of Cu
SiOThreeAnd 0.5 mole parts Bi FourSiThreeO12Mixture with
(Sample No. 84), 0.5 mol part of CuSiOThreeAnd 0.
5 mole parts MnSiOThree(Sample No. 85)
0.5 mol part of PbSiOThreeAnd 0.5 mole parts BiFourS
iThreeO12(Sample No. 86), 0.5 mol part
PbSiOThreeAnd 0.5 mol part of MnSiOThreeMixture with
(Sample No. 87), 0.5 mol part BiFourSiThreeO12When
0.5 mol part of MnSiOThree(Sample No. 8)
8) The same composition and the same as the first embodiment except that
Make a capacitor by one method, and use the same method as in the first embodiment.
When the characteristics were measured by the method, the results in the following Table 20 were obtained.
Was.

【0066】 表20 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 83 50×103 0.6 18×104 0.05 84 51×103 0.7 18×104 0.05 85 51×103 0.6 18×104 0.07 86 51×103 0.7 18×104 0.06 87 50×103 0.7 19×104 0.07 88 48×103 0.8 19×104 0.06Table 20 Sample No. ε tan δ (%) IR (MΩ) Yield index 83 50 × 10 3 0.6 18 × 10 4 0.05 84 51 × 10 3 0.7 18 × 10 4 0. 05 85 51 × 10 3 0.6 18 × 10 4 0.07 86 51 × 10 3 0.7 18 × 10 4 0.06 87 50 × 10 3 0.7 19 × 10 4 0.07 88 48 × 10 3 0.8 19 × 10 4 0.06

【0067】表20と表9との比較から明らかなよう
に、Cu、Pb、Bi、Mnのケイ酸塩の複数種類を添
加する場合であってもCu、Pb、Bi、Mnの蒸発が
抑制され、歩留指数が従来の値以下になり、第1の実施
例と同一の作用効果が得られる。
As is clear from the comparison between Tables 20 and 9, even when a plurality of types of silicates of Cu, Pb, Bi and Mn are added, evaporation of Cu, Pb, Bi and Mn is suppressed. As a result, the yield index becomes equal to or less than the conventional value, and the same operation and effect as in the first embodiment can be obtained.

【0068】[0068]

【第16の実施例】本発明をコンデンサ機能とバリスタ
機能との両方を有する磁器バリスタ素子にも適用できる
ことを確かめるために、 SrTiO3 100モル部 CaTiO3 10モル部 Y2 3 0.6モル部 CuTiO3 0.05〜3.00モル部 SiO2 0.2モル部 の組成の混合物を用意した。なお、CuTiO3 を0.
05モル部、0.50モル部、1.00モル部、3.0
0モル部に4段階に変えた試料NO. 89、90、91、
92の試料を用意した。次に、各試料の混合物を第1の
実施例と同一の方法で成形し、焼成して半導体磁器を得
た。次に、各試料の半導体磁器にNa2 Oと有機バイン
ダとから成るペーストを塗布し、これを炉にいれて大気
中で1100℃、2時間加熱拡散処理し、Na2 Oによ
って半導体結晶粒子同志を強固に結合させた。次に、第
1の実施例と同様に一対の電極を形成してバリスタ素子
を完成させた。
The present invention sixteenth embodiment of To confirm the applicability to ceramic varistor element having both a capacitor function and a varistor function, SrTiO 3 100 molar parts CaTiO 3 10 molar parts Y 2 O 3 0.6 mole A mixture having a composition of 0.05 parts to 3.00 parts by mole of CuTiO 3 and 0.2 parts by mole of SiO 2 was prepared. It should be noted that CuTiO 3 was added in an amount of 0.1.
05 mol parts, 0.50 mol parts, 1.00 mol parts, 3.0
Samples No. 89, 90, 91, which were changed to 0 mole parts in four stages,
Ninety-two samples were prepared. Next, the mixture of each sample was molded and fired in the same manner as in the first embodiment to obtain a semiconductor porcelain. Next, a paste consisting of Na 2 O and an organic binder is applied to the semiconductor ceramic of each sample, which are are in the furnace 1100 ° C. in air for 2 hours heat diffusion treatment, the semiconductor crystal grains each other by Na 2 O Was tightly bound. Next, a pair of electrodes were formed in the same manner as in the first embodiment to complete the varistor element.

【0069】次に、各試料のバリスタ電極V1m、バリス
タ電圧V1mのバラツキを示す歩留指数(V1m標準偏差/
V1mの平均値)、非直線係数α、エネルギー耐量を求め
た。ここで、バリスタ電極V1mはバリスタ素子の一対の
電極間に1mAを流した時の一対の電極間の電圧であ
る。電圧非直線係数αはバリスタ素子に1mAを流した
時の一対の電極間の電圧V1mと10mAを流した時の一
対の電極間の電圧V10m とに基づいて次式で求めた。 α=1/{log (V10m /V1m)} エネルギー耐量Eは、電圧Vのパルスを10秒間隔で2
回バリスタ素子に印加し、バリスタ電圧の変化率が5%
以内に収まる電圧Vを求め、次式で決定した。 E=1/2(CV2 )(joul) 次の表21は試料NO. 89〜92の測定結果を示す。
Next, a yield index (V1m standard deviation / V1m standard deviation / V1m) indicating the variation of the varistor electrode V1m and the varistor voltage V1m of each sample.
V1m), the nonlinear coefficient α, and the energy tolerance. Here, the varistor electrode V1m is a voltage between the pair of electrodes when 1 mA flows between the pair of electrodes of the varistor element. The voltage nonlinear coefficient α was obtained by the following equation based on the voltage V1m between the pair of electrodes when 1 mA was passed through the varistor element and the voltage V10m between the pair of electrodes when 10 mA was passed through the varistor element. α = 1 / {log (V10m / V1m)} The energy tolerance E is expressed as follows.
Applied to the varistor element, and the change rate of the varistor voltage is 5%
The voltage V within the range was determined and determined by the following equation. E = 1/2 (CV 2 ) (joul) Table 21 below shows the measurement results of Samples Nos. 89 to 92.

【0070】 表21 試料NO. V1m 歩留指数 α E(joul) 89 33.2 0.045 10.78 13.5 90 29.8 0.054 10.85 12.5 91 31.5 0.062 11.22 16.0 92 30.8 0.065 10.89 13.0Table 21 Sample No. V1m Yield index α E (joul) 89 33.2 0.045 10.78 13.5 90 29.8 0.054 10.85 12.5 91 31.5 0.062 11.22 16.0 92 30.8 0.065 10.89 13.0

【0071】試料NO. 89〜92との比較のために、試
料NO. 89〜92におけるCuTiO3 の代りに従来技
術に従ってCuOを使用した他は試料NO. 89〜92と
同一の方法で試料NO. 93、94、95、96のバリス
タ素子を形成し、同一の方法で特性を測定したところ、
次の表22の結果が得られた。
[0071] Sample NO. For comparison with the 89 to 92, the sample NO. Other Using CuO in accordance with the prior art instead of CuTiO 3 in 89 to 92 samples NO. 89 to 92 sample NO in the same manner as . 93, 94, 95 and 96 varistor elements were formed and the characteristics were measured by the same method.
The following results in Table 22 were obtained.

【0072】 表22 試料NO. V1m 歩留指数 α E(joul) 93 28.3 0.090 10.02 7.2 94 26.5 0.102 10.25 8.0 95 27.2 0.100 10.55 8.3 96 26.9 0.098 10.36 8.0Table 22 Sample No. V1m Yield index α E (joul) 93 28.3 0.090 10.02 7.2 94 26.5 0.102 10.25 8.0 95 27.2 0.100 10.55 8.3 96 26.9 0.098 10.36 8.0

【0073】表21と表22の比較から明らかなように
試料NO. 89〜92によればCuの蒸発が抑制されてバ
リスタ電圧V1m及びエネルギー耐量Eが試料NO. 89〜
92よりも高くなる。また、バリスタ電圧の歩留指数即
ちバラツキが小さくなる。
As is clear from the comparison between Tables 21 and 22, according to Samples Nos. 89 to 92, the evaporation of Cu was suppressed, and the varistor voltage V1m and the energy withstand E were lower than those of Sample Nos. 89 to 89.
Higher than 92. Further, the yield index of the varistor voltage, that is, the variation is reduced.

【0074】[0074]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) 主成分はSrTiO3 、SrCaTiO3 に限
ることなく、ABO3(但しAはSr、Ca、Ba、M
gの内の1種又は複数種の元素、BはTi、Zrの1種
又は複数種の元素)で示すことができるチタンストロン
チウム系の成分とすることができる。 (2) 半導体化剤(原子価制御剤)としては、Y2
3 の代りに又はこれに加えてNb(ニオブ)、W(タン
グステン)、Ta(タンタル)及び希土類元素(La、
Ce、Pr、Nd、Sm、Dy、Pm、Eu、Gd、T
b、Ho、Er、Tm、Yb、Lu等)等の化合物(例
えばLa2 5 、WO3 、Ta2 5 、CeO2 、Nd
2 3 、Sm2 5 、Pr6 11、Dy2 3 等)の1
種又は複数種を100モル部のSrTiO3 又は前述の
ABO3 から成る主成分に対して好ましくは0.1〜
5.0モル部の範囲で使用することができる。 (3) 磁器材料に対する焼結助剤としてAl2 3
SiO2 、CuO、MnO2 、Ag2 Oから選択された
1種又は複数種を100モル部のSrTiO3又は前述
のABO3 から成る主成分に対して好ましくは0.05
〜0.50モル部の範囲で添加することができる。 (4) 粒界絶縁化剤をCu、Pb、Bi、Mnのジル
コン酸塩、チタン酸塩、ケイ酸塩の複数種の組合わせと
すること、及びこれ等にBi2 3 、Pb3 4 、B2
3 、MnO2 、CuO、Tl2 3 、Sb2 5 、F
2 3 等の金属酸化物から選択された1種又は複数種
を付加することができる。 (5) Cu、Pb、Bi、Mnのジルコン酸塩、チタ
ン酸塩及びケイ酸塩に限ることなく、原子価制御剤、又
は粒界絶縁化剤、又は焼結助剤の中の焼成で蒸発しやす
い物質をジルコン酸塩、又はチタン酸塩、又はケイ酸塩
として使用することができる。 (6) 原子価制御剤又は焼結助剤を本発明に従ってジ
ルコン酸塩、又はチタン酸塩、又はケイ酸塩とする場合
には、粒界絶縁化剤を磁器材料に添加しないで、焼成後
の半導体磁器の表面に、MnO、CuO、Bi2 3
PbO等の金属酸化物のペーストを塗布し、熱拡散させ
ることができる。 (7) 磁器グリーンシート(生シート)に導電性ペー
ストを印刷したものを積層して焼成して積層コンデンサ
又はバリスタを作る場合にも本発明を適用できる。
[Modifications] The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible. (1) The main component is not limited to SrTiO 3 and SrCaTiO 3 , but ABO 3 (where A is Sr, Ca, Ba, M
One or more elements of g, and B is one or more elements of Ti and Zr) may be a titanium-strontium-based component. (2) As a semiconducting agent (valence controlling agent), Y 2 O
Instead of or in addition to 3 , Nb (niobium), W (tungsten), Ta (tantalum) and rare earth elements (La,
Ce, Pr, Nd, Sm, Dy, Pm, Eu, Gd, T
b, Ho, Er, Tm, Yb, Lu, etc. (for example, La 2 O 5 , WO 3 , Ta 2 O 5 , CeO 2 , Nd)
2 O 3 , Sm 2 O 5 , Pr 6 O 11 , Dy 2 O 3 etc.)
One or more species are preferably 0.1 to 100 mol parts of SrTiO 3 or the main component consisting of the above-mentioned ABO 3.
It can be used in the range of 5.0 mole parts. (3) Al 2 O 3 as a sintering aid for porcelain materials,
One or more kinds selected from SiO 2 , CuO, MnO 2 , and Ag 2 O are preferably used in an amount of 0.05 mol% based on 100 mol parts of SrTiO 3 or the main component composed of ABO 3 described above.
It can be added in the range of 0.50 mol part. (4) grain boundary insulation agent to Cu, Pb, Bi, zirconates of Mn, titanates, be a plurality of types of combinations of the silicate, and Bi 2 O 3 to such, Pb 3 O 4 , B 2
O 3 , MnO 2 , CuO, Tl 2 O 3 , Sb 2 O 5 , F
One or more selected from metal oxides such as e 2 O 3 can be added. (5) Not limited to zirconate, titanate, and silicate of Cu, Pb, Bi, and Mn, but evaporated by firing in a valence controlling agent, a grain boundary insulating agent, or a sintering aid. Easier substances can be used as zirconates, or titanates, or silicates. (6) When the valence controlling agent or the sintering aid is a zirconate, a titanate, or a silicate according to the present invention, after the sintering without adding a grain boundary insulating agent to the porcelain material, MnO, CuO, Bi 2 O 3 ,
A paste of a metal oxide such as PbO can be applied and thermally diffused. (7) The present invention can also be applied to a case where a laminate obtained by printing a conductive paste on a porcelain green sheet (raw sheet) and sintering it to produce a multilayer capacitor or a varistor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コンデンサを原理的に示す断面図である。FIG. 1 is a sectional view showing a capacitor in principle.

【符号の説明】[Explanation of symbols]

2 結晶粒子 3 粒界層 4、5 電極 2 Crystal particle 3 Grain boundary layer 4, 5 Electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01G 4/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01G 4/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ABO3 (但し、AはSr、Ba、C
a、Mgの内のいずれか1種又は複数種の元素、BはT
i、Zrの内のいずれか1種又は複数種の元素、Oは酸
素を示す。)から成る主成分又は前記主成分を得ること
ができる原料と原子価制御剤と粒界絶縁化剤とを含む成
形体を形成する工程と、 前記成形体を還元性雰囲気で焼成する工程と、 酸化性雰囲気で熱処理する工程とを有する半導体磁器の
製造方法において、 前記粒界絶縁化剤の少なくとも1種をジルコン酸塩又は
チタン酸塩又はケイ酸塩とすることを特徴とする半導体
磁器の製造方法。
1. ABO 3 (where A is Sr, Ba, C
a, one or more of Mg, B is T
O represents one or more of i and Zr, and O represents oxygen. A) forming a molded body containing a main component or a raw material capable of obtaining the main component, a valence controlling agent, and a grain boundary insulating agent; and baking the molded body in a reducing atmosphere. A step of performing heat treatment in an oxidizing atmosphere, wherein at least one of the grain boundary insulating agents is zirconate, titanate, or silicate. Method.
【請求項2】 ABO3 (但し、AはSr、Ba、C
a、Mgの内のいずれか1種又は複数種の元素、BはT
i、Zrの内のいずれか1種又は複数種の元素、Oは酸
素を示す。)から成る主成分又は前記主成分を得ること
ができる原料と原子価制御剤とを含む成形体を形成する
工程と、 前記成形体を焼成する工程とを有する半導体磁器の製造
方法において、 前記原子価制御剤の少なくとも1種をジルコン酸塩又は
チタン酸塩又はケイ酸塩とすることを特徴とする半導体
磁器の製造方法。
2. ABO 3 (where A is Sr, Ba, C
a, one or more of Mg, B is T
O represents one or more of i and Zr, and O represents oxygen. A) forming a molded body containing a main component or a raw material from which the main component can be obtained, and a valence controlling agent; and baking the molded body. A method for producing a semiconductor porcelain, characterized in that at least one of the valence controlling agents is zirconate, titanate or silicate.
【請求項3】 ABO3 (但し、AはSr、Ba、C
a、Mgの内のいずれか1種又は複数種の元素、BはT
i、Zrの内のいずれか1種又は複数種の元素、Oは酸
素を示す。)から成る主成分又は前記主成分を得ること
ができる原料と原子価制御剤と、焼結助剤とを含む成形
体を形成する工程と、 前記成形体を焼成する工程とを有する半導体磁器の製造
方法において、 前記焼結助剤の少なくとも1種をジルコン酸塩又はチタ
ン酸塩又はケイ酸塩とすることを特徴とする半導体磁器
の製造方法。
3. ABO 3 (where A is Sr, Ba, C
a, one or more of Mg, B is T
O represents one or more of i and Zr, and O represents oxygen. A) a step of forming a molded body containing a main component or a raw material capable of obtaining the main component, a valence controlling agent, and a sintering aid; and baking the molded body. In the manufacturing method, at least one of the sintering aids is a zirconate, a titanate, or a silicate.
JP6282956A 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain Expired - Fee Related JP2934387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6282956A JP2934387B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6282956A JP2934387B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Publications (2)

Publication Number Publication Date
JPH08124781A JPH08124781A (en) 1996-05-17
JP2934387B2 true JP2934387B2 (en) 1999-08-16

Family

ID=17659305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6282956A Expired - Fee Related JP2934387B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Country Status (1)

Country Link
JP (1) JP2934387B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014057864A1 (en) * 2012-10-10 2016-09-05 日本碍子株式会社 Voltage nonlinear resistance element
KR20150079899A (en) * 2012-11-29 2015-07-08 엔지케이 인슐레이터 엘티디 Voltage non-linear resistance element
UA115716C2 (en) * 2016-04-18 2017-12-11 Генрік Генрікович Шумінський ELECTRICITY GENERATOR
KR102217289B1 (en) * 2018-11-22 2021-02-19 삼성전기주식회사 Capacitor component and method for manufacturing the same

Also Published As

Publication number Publication date
JPH08124781A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
JP3046436B2 (en) Ceramic capacitors
JP2001506425A (en) Ceramic multilayer capacitors
JP3671791B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
US3962146A (en) Ptc thermistor composition and method of making the same
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JP3325051B2 (en) Dielectric porcelain composition
JPH07309661A (en) Ceramic composition, sintering method, sintering ceramic body and multilayer capacitor
JPS623569B2 (en)
JP2000178068A (en) Piezoelectric porcelain composition
JP3125481B2 (en) Grain boundary insulating layer type semiconductor ceramic composition
JP2779740B2 (en) Dielectric porcelain and porcelain capacitor
KR890002696B1 (en) High dielectric constant ceramic material and method of manufacturing the same
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition
JP2002338332A (en) Sintering assistant
JP5206673B2 (en) Piezoelectric ceramic composition and piezoelectric component
JPS6328491B2 (en)
JPH0472368B2 (en)
JPH01274411A (en) Semiconductor porcelain substance
JPH0522667B2 (en)
JPH0426545A (en) Semiconductive porcelain and its manufacture
JPH02221153A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees