KR890002696B1 - High dielectric constant ceramic material and method of manufacturing the same - Google Patents

High dielectric constant ceramic material and method of manufacturing the same Download PDF

Info

Publication number
KR890002696B1
KR890002696B1 KR1019870009324A KR870009324A KR890002696B1 KR 890002696 B1 KR890002696 B1 KR 890002696B1 KR 1019870009324 A KR1019870009324 A KR 1019870009324A KR 870009324 A KR870009324 A KR 870009324A KR 890002696 B1 KR890002696 B1 KR 890002696B1
Authority
KR
South Korea
Prior art keywords
dielectric constant
high dielectric
batio
ceramic material
constant ceramic
Prior art date
Application number
KR1019870009324A
Other languages
Korean (ko)
Other versions
KR880002773A (en
Inventor
오사무 후루까와
세이이찌 요시다
모또마사 이마이
미쯔오 하라다
Original Assignee
가부시끼가이샤 도시바
아오이 죠이찌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼가이샤 도시바, 아오이 죠이찌 filed Critical 가부시끼가이샤 도시바
Publication of KR880002773A publication Critical patent/KR880002773A/en
Application granted granted Critical
Publication of KR890002696B1 publication Critical patent/KR890002696B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • C04B35/4684Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase containing lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates

Abstract

Ceramic material having high-dielectric constant comprises a compsn. of formula (1-x)(Pb1-a-bBaaSrb) [(Zn1/3Nb2/3)1-c-d(Mg1/3 Nb2/3)cTid O3XBaTiO3 in which a is 0.035, b is 0-0.35, a+b is 0.01-0.35, c is 0-0.9, d is 0-0.5, c+d is 0-1.0 and x is 0.3-0.65. Said ceramic material is useful in high performance, low cast ceramic capacitors.

Description

고유전율 세라믹 재료 및 그 제조방법High dielectric constant ceramic material and manufacturing method

제1도 미국 전자 공업회 규격에서 X7R 및 Y5U에 의해 규정된 커패시터의 온도 특성 및 의존성을 도시한 것.FIG. 1 shows the temperature characteristics and dependencies of a capacitor as defined by X7R and Y5U in the American Institute of Electronics Engineers specification.

제2도 유전 세라믹 재료로 만든 종래의 커패시터의 부분 절단한 사시도.2 is a partially cut perspective view of a conventional capacitor made of a dielectric ceramic material.

제3도 퍼로브스카이트 구조인 퍼로브스카이트 납 완화제로 된 제1화합물과 적어도 50wt%의 입자크기가 0.7-3㎛인 BaTiO3분말을 베이스로 한 제2화합물을 혼합한 본 발명의 고유전율 세라믹 재료의 특징을 나타내는 보조 설명도.Intrinsic properties of the present invention are a mixture of a first compound of a perovskite lead relaxant having a perovskite structure and a second compound based on a BaTiO 3 powder having a particle size of at least 50 wt% of 0.7-3 μm. An auxiliary explanatory diagram showing the characteristics of the electrified ceramic material.

본 발명은 고유전율(高誘電率)세라믹 재료 및 그 제조방법에 관한 것으로 특히 넓은 온도 범위에서 유전율에 따른 온도변화가 작은 고유전율 세라믹 재료 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high dielectric constant ceramic material and a method of manufacturing the same, and more particularly, to a high dielectric constant ceramic material having a small temperature change according to dielectric constant over a wide temperature range and a method of manufacturing the same.

유전체 재료로서 요구되는 특성으로서는 고유전율, 저유전율 대 온도 의존성, 저유전 손실(소산계수), 유전율에 따른 작은 바이어스 전압의존성, 높은 용량 저항 적(積)등을 들 수 있다. 특히 상당히 높은 용량 저항적(CR값)이 요구된다.The characteristics required for the dielectric material include high dielectric constant, low dielectric constant versus temperature dependence, low dielectric loss (dissipation coefficient), small bias voltage dependence according to dielectric constant, and high capacitance resistivity. Particularly high capacitance resistivity (CR value) is required.

예를들면 EIAJ(일본 전자기계 공업회)의 전자기기용 적층 세라믹 칩 커패시터 규격 RC-3698B에는 상온에서 500㏁·㎌이상으로 규정되어 있다.For example, the multilayer ceramic chip capacitor specification RC-3698B for electronic equipment of the EIAJ (Japan Electromechanical Industry Association) is specified to be 500 ㏁ · ㎌ or higher at room temperature.

또한 좀 더 심한 조건에서도 사용할 수 있도록 고온에서 예를들면 미국방성 규격 MILC-55681에는 125℃에서의 높은 CR적 값이 규정되어 있다.In addition, the US Department of Defense MILC-55681 specifies high CR values at 125 ° C at high temperatures for use in more severe conditions.

또한 넓은 온도범위에서 안정된 온도특성이 요구되는데 예를들면 제1도에 도시된 것처럼 EIA(미국 전자공업회)규격에는 X7R특성으로 -55℃~+125℃의 온도범위 내에서 ±15%이하의 용량 변화량이 규정되어 있다.In addition, stable temperature characteristics are required over a wide temperature range. For example, as shown in FIG. 1, the EIA standard has an X7R characteristic of ± 15% or less in the temperature range of -55 ° C to + 125 ° C. The amount of change is specified.

적층형 소자일 경우에는 내부 전극층과 유전체층은 제2도에 도시된 것과같이 동시의 일체적으로 소성되므로 전극 재료로서는 유전체 재료의 소성 온도에서도 안정한 것을 사용할 필요가 있다.In the case of the stacked element, since the internal electrode layer and the dielectric layer are simultaneously fired integrally as shown in FIG. 2, it is necessary to use an electrode material that is stable even at the firing temperature of the dielectric material.

따라서 유전체 재료의 소성온도가 높으면 백금(Pt), 팔라듐(Pd) 등 비싼 재료를 이용해야 하므로 내부 전극 재료로서 은(Ag) 등 값이 싼 재료를 사용할 수 있도록 1100℃이하 정도의 저온에서도 소성할 수 있게 하는 것이 요구된다.Therefore, if the firing temperature of the dielectric material is high, expensive materials such as platinum (Pt) and palladium (Pd) should be used. Therefore, it may be fired even at a low temperature of about 1100 ° C. or less so that a cheap material such as silver (Ag) can be used as the internal electrode material. To be able to do so.

종래로부터 주지되어 있는 고유전율 세라믹 재료로서 티탄산 바륨(BaTiO3)을 베이스로 하여 여기에 주석산염, 지르코늄 산염, 티타산염 등을 고용(固溶)한 것이 있다.Conventionally known high dielectric constant ceramic materials include barium titanate (BaTiO 3 ) as a base and a solution of stannate, zirconium acid salt, titanate salt and the like.

그러나 BaTiO3을 베이스로 한 재료의 소성온도는 1300-1400℃정도로 고온이며 내부 전극 재료로서 필연적으로 백금, 팔라듐 등과같은 고온에서 견딜 수 있는 값비싼 재료를 이용해야 하므로 원가가 높아지는 원인이 된다.However, the firing temperature of BaTiO 3 -based material is high, about 1300-1400 ° C, and as an internal electrode material, an expensive material such as platinum, palladium, etc. must be used, which causes cost increase.

이러한 티탄산 바륨게의 문제점을 해소하기 위하여 각종 조성물의 연구가 진행되고 있다.In order to solve such a problem of barium titanate, studies of various compositions are underway.

예를들면 철 니오브산 납을 주체로 한 세라믹 유전 조성물(일본 특개소 제57-57204호 공보), 마그네슘 니오브산 납을 주체로 한 것(특개소 55-51759호 공보), 마그제슘 텅스텐산 납을 주체로 한것(특개소 55-144609) 및 마그네슘/철/텅스텐산 납을 주체로 한것(특개소 58-217462)등이 있다.For example, ceramic dielectric compositions mainly composed of iron lead niobate (Japanese Patent Application Laid-Open No. 57-57204), magnesium lead niobate mainly (Japanese Patent Application Laid-Open No. 55-51759), and lead magnesium tungstate Mainly consisting of (special place 55-144609) and magnesium / iron / tungstate lead (special place 58-217462).

그러나 유전율이 높고 -55~±125℃정도의 넓은 온도 범위에서도 온도 의존성이 적고 절연저항이 높은 즉 여러가지 전기적 특성이 우수하고 저온에서 소결이 가능한 고유전율 세라믹 재료를 얻을 수 없었다.However, it was not possible to obtain a high dielectric constant ceramic material with a high dielectric constant, low temperature dependence, high insulation resistance, excellent electrical properties, and sintering at low temperature even in a wide temperature range of about -55 to ± 125 ° C.

한편 유전율 온도 특성이 다른 조성물들을 혼합하여 균일한 온도 특성을 얻을 수 있는 것도 연구되고 있다.On the other hand, it is also studied that the uniform temperature characteristics can be obtained by mixing compositions having different dielectric constant temperature characteristics.

예를들면 일본 특개소 제59-203759호 공보에는 Pb(Mg1/3Nb2/3)O3-Pb(Mn1/2W1/2)O3를 베이스로 한 재료와 Pb(Mg1/3Nb2/3)O3-PbTiO3-Pb(Fe2/3W1/3)O3를 베이스로 한 재료의 혼합물이 기술되어 있다.For example, Japanese Patent Laid-Open No. 59-203759 discloses a material based on Pb (Mg 1/3 Nb 2/3 ) O 3 -Pb (Mn 1/2 W 1/2 ) O 3 and Pb (Mg 1 A mixture of materials based on / 3 Nb 2/3 ) O 3 -PbTiO 3 -Pb (Fe 2/3 W 1/3 ) O 3 is described.

그러나 이러한 혼합물은 유전율 온도계수(T.C.C)가 크고 온도특성이 부적당하다.However, these mixtures have a high dielectric constant (T.C.C) and inadequate temperature characteristics.

또한 일본 응용물리 저널 vol.24(1985) 추록(supplement)24-2의 427-429페이지에는 Pb(Fe1/2Nb1/2)O3와 Pb(Fe2/3W1/3)O3의 혼합물이 기술되어 있다.Also, pages 427-429 of the Japanese Journal of Applied Physics vol.24 (1985) supplement 24-2 contain Pb (Fe 1/2 Nb 1/2 ) O 3 and Pb (Fe 2/3 W 1/3 ) O. Mixtures of 3 are described.

그러나 커패시터 재료로서 중요한 CR적이 고려되지 않고, T.C.C값이 높고 온도특성이 부적당하다.However, CR is not considered important as a capacitor material, and the T.C.C value is high and the temperature characteristic is inadequate.

본 발명은 이러한 문제점들을 염두에 두고 이루어진 것으로서 유전율과 절연저항이 높고, 온도 의존성이 작고, 저온에서 소결할 수 있고 고성능, 저가의 세라믹 커패시터용으로 적합한 고유전율 세라믹 재료를 제공하는 것을 주목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made with these problems in mind, and its main object is to provide a high dielectric constant ceramic material having high dielectric constant and insulation resistance, low temperature dependence, low temperature sintering, and suitable for high performance, low cost ceramic capacitors.

진술한 목적을 이루기 위하여 본 발명에 따른 고유전율 세라믹 재료는 다음식으로 표현되는 세라믹 조성물로 이루어진다.In order to achieve the stated object, the high dielectric constant ceramic material according to the present invention consists of a ceramic composition represented by the following formula.

(1-x) (Pb1-a-bBaaSrb)(1-x) (Pb 1-ab Ba a Sr b )

{(Zn1/3Nb2/3)1-c-d(Mg1/3Nb2/3)cTid}O3.xBaTiO3 {(Zn 1/3 Nb 2/3) 1 -cd (Mg 1/3 Nb 2/3) c Ti d} O 3. xBaTiO 3

0

Figure kpo00001
a
Figure kpo00002
0.350
Figure kpo00001
a
Figure kpo00002
0.35

0

Figure kpo00003
b
Figure kpo00004
0.350
Figure kpo00003
b
Figure kpo00004
0.35

0.01

Figure kpo00005
a+b
Figure kpo00006
0.350.01
Figure kpo00005
a + b
Figure kpo00006
0.35

0

Figure kpo00007
c
Figure kpo00008
0.90
Figure kpo00007
c
Figure kpo00008
0.9

0 < d

Figure kpo00009
0.50 <d
Figure kpo00009
0.5

0 < c+d < 1.00 <c + d <1.0

0.3

Figure kpo00010
x
Figure kpo00011
0.650.3
Figure kpo00010
x
Figure kpo00011
0.65

진술한 세라믹 조성물을 제조하기위해서는 원료로 사용되는 BaTiO3분말중적어도 50wt%이상의 입자크기가 0.7-3㎛라야 한다.In order to prepare the above-mentioned ceramic composition, the particle size of at least 50wt% of BaTiO 3 powder used as raw material should be 0.7-3㎛.

또한 BaTiO3중 Ti의 일부를 다음식으로 표현되도록 Zr로 치환할 수 있다.In addition, a part of Ti in BaTiO 3 may be substituted with Zr to be represented by the following formula.

(1-x) (Pb1-a-bBaaSrb)(1-x) (Pb 1-ab Ba a Sr b )

{(Zn1/3Nb2/3)1-c-d(Mg1/3Nb2/3)cTid}O3.xBa(Ti1-eZre)O3 {(Zn 1/3 Nb 2/3) 1 -cd (Mg 1/3 Nb 2/3) c Ti d} O 3. xBa (Ti 1-e Zr e) O 3

여기서here

0

Figure kpo00012
a
Figure kpo00013
0.350
Figure kpo00012
a
Figure kpo00013
0.35

0

Figure kpo00014
b
Figure kpo00015
0.350
Figure kpo00014
b
Figure kpo00015
0.35

0.01

Figure kpo00016
a+b
Figure kpo00017
0.350.01
Figure kpo00016
a + b
Figure kpo00017
0.35

0

Figure kpo00018
c
Figure kpo00019
0.90
Figure kpo00018
c
Figure kpo00019
0.9

0 < d

Figure kpo00020
0.50 <d
Figure kpo00020
0.5

0 < e

Figure kpo00021
0.060 <e
Figure kpo00021
0.06

0.3

Figure kpo00022
x
Figure kpo00023
0.650.3
Figure kpo00022
x
Figure kpo00023
0.65

0 < c+d < 1.00 <c + d <1.0

혹은 BaTiO3중 Ti의 일부를 Sn으로 치환할 수도 있고, 또한 BaTiO3중 Ba의 일부를 Sr·Ca또는 Ce로 치환할 수도 있다.Alternatively, a part of Ti in BaTiO 3 may be replaced by Sn, and a part of Ba in BaTiO 3 may be replaced by Sr · Ca or Ce.

본 발명의 다른 목적은 전술한 조성물로 만들어진 고유전율 세라믹 재료의 제조방법을 제공하는데 있다.Another object of the present invention is to provide a method for producing a high dielectric constant ceramic material made of the above-described composition.

전술한 목적을 이루기 위해서 고유전율 세라믹 재료의 제조방법은 다음 단계들로 이루어진다. : (a) BaTiO3가 형성되도록 하는 비율로 BaCO3와 TiO2의 무게를 달고, (b) 무게를 단 BaO3와 TiO2를 1000-1350℃에서 혼합하여 하소(

Figure kpo00024
)시키고, (c) 하소된 BaTiO3를 적어도 50wt%의 BaTiO3의 입자크기가 0.7-3㎛가 되게 분쇄하여 BaTiO3를 베이스로 한 제1화합물을 얻고, (d) 소정의 혼합비율로 Pb·Ba·Sr·Zr·Nb·Mg 및 Ti산화물의 무게를 달고, (e) 무게를 단 산화물을 700-900℃에서 혼합하여 하소시키고, (f) 하소된 산화물을 입자크기가 0.7㎛보다 작은 분말로 분쇄하여 퀴리점이 125℃이하인 퍼로브스카이트(perovskite)구조의 퍼로브스카이트 납 완화제로 된 제2화합물을 얻고, (g) 소정의 비율로 제1 및 제2화합물의 무게를 달고, (h) 무게를 단 제1 및 제2화합물을 혼합하고, (i) 혼합된 화합물을 소정의 형태로 성형하고, (j) 성형된 조성물을 1000-1250℃의 저온에서 소결시킨다.In order to achieve the above object, a method of manufacturing a high dielectric constant ceramic material consists of the following steps. (a) Weigh BaCO 3 and TiO 2 at a rate such that BaTiO 3 is formed, and (b) calcinate by mixing BaO 3 and TiO 2 with weight at 1000-1350 ° C.
Figure kpo00024
(C) The calcined BaTiO 3 is pulverized to have a particle size of at least 50 wt% of BaTiO 3 of 0.7-3 μm to obtain a first compound based on BaTiO 3 , and (d) Pb at a predetermined mixing ratio. Weighs Ba, Sr, Zr, Nb, Mg, and Ti oxides, (e) calcined by mixing the weighed oxide at 700-900 ° C., and (f) calcined oxide is less than 0.7 μm in particle size. Grinding to powder to obtain a second compound of a perovskite-lead perovskite structure having a Curie point of 125 ° C. or less, (g) weighing the first and second compounds in a predetermined ratio, (h) the weighed first and second compounds are mixed, (i) the mixed compound is molded into the desired form, and (j) the molded composition is sintered at a low temperature of 1000-1250 ° C.

제3도에서 Ba(Ti1-eZre)O3로 표현되는 제1화합물은 우측 그래프에 도시된 것처럼 높은 유전율, 높은 소결온도 및 큰 유전율 온도 의존성을 제공한다.The first compound represented by Ba (Ti 1-e Zr e ) O 3 in FIG. 3 provides high dielectric constant, high sintering temperature and large dielectric constant temperature dependence as shown in the right graph.

(Pb1-a-bBaaSrb){(Zn1/3Nb2/3)1-c-d(Mg1/3Nb2/3)cTid}O3로 표현되는 제2화합물은 좌측 그래프에 도시된 것처럼 고유전율, 고 절연저항 및 낮은 소결온도와 큰 유전율 온도 의존성을 제공한다.The second compound represented by (Pb 1-ab Ba a Sr b ) {(Zn 1/3 Nb 2/3 ) 1-cd (Mg 1/3 Nb 2/3 ) c Ti d } O 3 is shown in the left graph. As shown, it provides high dielectric constant, high insulation resistance, low sintering temperature and large dielectric constant temperature dependence.

이때 제1화합물의 입자크기는 0.7-3㎛이라야 한다.At this time, the particle size of the first compound should be 0.7-3㎛.

이들 두 화합물이 혼합비율(x)로 (제1화합물)x(제2화합물)1-x로서 혼합되어 동시에 소결하면 중앙의 그래프에 도시된 것처럼 높은 유전율(K), 높은 CR값, 낮은 소결온도 및 균일한 유전율 온도 의존성을 갖는 혼합된 소결체를 얻을 수 있다.When these two compounds are mixed at the mixing ratio (x) as (first compound) x (second compound) 1-x and sintered at the same time, high dielectric constant (K), high CR value, and low sintering temperature as shown in the center graph And a mixed sintered body having a uniform dielectric constant temperature dependency.

또한 작은 온도 의존성이 요구되는 곳에서는 혼합물의 비를 0.5<x

Figure kpo00025
0.65로 하는 것이 좋고, 한편 낮은 소결온도가 요구되는 곳에서는 혼합물의 비를 0.3
Figure kpo00026
x<0.5로 하는 것이 좋다.Also, where small temperature dependence is required, the ratio of the mixture is 0.5 <x
Figure kpo00025
It is recommended to set the ratio to 0.65, while the ratio of the mixture is 0.3 when low sintering temperature is required.
Figure kpo00026
x <0.5 is good.

본 발명의 재료를 좀 더 상세히 설명하면 다음과 같다.The material of the present invention is described in more detail as follows.

일반적으로 다음 단계들을 따르면 고유전율 세라믹체를 얻을 수 있다 : Pb·Ba·Sr·Zn·Mg·Nb·Ti등 (원료)의 산화물, 연소시키면 산화물로 바뀌는 카보네이트 또는 옥살레이트 같은 염, 연소시키면 산화물로 바뀌는 수산화물 또는 유기 화합물을 소정의 비율로 천칭으로 무게를 달고, 충분히 혼합하고, 하소시키고 및 원료 분말로 분쇄한다.In general, the following steps can be used to obtain high-k dielectric ceramics: oxides of (raw material) such as Pb, Ba, Sr, Zn, Mg, Nb, Ti, salts such as carbonates or oxalates that turn into oxides when burned, and oxides when burned The hydroxide or organic compound which is converted into is weighed by weight in a predetermined ratio, mixed well, calcined and ground to a raw powder.

분발을 원하는 형태로 성형하고 소결시켜서 고유전율 세라믹스를 얻는다.The powder is molded into a desired shape and sintered to obtain high dielectric constant ceramics.

전술한 일반적인 방법 대신에 본 발명에서는 적어도 원료 분말로서 BaTiO3분말과 다른 화합물을 포함하는 원료를 소결전에 혼합한다.Instead of the general method described above, in the present invention, a raw material containing at least BaTiO 3 powder and other compounds as raw powder is mixed before sintering.

진술한 바와같이 제조된 고유전율 세라믹 조성물은 유전율의 온도 의존성을 줄일 수 있다.As stated, the high dielectric constant ceramic compositions prepared can reduce the temperature dependence of the dielectric constant.

좀 더 상세히 하면 본 발명의 제조방법은 다음 단계들로 이루어진다 : 출발 재료들로서 BaTiO3를 구성하는 Ba와 Ti의 산화물, 연소시켜 산화물로 바꿀 수 있는 카보네이트 또는 옥살레이트 같은 염, 수산화물 또는 유기 화합물을 화학실 BaTiO3를 만족하도록 미리 준비하고 1000-1350℃에서 하소시킨다.In more detail, the manufacturing method of the present invention consists of the following steps: as a starting material, an oxide of Ba and Ti constituting BaTiO 3 , a salt, a hydroxide or an organic compound such as carbonate or oxalate which can be converted into an oxide by burning in a chemical chamber Prepare in advance to satisfy BaTiO 3 and calcinate at 1000-1350 ° C.

이 단계에서는 화합물의 화학 양론 비가 다소 달라도 상관없다.The stoichiometry of the compounds may be somewhat different at this stage.

하소된 분말과 제2출발 재료들의 무게를 소정의 비율로 달고, 충분히 혼합하여 분쇄한다.The calcined powder and the weight of the second starting materials are weighed in a predetermined ratio, mixed well and ground.

이 과정에서는 BaTiO3분말이 과도하게 분쇄되지 않도록 수지를 코팅한 볼을 사용하는 것이 좋다.In this process, it is recommended to use a ball coated with a resin so that the BaTiO 3 powder is not excessively crushed.

또한 Pb(Ba·Ti를 포함할 수 있다)를 주체로 한 제2출발 재료들을 혼합하고 그들을 700-900℃에서 분리 하소시킨다.In addition, the second starting materials, mainly Pb (which may include BaTi), are mixed and calcined at 700-900 ° C. for separation.

또한 BaTiO3로 구성된 분말내에 약간의 다른 원소들의 포함되더라도 상관없다.It is also possible to include some other elements in the powder composed of BaTiO 3 .

분말을 충분히 혼합하고 원하는 형상으로 성형하여 고유전율 세라믹 조성물로 소결한다.The powder is sufficiently mixed, molded into the desired shape and sintered into a high dielectric constant ceramic composition.

또한 하소된 분말과 제2출발 재료들을 혼합하고 분쇄하는데 있어서 불순물이 오염되지 않도록 경도 및 강도가 높은 일부 안정화 된 지르코니아볼 같은 것을 사용하는 것이 좋다.It is also advisable to use some stabilized zirconia balls of high hardness and strength to avoid contamination of the impurities in mixing and grinding the calcined powder and the second starting material.

또한 BaTiO3를 주체를 한 제1화합물과, Pb를 주체로 한 퍼로브스카이트 구조인 제2화합물을 혼합할때 BaTiO3가 과도하게 분쇄되지 않도록 수지가 코팅된 볼을 사용하는 것이 바람직하다.In addition, it is preferable to use a perovskite structure of the second compound with a resin so as not BaTiO 3 is excessively pulverized when mixed coating view of BaTiO 3 to the one the subject a first compound, Pb as the main component.

이렇게 하여 얻어진 세라믹 조성물은 주성분이 BaTiO3인 제1화합물과 주성분이 Pb인 퍼로브스카이트구조의 제2화합물로 된 혼합 소결체이다.The ceramic composition thus obtained is a mixed sintered body comprising a first compound having a main component BaTiO 3 and a second compound having a perovskite structure whose main component is Pb.

BaTiO3로 된 제1화합물은 퀴리점이 약 125℃이고, Pb를 주성분으로 한 제2화합물에 따른 증배 효과로 인하여 우수한 온도 특성 또는 작은 온도 의존성을 가진 세라믹 조성물을 얻을 수 있다.The first compound of BaTiO 3 has a Curie point of about 125 ° C., and a ceramic composition having excellent temperature characteristics or small temperature dependency can be obtained due to the multiplication effect according to the second compound containing Pb as a main component.

또한 본 발명의 세라믹 조성물은 높은 유전율과 CR적을 가지므로 커패시터에 사용하기에 적합하다.In addition, the ceramic composition of the present invention has a high dielectric constant and CR product, and thus is suitable for use in a capacitor.

BaTiO3분말이 과도하게 미분쇄되면 소결시에 제1 및 제2화합물들이 과도하게 확산되어서 온도 특성을 향상시키는데 장애가 된다.If the BaTiO 3 powder is excessively pulverized, the first and second compounds are excessively diffused during sintering, which is an obstacle to improving the temperature characteristics.

지나치게 굵게 되면 소결체에 기공 균열이 과도하게 증가하여서 적층 커패시터를 만들때 불균질한 조성으로 인해서 CR적이 낮아지고, 기계적 강도가 낮아지고, 생산수율이 낮아지게 된다.When too thick, the pore crack increases excessively in the sintered body, and when the multilayer capacitor is made, the CR area is lowered, the mechanical strength is lowered, and the production yield is lowered due to the heterogeneous composition.

그러므로, 50wt%이상의 BaTiO3분말의 입자크기가 0.7-3㎛, 바림직하기로는 0.8-2㎛인 것이 좋다.Therefore, the particle size of BaTiO 3 powder of 50 wt% or more is preferably 0.7-3 mu m, preferably 0.8-2 mu m.

입자크기를 조절하는 방법은 다음과 같다 : 예를들어 입자크기가 클때는 볼의 본쇄조건을 변형시키고, 입자크기가 작을때는 하소 또는 전(前)연소 조건을 조정한다.The method of controlling the particle size is as follows: For example, when the particle size is large, the main chain condition of the ball is modified, and when the particle size is small, the calcination or precombustion condition is adjusted.

또한 제2화합물의 퀴리점을 BaTiO3의 온도 특성을 고려하여 125℃이하로 하고, 제1 및 제2화합물 들의 상호 반응을 고려하여 실온에서 80℃까지로 한다.In addition, the Curie point of the second compound is set to 125 ° C or less in consideration of the temperature characteristic of BaTiO 3 , and from room temperature to 80 ° C in consideration of the mutual reaction of the first and second compounds.

또한 소결온도를 더 낮출려면(1100℃이하) 상온보다 낮은 퀴리점을 가진 제2화합물을 사용하는 것이 좋다.In addition, to lower the sintering temperature (below 1100 ° C.), it is preferable to use a second compound having a Curie point lower than room temperature.

또한 퀴리점을 바꿀려면 BaTiO3분말내에서 Ba일부분을 Sr·Ca 또는 Ce로 또는 Ti일부분을 Zr 또는 Sn으로 치환할 수 있다.In addition, in order to change the Curie point, the Ba part may be replaced by Sr · Ca or Ce or the Ti part may be replaced by Zr or Sn in the BaTiO 3 powder.

본 발명의 조성물을 설명하면 다음과 같다.The composition of the present invention will be described as follows.

조성물은 다음 일반식으로 나타낼 수 있다.The composition can be represented by the following general formula.

(1-x) (Pb1-a-bBaaSrb)(1-x) (Pb 1-ab Ba a Sr b )

{(Zn1/3Nb2/3)1-c-d(Mg1/3Nb2/3)cTid}O3.xBaTiO3 {(Zn 1/3 Nb 2/3) 1 -cd (Mg 1/3 Nb 2/3) c Ti d} O 3. xBaTiO 3

상기 식에서 Pb를 Ba 또는 Sr로 소량 치환하여 퍼로브스카이트 구조를 이룰 수 있다.In the above formula, a small amount of Pb may be replaced with Ba or Sr to form a perovskite structure.

그러나 a+b가 0.01이하이면 퍼로브스카이트 구조가 쉽게 형성되지 않으므로 유전율이 낮아진다.However, when a + b is less than 0.01, the perovskite structure is not easily formed, and thus the dielectric constant is low.

c+d가 전술한 범위 밖에 있다면 유전율의 온도 의존성은 증가한다.If c + d is outside the above-mentioned range, the temperature dependency of permittivity increases.

또한 (Zn1/3Nb2/3) 화합물의 범위에 있어서 c+d

Figure kpo00027
0.9가 바람직하다.And c + d in the range of (Zn 1/3 Nb 2/3 ) compounds
Figure kpo00027
0.9 is preferred.

x가 0.65를 초과하면 소결온도가 올라가고 0.3이하이면 유전율의 온도 의존성이 증가한다.If x exceeds 0.65, the sintering temperature rises and below 0.3 increases the temperature dependence of the dielectric constant.

특히 온도 의존성이 크면 0.5<x

Figure kpo00028
0.65가 바람직하고, 소결온도가 높으면 0.3
Figure kpo00029
x
Figure kpo00030
0.5가 바람직하다.0.5 <x especially if the temperature dependence is large
Figure kpo00028
0.65 is preferred and 0.3 if the sintering temperature is high
Figure kpo00029
x
Figure kpo00030
0.5 is preferred.

a, b, c, d, 및 x가 전술한 범위들로 고정 된다면 예를들면 소결온도가 1150℃만큼 낮으면 유전율이 크고, 넓은 온도범위에서 유전율 온도 의존성이 작고, 절연저항이 높은 세라믹 조성물을 얻을 수 있다.If a, b, c, d, and x are fixed in the above-described ranges, for example, when the sintering temperature is as low as 1150 ° C., the ceramic composition has a high dielectric constant, a low dielectric constant temperature dependence and a high insulation resistance in a wide temperature range. You can get it.

본 발명의 조성물이 주로 다음식으로 구성될지라도Although the composition of the present invention mainly consists of

(1-x) (Pb1-a-bBaaSrb)(1-x) (Pb 1-ab Ba a Sr b )

{(Zn1/3Nb2/3)1-c-d(Mg1/3Nb2/3)cTid}O3.xBaTiO3 {(Zn 1/3 Nb 2/3) 1 -cd (Mg 1/3 Nb 2/3) c Ti d} O 3. xBaTiO 3

전술한 화학양론적 구성비들은 다소 달라도 상관없다.The stoichiometric components mentioned above may be somewhat different.

전술한 조성물을 산화물의 항으로 환산하면 다음과 같다.When the above-mentioned composition is converted into terms of oxide, it is as follows.

PbO 26.49 내지 53.33 wt%PbO 26.49 to 53.33 wt%

BaO 15.01 내지 39.48 wt%BaO 15.01 to 39.48 wt%

SrO 0.00 내지 9.71 wt%SrO 0.00-9.71 wt%

ZnO 0.49 내지 6.86 wt%ZnO 0.49-6.86 wt%

MgO 0.00 내지 3.14 wt%MgO 0.00-3.14 wt%

Nb2O58.00 내지 23.03 wt%Nb 2 O 5 8.00 to 23.03 wt%

TiO27.81 내지 23.64 wt%TiO 2 7.81-23.64 wt%

바람직하기로는,Preferably,

PbO 26.49 내지 53.33 wt%PbO 26.49 to 53.33 wt%

BaO 15.01 내지 39.07 wt%BaO 15.01 to 39.07 wt%

SrO 0.00 내지 9.57 wt%SrO 0.00-9.57 wt%

ZnO 0.49 내지 6.86 wt%ZnO 0.49-6.86 wt%

MgO 0.00 내지 3.14 wt%MgO 0.00-3.14 wt%

Nb2O58.00 내지 23.03 wt%Nb 2 O 5 8.00 to 23.03 wt%

TiO27.81 내지 23.39 wt%TiO 2 7.81-23.39 wt%

이들 가운데서 퀴리점 근방에서 유전율이 작게 떨어지도록 Ti의 일부를 Zr로 치환시키는 것이 좋다.Among them, it is preferable to replace a part of Ti with Zr so that the dielectric constant decreases near the Curie point.

그러므로 Ba(Ti1-eZre)로 BaTiO3대신에 사용할 수 있다.Therefore, Ba (Ti 1-e Zr e ) can be used in place of BaTiO 3 .

그러나 이 경우 Zr의 치환량은 6mo1%(0

Figure kpo00031
e
Figure kpo00032
0.06)정도이다.However, in this case, the substitution amount of Zr is 6mo1% (0
Figure kpo00031
e
Figure kpo00032
0.06).

이것은 6mo1%를 넘으면 혼합 소결체로 구성된 세라믹스가 성형될때 고온에서 T.C.C가 증가하기 때문이다.This is because if it exceeds 6mo1%, T.C.C increases at high temperature when the ceramics composed of the mixed sintered body are molded.

또한 전술한 조성물을 산화물로 환산하면 다음과 같다.In addition, the above-mentioned composition is converted into an oxide as follows.

PbO 19.28 내지 40.35 wt%PbO 19.28-40.35 wt%

BaO 26.73 내지 46.73 wt%BaO 26.73-46.73 wt%

SrO 0.00 내지 7.15 wt%SrO 0.00-7.15 wt%

ZnO 0.36 내지 5.11 wt%ZnO 0.36-5.11 wt%

MgO 0.00 내지 2.33 wt%MgO 0.00-2.33 wt%

Nb2O55.84 내지 17.11 wt%Nb 2 O 5 5.84-17.11 wt%

TiO213.08 내지 26.64 wt%TiO 2 13.08 to 26.64 wt%

ZrO20.00 내지 1.93 wt%ZrO 2 0.00-1.93 wt%

본 발명의 효과를 손상시키지 않는 범위내에서 불순물과 첨가물등을 함유해도 상관없다.You may contain an impurity, an additive, etc. within the range which does not impair the effect of this invention.

그러나 CaO, La2O3, MnO2, CoO, NiO, Sb2O3, ZrO2및 SiO2의 전이원소, 란탄족 원소 같은 첨가물의 양은 기껏해야 1wt%이다.However, the amount of additives such as CaO, La 2 O 3 , MnO 2 , CoO, NiO, Sb 2 O 3 , ZrO 2 and SiO 2 , such as transition elements and lanthanides, is at most 1 wt%.

적층형 구조로 제조하는데 있어서, 바인더(binder), 용매등을 전술한 원료 분말 또는 혼합 및 분쇄된 분말에 혼합하여 슬러리(slurry)를 얻는다.In manufacturing a laminated structure, a binder, a solvent, and the like are mixed with the above-described raw powder or mixed and pulverized powder to obtain a slurry.

슬러리를 그린 시이트(green sheet)가 되게 성형하고, 내부 전극 페이스트(paste)를 그린 시이트에 인쇄하고, 소정의 시이트들을 적층하고 가압하여 소결한다.The slurry is molded into a green sheet, the internal electrode paste is printed on the green sheet, and predetermined sheets are laminated and pressed to sinter.

소결과정에 있어서 본 발명의 유전 재료는 저온에서 소결시킬 수 있으므로 내부 전극 재료로서 Ag를 주체로 한 저가의 재료를 사용할 수 있다.In the sintering process, since the dielectric material of the present invention can be sintered at low temperature, a low-cost material mainly composed of Ag can be used as the internal electrode material.

게다가 유전재료를 저온에서 소결시킬 수 있으므로 인쇄 회로 기판상에 인쇄하고 굽는 후말 필름 유전 페이스트 재료로서 본 재료를 효과적으로 사용할 수 있다.In addition, since the dielectric material can be sintered at low temperature, the present material can be effectively used as a film dielectric paste material for printing and baking on a printed circuit board.

본 발명의 세라믹 조성물은 높은 유전율과 작은 온도 계수, 고온에서도 큰 CR적을 가지므로 고온에서의 신뢰성이 양호하다.Since the ceramic composition of the present invention has a high dielectric constant, a small temperature coefficient, and a large CR product even at a high temperature, reliability at a high temperature is good.

또한 유전율에 따른 바이어스 전압 의존성이 2kV/㎜에서 10℃이하로서 낮으므로 양호하다.In addition, the bias voltage dependence on dielectric constant is good, as it is low at 10 ° C. or less at 2 kV / mm.

그러므로 본 발명의 재료는 유전손실(소산 인자(DF) 또는 tan

Figure kpo00033
)이 매우 적으므로 고압용, 교류 회로용 및 고주파 회로용 유전 재료로서 사용할 수 있다.Therefore, the material of the present invention has a dielectric loss (dissipation factor (DF) or tan
Figure kpo00033
) Is very small, and can be used as dielectric material for high voltage, alternating current circuit and high frequency circuit.

유전율의 온도 특성이 우수하므로 전기적 왜형의 소자에 적용하면 변위에 대해 상대적으로 온도 변화가 작은 소자를 얻을 수 있다.Since the temperature characteristic of the dielectric constant is excellent, when applied to the device of the electrical distortion, it is possible to obtain a device having a small temperature change relative to the displacement.

또한 입자크기를 0.7-3㎛내로 균일하게 배열할 수 있으므로 브레이크 다운(break down)전압이 높다.In addition, since the particle size can be uniformly arranged within 0.7-3 占 퐉, the breakdown voltage is high.

재료의 기계적 강도 또한 전술한 전기특성 만큼 우수하다.The mechanical strength of the material is also as good as the electrical properties described above.

[실시예]EXAMPLE

본 발명의 고유전율 재료의 실시예를 설명하면 다음과 같다.An embodiment of the high dielectric constant material of the present invention will be described below.

BaTiO3를 구성하기 위해 출발 원료인 BaCO3와 TiO2를 천칭으로 무게를 달고, 볼 밀(ball mill)로 혼합하여 1000-1350℃에서 하소하고, 볼밀로 분쇄하여 화학식 BaTiO3를 형성한다.In order to form BaTiO 3 , starting materials BaCO 3 and TiO 2 were weighed by a balance, mixed in a ball mill, calcined at 1000-1350 ° C., and pulverized with a ball mill to form a chemical formula BaTiO 3 .

이 경우에 얻어진 BaTiO3분말의 입자크기를 볼밀의 분쇄조건을 변경시켜서 조절하였다.In this case, the particle size of the obtained BaTiO 3 powder was adjusted by changing the grinding conditions of the ball mill.

또한 일본 공업회 규격 R-5201-1964의 시험 방법에 기술된 블레인(Blaine) 공기투과 기구를 사용하여 블레인 방법에 따라서 평균 입자 크기를 측정했다.In addition, the average particle size was measured according to the Blaine method using the Blaine air permeation apparatus described in the test method of Japanese Industrial Standards R-5201-1964.

한편 BaTiO3와는 달리 Pb·Sr·Zn·Ti·Mg등의 산화물 또는 수산화물 또는 카보네이트를다른 볼밀로 혼합하고 700-900℃에서 하소하여 분쇄하였다.On the other hand, unlike BaTiO 3 , oxides, hydroxides, or carbonates such as Pb.Sr.Zn.Ti.Mg were mixed in another ball mill and calcined at 700-900 ° C.

계속해서 이들 하소체를 천칭으로 무게를 달아서 소정의 비율로 하여 포트 밀(pot mill)내에서 혼합하였다.Subsequently, these calcined bodies were weighed in balance and mixed in a pot mill at a predetermined ratio.

건조시킨 후 바인더를 혼합하여 그래뉼(granule)을 형성하고 재료를 가압하여 지름 17㎜, 두께 2㎜의 원판형 소자로 성형했다.After drying, the binder was mixed to form a granule, and the material was pressed to form a disc-shaped element having a diameter of 17 mm and a thickness of 2 mm.

이 소자를 공기중에서 1000-1250℃로 2시간동안 소결시켰다(실시예 1-6과 비교예 1-2는1000-1100℃에서 소결시키고 반면 실시예 7-15와 비교예 3-5는 1200-1250℃에서 소결시켰다).The device was sintered in air at 1000-1250 ° C. for 2 hours (Examples 1-6 and Comparative Examples 1-2 were sintered at 1000-1100 ° C., while Examples 7-15 and Comparative Examples 3-5 were 1200- Sintered at 1250 ° C.).

Ag전극을 양 주면상에 구워서 여러가지 특성을 측정했다.Various characteristics were measured by baking Ag electrodes on both main surfaces.

유전손실(소산인자)와 용량을 1kHz·1 Vrms 및 25℃에서 LCR 미터로 측정했다.Dielectric loss (dissipation factor) and capacity were measured with an LCR meter at 1 kHz · 1 Vrms and 25 ° C.

이들 값을 기준으로 하여 유전율을 계산하였다. 또한100 V의 전압을 2분동안 가한 후에 절연 저항 미터로 측정한 값을 기준으로 절연저항을 계산했다.The permittivity was calculated based on these values. The insulation resistance was calculated based on the value measured with an insulation resistance meter after applying a voltage of 100 V for 2 minutes.

또한 유전율의 온도특성(의존성)을 25℃를 기준으로 -55~+125℃의 온도범위 내에서의 최대 변화율로서 나타냈다.Moreover, the temperature characteristic (dependency) of dielectric constant was shown as the maximum rate of change in the temperature range of -55- + 125 degreeC with respect to 25 degreeC.

용량 저항력(CR적)은 25와 125℃에서 (상대유전율)x(절연저항)x(진공에서의 유전율)을 기준으로 하여 얻어졌다.Capacity resistivity (CR) was obtained based on (relative permittivity) x (insulation resistance) x (dielectric constant in vacuum) at 25 and 125 ° C.

실리콘 오일 내에서 절연저항을 측정하여 공기내에서 유기되는 습윤효과를 없앴다.The insulation resistance in the silicone oil was measured to eliminate the wetting effect in the air.

다음식으로 표현되는 조성물을 갖는 실시예 1-5와 7-12의 시험결과를 표 1에 나타낸다.Table 1 shows the test results of Examples 1-5 and 7-12 having the composition represented by the following formula.

(1-x) (Pb1-a-bBaaSrb)(1-x) (Pb 1-ab Ba a Sr b )

{(Zn1/3Nb2/3)1-c-d(Mg1/3Nb2/3)cTid}O3·xBaTiO3또는 {(Zn 1/3 Nb 2/3) 1 -cd (Mg 1/3 Nb 2/3) c Ti d} O 3 · xBaTiO 3 or

(Pb(1-x) (1-a-b)Ba(1-x)a+xSr(1-x)b)(Pb (1-x) (1-ab) Ba (1-x) a + x Sr (1-x) b )

{(Zn1/3Nb2/3)(1-x)(1-c-d)(Mg1/3Nb2/3)(1-x)cTi(1-x)d+x}O3·{(Zn 1/3 Nb 2/3 ) (1-x) (1-cd) (Mg 1/3 Nb 2/3 ) (1-x) c Ti (1-x) d + x } O 3

비교로서, 비교예 1(입자가 작은 BaTiO3), 특별한 실시예 6(순수 BaTiO3보다 퀴리점을 10-30℃낮추기 위해 BaTiO3를 (Ba0.9Sr0.1)TiO3로 대신한다(의 시험결과들을 표 1에 나타낸다.As a comparison, Comparative Example 1 (the particles are smaller BaTiO 3), special Example 6 (a BaTiO 3 in order to lower the Curie point 10-30 ℃ than pure BaTiO 3 (Ba 0.9 Sr 0.1) TiO 3 in the place of the test (results Are shown in Table 1.

[표 1-a]Table 1-a

Figure kpo00034
Figure kpo00034

[표 1-b]TABLE 1-b

Figure kpo00035
Figure kpo00035

[표 1-c]Table 1-c

Figure kpo00036
Figure kpo00036

또한 다음식으로 표현되는 조성물인 실시예 13-15의 시험결과를 표 2에 나타낸다.In addition, the test results of Example 13-15 which is a composition represented by the following formula is shown in Table 2.

(1-x) (Pb1-a-bBaaSrb)(1-x) (Pb 1-ab Ba a Sr b )

[(Zn1/3Nb2/3)1-c-d(Mg1/3Nb2/3)cTid]O3·xBa(Ti1-eZre)O3 [(Zn 1/3 Nb 2/3) 1 -cd (Mg 1/3 Nb 2/3) c Ti d] O 3 · xBa (Ti 1-e Zr e) O 3

또는or

(Pb(1-x) (1-a-b)Ba(1-x)a+xSr(1-x)b[(Zn1/3Nb2/3)(1-x)(1-c-d)(Mg1/3Nb2/3)(1-x)cTi(1-x)d+x(1-e)Zrx.e]O3. (Pb (1-x) (1-ab) Ba (1-x) a + x Sr (1-x) b [(Zn 1/3 Nb 2/3 ) (1-x) (1-cd) ( Mg 1/3 Nb 2/3 ) (1-x) c Ti (1-x) d + x (1-e) Zr xe ] O 3.

전술한 조성물은 비교예 5와 함께 순수 BaTiO3보다 퀴리점을 10-30℃ 낮추기 위해 Ba(Ti1-eZre)O3를 포함한다.The above-described composition includes Ba (Ti 1-e Zr e ) O 3 to lower the Curie point by 10-30 ° C. than the pure BaTiO 3 together with Comparative Example 5.

[표 2-a]Table 2-a

Figure kpo00037
Figure kpo00037

[표 2-b]Table 2-b

Figure kpo00038
Figure kpo00038

[표 2-c]Table 2-c

Figure kpo00039
Figure kpo00039

표 1로부터 본 발명의 세라믹 조성물은 고유전율 (K=4000이상), 양호한 온도특성(-55~+125℃에서 +22 및 -33%이하)을 갖는 것을 알수 있다.It can be seen from Table 1 that the ceramic composition of the present invention has a high dielectric constant (K = 4000 or more) and good temperature characteristics (+22 and -33% or less at -55 to + 125 ° C).

또한 CR적이 5000Ω·F(25℃)이상으로 크며, 특히125℃에서는 1000Ω·F이상이어서 고곤에서의 신뢰도가 우수하다.In addition, the CR area is larger than 5000 Pa · F (25 ° C.), and especially at 125 ° C., it is 1000 Pa · F or more, so that the reliability at the high end is excellent.

표 1로부터 입자가 작은 BaTiO3를 갖는 비교예 1은 유전율이 작고 온도변화율이 넓은 것을 알수 있다.It can be seen from Table 1 that Comparative Example 1 having small BaTiO 3 particles has a small dielectric constant and a wide temperature change rate.

또한 입자가 큰 BaTiO3를 갖는 비교예 2는 CR적이 크게 감소한다.In addition, in Comparative Example 2 having large BaTiO 3 particles, the CR area is greatly reduced.

또한 BaTiO3대신에 퀴리점이 약 100℃인 Ba0.9Sr0.1TiO3를 갖는 실시예 6은 역시 우수한 특성을 얻을수 있었다.In addition, Example 6 having a Curie point of Ba 0.9 Sr 0.1 TiO 3 having a Curie point of about 100 ° C. instead of BaTiO 3 was able to obtain excellent characteristics.

BaTiO3를 Sr로 치환하는 외에도 BaTiO3를 Ca, Ce, Zr및 Sn으로 치환하여 퀴리점을 10-30℃낮춘 조성물도 역시 훌륭한 특성을 나타내었다.In addition to the BaTiO 3 substituted by Sr composition and the BaTiO 3 substituted by Ca, Ce, Zr and Sn to lower the Curie point 10-30 ℃ also had also shown excellent properties.

또한 표 1과 표 2로부터 실시예 7-15는 높은 유전율(K=2300 이상)과 양호한 온도 특성(-55~+125℃에서 ±10%내)을 갖는다는 것을 알수 있다.In addition, it can be seen from Tables 1 and 2 that Examples 7-15 have a high dielectric constant (K = 2300 or more) and good temperature characteristics (within ± 10% at -55 to + 125 ° C).

BaTiO3대신에 Ba(Ti0.95Zr0.05)O3를 사용하는 실시예 13-15는 -55-+125℃의 온도범위 내에서±7.5% 이하의 우수한 온도 특성을 얻을 수 있다.Carried out using the Ba (Ti 0.95 Zr 0.05) O 3 in place of BaTiO 3 Examples 13 to 15 can achieve a superior temperature characteristic of less than ± 7.5% in a temperature range of -55- + 125 ℃.

비교예 5는 BaTiO3대신에 Ti일부를 12mol%의 Zr로 치환시킨 Ba(Ti0.88Zr0.12)O3를 사용한 조성물이다. 그러나 유전율의 변화율은 고온에서 ±10%를 넘는다. 그러므로 Zr의 치환율은 본 발명의 범위내로 하는 것이 좋다. 또한 BaTiO3를 Zr로 치환시키지 않고 Ti의 일부를 Sn으로 또는 Ba의 일부를 Sr, Ce, Ca로 치환하여서 퀴리점을 10-30℃낮춘 조성물을 사용하여도 같은 결과를 얻을 수 있었다.Comparative Example 5 is a composition using Ba (Ti 0.88 Zr 0.12 ) O 3 in which a portion of Ti is substituted with 12 mol% of Zr instead of BaTiO 3 . However, the rate of change of dielectric constant is over ± 10% at high temperatures. Therefore, the substitution rate of Zr should be within the scope of the present invention. Also hayeoseo replacing a part of the portion of the Sn Ti without substituting the Zr or Ba in BaTiO 3 as a Sr, Ce, Ca was obtained the same result by using a lower Curie point 10-30 ℃ composition.

또한 실시예 3에 0.25mol의 Mon와 CoO를 첨가하여 얻어진 조성물을 사용하여 성형된 적층 세라믹 커패시터를 설명하면 다음과 같다.In addition, the multilayer ceramic capacitor molded using the composition obtained by adding 0.25 mol of Mon and CoO to Example 3 will be described as follows.

첫째 전술한 것과 같은 조성을 가지는 BaTiO3와 다른 하소체 분말을 소정의 비율로 무게를 달아서 유기용매와 바인더를 첨가하여 슬러리로 혼합하고 독터 블레이드형 주조기(doctor blade caster)를 사용하여 30㎛두께의 그린 시이트로 성형했다.First, BaTiO 3 and other calcined powder having the same composition as described above were weighed at a predetermined ratio, mixed with a slurry by adding an organic solvent and a binder, and painted with a thickness of 30 μm using a doctor blade caster. Molded into a sheet.

이그린 시이트상에 70Ag/30 Pd의 전극 페이스트를 소정의 패턴으로 인쇄하고 전술한 전극 패턴을 갖는 20층으로 시이트를 쌓아서 적층시켰다.An electrode paste of 70 Ag / 30 Pd was printed on the green sheet in a predetermined pattern, and the sheets were stacked and stacked in 20 layers having the above-described electrode pattern.

그런후에 적층 시이트를 소정의 형상으로 잘라서 바인더가 완전히 연소되게 가열하고 2시간동안 1080℃에서 소결시켰다.Thereafter, the laminated sheet was cut into a predetermined shape, heated to completely burn the binder, and sintered at 1080 ° C. for 2 hours.

소결후에 Ag페이스트를 외부 전극으로 하여 구워서 적층 세라믹 커패시터를 제조했다. 전기적 특성을 표 3에 표시한다.After sintering, an Ag paste was baked as an external electrode to prepare a multilayer ceramic capacitor. The electrical characteristics are shown in Table 3.

[표 3]TABLE 3

Figure kpo00040
Figure kpo00040

얻어진 적층 세라믹 커패시터의 유전율은 약 5700이었다.The dielectric constant of the obtained multilayer ceramic capacitor was about 5700.

표 3으로부터 특성이 상당히 양호함을 알 수 있다. 특히 온도 특성은 -55와 +125℃사이에서 ±22이하에 있고, EIA 규격에서 X7S특성들을 만족한다. 또한 실시예 15에 0.1mol의 MnO와 CoO를 첨가하여 얻어진 조성물을 사용하여 성형된 적층 세라믹 커패시터를 아래에서 설명한다.It can be seen from Table 3 that the properties are quite good. In particular, the temperature characteristic is less than ± 22 between -55 and + 125 ° C and satisfies the X7S characteristics in the EIA standard. Further, a multilayer ceramic capacitor molded using the composition obtained by adding 0.1 mol of MnO and CoO to Example 15 will be described below.

첫째 전술한 것과 같은 조성을 갖는 BaTi0.95Zr0.05O3와 하소체 분말을 소정의비율로 무게를 달아서 유기용매와 바인더를 첨가하여 슬러리가 되게 혼합하고 독터 블레이드형 주조기로서 30㎛두께의 그린 시이트가 되게 성형했다. 이 그린 시이트상에 70PD/30Ag전극 페이스트를 소정의 패턴으로 인쇄하고 전극 패턴을 갖는 20층으로 시이트를 쌓아서 적층시켰다.First, BaTi 0.95 Zr 0.05 O 3 and calcined powder having the same composition as described above were weighed at a predetermined ratio, mixed with an organic solvent and a binder to form a slurry, and formed into a green sheet having a thickness of 30 μm as a doctor blade type casting machine. Molded. The 70PD / 30Ag electrode paste was printed on the green sheet in a predetermined pattern, and the sheets were stacked and stacked in 20 layers having electrode patterns.

그후에 적층 시이트를 소정의 형태로 자르고 바인더가 완전히 연소하도록 가열하고 1220℃에서 2시간동안 소결시켰다.The laminate sheet was then cut into the desired form and heated to allow the binder to burn out completely and sintered at 1220 ° C. for 2 hours.

소결후에 Ag페이스트를 외부 전극으로 구워서 적층 세라믹 커패시터를 제조했다. 그 전기적 특성을 표 4에 나타낸다.After sintering, the Ag paste was baked with an external electrode to prepare a multilayer ceramic capacitor. The electrical characteristics are shown in Table 4.

[표 4]TABLE 4

Figure kpo00041
Figure kpo00041

얻어진 적층 세라믹 커패시터의 유전율은 약2700이었다. 표 4로부터 그 특성이 상당히 우수하다는 것을 알 수 있다.The dielectric constant of the obtained multilayer ceramic capacitor was about 2700. From Table 4 it can be seen that the characteristics are quite excellent.

특히 온도 특서은 -55와 +125℃사이에서 ±7.5이하에 있고 EIA규격에서 X7S특성을 만족한다.In particular, the temperature specification is below ± 7.5 between -55 and + 125 ° C and satisfies the X7S characteristics in the EIA standard.

전술한 바와 같이 본 발명의 고유전율 세라믹 재료의 제조방법은 유전율이 높고, 넓은 온도범위에서도 유전율 변화율이 작고, 특히 적층 세라믹 커패시터에 효과적인 여러가지 우수한 특성을 가진 고유전율 세라믹 조성물을 제공할수 있다.As described above, the method of manufacturing the high dielectric constant ceramic material of the present invention can provide a high dielectric constant ceramic composition having various excellent properties having high dielectric constant, small dielectric constant change rate over a wide temperature range, and particularly effective for multilayer ceramic capacitors.

또한 본 발명의 제조방법에 있어서, 아연 니오브산 납과 바륨 티탄산을 주 성분으로 사용했으나 본 발명에서 사용한 것과 유사한 효과들을 다른 성분들을 사용해서 얻을 수 있는 경우도 있다.In addition, in the production method of the present invention, lead zinc niobate and barium titanic acid were used as main components, but effects similar to those used in the present invention may be obtained by using other components.

본 발명의 세라믹 조성물과 그 방법에 따라서 높은 절연저항과 우수한 온도특성을 가진 고유전율 세라믹 재료를 얻을 수 있다.According to the ceramic composition and the method of the present invention, a high dielectric constant ceramic material having high insulation resistance and excellent temperature characteristics can be obtained.

특히 넓은 온도범위에서의 온도 특성을 향상시킨 세라믹을 얻을 수 있으므로 본 발명의 세라믹 재료를적층 세라믹 커패시터, 적층 세라믹 변위 소자등과 같은 적층 세라믹 소자에 훌륭하게 적용할 수 있는 것이다.In particular, since a ceramic having improved temperature characteristics in a wide temperature range can be obtained, the ceramic material of the present invention can be excellently applied to a multilayer ceramic element such as a multilayer ceramic capacitor, a multilayer ceramic displacement element, and the like.

Claims (13)

다음식으로 표현되는 조성물로 이루어진 것을 특징으로 하는 고유전율 세라믹 재료.A high dielectric constant ceramic material, comprising a composition represented by the following formula. (1-x) (Pb1-a-bBaaSrb)(1-x) (Pb 1-ab Ba a Sr b ) [(Zn1/3Nb2/3)1-c-d(Mg1/3Nb2/3)cTid]O3.xBaO3 [(Zn 1/3 Nb 2/3 ) 1-cd (Mg 1/3 Nb 2/3 ) c Ti d ] O 3 .xBaO 3 여기서here 0
Figure kpo00042
a
Figure kpo00043
0.35
0
Figure kpo00042
a
Figure kpo00043
0.35
0
Figure kpo00044
b
Figure kpo00045
0.35
0
Figure kpo00044
b
Figure kpo00045
0.35
0.01
Figure kpo00046
a+b
Figure kpo00047
0.35
0.01
Figure kpo00046
a + b
Figure kpo00047
0.35
0
Figure kpo00048
c
Figure kpo00049
0.9
0
Figure kpo00048
c
Figure kpo00049
0.9
0 < d
Figure kpo00050
0.5
0 <d
Figure kpo00050
0.5
0 < c+d < 1.00 <c + d <1.0 0.3
Figure kpo00051
x
Figure kpo00052
0.65
0.3
Figure kpo00051
x
Figure kpo00052
0.65
제1항에 있어서, 적어도 50wt% 의 BaTiO3의 입자크기가 0.7-3㎛인 것을 특징으로 하는 고유전율 세라믹 재료.The high dielectric constant ceramic material of claim 1, wherein the particle size of at least 50 wt% of BaTiO 3 is 0.7-3 μm. 제1항에 있어서, 소결온도를 낮추기 위해 0.3
Figure kpo00053
x
Figure kpo00054
0.5 및 0< c
Figure kpo00055
0.9 인 것을 특징으로 하는 고유전율 세라믹.
The method of claim 1, wherein the 0.3 to lower the sintering temperature
Figure kpo00053
x
Figure kpo00054
0.5 and 0 <c
Figure kpo00055
High dielectric constant ceramic, characterized in that 0.9.
제1항에 있어서, 유전율에 대한 온도 의존성을 작게 하기 위해 0.5
Figure kpo00056
x
Figure kpo00057
0.65인 것을 특징으로 하는 고유전율 세라믹 재료.
2. The method of claim 1, in order to make the temperature dependence on the permittivity small.
Figure kpo00056
x
Figure kpo00057
High dielectric constant ceramic material, characterized in that 0.65.
제1항에 있어서, BaTiO3중 Ti일부분을 Zr로 치환하여 다음식으로 표현되는 것을 특징으로 하는 고유전율 세라믹 재료.The high dielectric constant ceramic material according to claim 1, wherein a part of Ti in BaTiO 3 is substituted with Zr and is represented by the following formula. (1-x) (Pb1-a-bBaaSrb)(1-x) (Pb 1-ab Ba a Sr b ) [(Zn1/3Nb2/3)1-c-d(Mg1/3Nb2/3)cTid]O3.xBa(Ti1-eZre)O3 [(Zn 1/3 Nb 2/3 ) 1-cd (Mg 1/3 Nb 2/3 ) c Ti d ] O 3 .xBa (Ti 1-e Zr e) O 3 여기서here 0
Figure kpo00058
a
Figure kpo00059
0.35
0
Figure kpo00058
a
Figure kpo00059
0.35
0
Figure kpo00060
b
Figure kpo00061
0.35
0
Figure kpo00060
b
Figure kpo00061
0.35
0.01
Figure kpo00062
a+b
Figure kpo00063
0.35
0.01
Figure kpo00062
a + b
Figure kpo00063
0.35
0
Figure kpo00064
c
Figure kpo00065
0.9
0
Figure kpo00064
c
Figure kpo00065
0.9
0 < d
Figure kpo00066
0.5
0 <d
Figure kpo00066
0.5
0 < e
Figure kpo00067
0.06
0 <e
Figure kpo00067
0.06
0.3
Figure kpo00068
x
Figure kpo00069
0.65
0.3
Figure kpo00068
x
Figure kpo00069
0.65
0 < c+d < 1.00 <c + d <1.0
제5항에 있어서, 소결온도를 갖추기 위해 0.3
Figure kpo00070
x
Figure kpo00071
0.5 및 0 < c
Figure kpo00072
0.9 인 것을 특징으로 하는 고유전율 세라믹 재료.
6. A method as claimed in claim 5, in order to achieve a sintering temperature of 0.3
Figure kpo00070
x
Figure kpo00071
0.5 and 0 <c
Figure kpo00072
0.9 is a high dielectric constant ceramic material.
제5항에 있어서, 유전율에 대한 온도 의존성을 작게 하기 위해 0.5
Figure kpo00073
x
Figure kpo00074
0.65 인 것을 특징으로 하는 고유전율 세라믹 재료.
6. The method of claim 5, in order to make the temperature dependence on the permittivity small.
Figure kpo00073
x
Figure kpo00074
High dielectric constant ceramic material, characterized in that 0.65.
제1항에 있어서, BaTiO3중 Ti 일부분을 Sn으로 치환한 것을 특징으로 하는 고유전율 세라믹 재료.The high dielectric constant ceramic material according to claim 1, wherein a part of Ti of BaTiO 3 is substituted with Sn. 제1항에 있어서, BaTiO3중 Ba 일부분을 Sr로 치환한 것을 특징으로 하는 고유전율 세라믹 재료.The high dielectric constant ceramic material according to claim 1, wherein a part of Ba of BaTiO 3 is substituted with Sr. 제1항에 있어서, BaTiO3중 Ba의 일부분을 Ca 로 치환한 것을 특징으로 하는 고유전율 세라믹 재료.The high dielectric constant ceramic material according to claim 1, wherein a part of Ba of BaTiO 3 is substituted with Ca. 제1항에 있어서, BaTiO3중 Ba의 일부분을 Ce로 치환한 것을 특징으로 하는 고유전율 세라믹 재료.The high dielectric constant ceramic material according to claim 1, wherein a part of Ba of BaTiO 3 is substituted with Ce. (a) BaTiO3를 형성할 수 있는 비율로 BaCO3와 TiO2의 무게를 달고, (b) 무게를 단 BaCO3와 TiO2를 1000-1350℃에서 혼합하여 하소 하고, (c) 적어도 50wt%의 BaTiO3입자 크기가 0.7-3㎛가 되게 하소된 BaTiO3를 분쇄하여 BaTiO3를 베이스로 한 제1화합물을 얻고, (d) Pb·Ba·Sr·Zn·NB·Mg 및 Ti 산화율을 소정의 혼합비가 되게 무게를 달고, (e) 무게를 단 산화물을 700-900℃에서 혼합하여 하소하고, (f)하소된 산화물을 입자크기가 0.7㎛보다 작은 분말로 분쇄하여 퀴리점이 1250℃이하인 퍼로브스카이트 구조를 가진 퍼브스카이트 납 완화제의 제2화합물을 얻고, (g) 소정의 비율로 제1 및 제2 화합물의 무게를 달고, (h) 무게를 단 제1 및 제2 화합물을 혼합하고, (i) 혼합된 화합물을 소정의 형상으로 성형하고,(j)성형된조성물을 1000-1250℃의 저온에서 소결시키는 단계들로 이루어진 것을 특징으로 하는 고유전율 세라믹 재료의 제조 방법.(a) Weigh BaCO 3 and TiO 2 at a rate capable of forming BaTiO 3 , (b) Calcin by mixing BaCO 3 and TiO 2 , weighed at 1000-1350 ° C., and (c) at least 50 wt% the size of the BaTiO 3 particles are ground to a BaTiO 3 calcined be a 0.7-3㎛ obtain a first compound to a BaTiO 3 as a base, (d) a predetermined Pb · Ba · Sr · Zn · NB · Mg and Ti oxidation rate Weighed to the mixing ratio of (e) and calcined by mixing the weighed oxide at 700-900 ℃, (f) pulverized the calcined oxide into a powder having a particle size less than 0.7 ㎛ to fur 1250 ℃ Obtaining a second compound of a perovskite lead mitigator having a lobesky structure, (g) weighing the first and second compounds in a predetermined proportion, and (h) mixing the weighed first and second compounds (I) molding the mixed compound into a predetermined shape, and (j) sintering the molded composition at a low temperature of 1000-1250 ° C. Method for producing a high dielectric constant ceramic material, characterized in that. 제12항에 있어서, (a) 혼합된 조성물에 바인더와 용매를 첨가하여 슬러리로 되게 하고, (b) 주조하여 그린 시이트가 되게 성형하고, (c) 성형된 그린 시이트상에 70Ag/30Pd 내지 70Pd/30Ag의 전극 페이스트를 인쇄하고, (d) 소결하기 전에 그린 시이트를 쌓아서 적층 시키고, (e) 소결체상에 외부 전극으로서 Ag페이스트 또는 Ag/Pd 페이스트를 구워서 세라믹 커패시터를 만드는 단계들로 이루어진 것을 특징으로 하는 고유전율 세라믹 재료의 제조방법.The method of claim 12 wherein (a) a binder and a solvent are added to the mixed composition to form a slurry, (b) cast to form a green sheet, and (c) 70 Ag / 30 Pd to 70 Pd on the molded green sheet. Printing electrode paste of / 30Ag, (d) stacking and laminating the green sheets before sintering, and (e) baking Ag paste or Ag / Pd paste as an external electrode on the sintered body to form a ceramic capacitor. A method of manufacturing a high dielectric constant ceramic material.
KR1019870009324A 1986-08-28 1987-08-25 High dielectric constant ceramic material and method of manufacturing the same KR890002696B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP19996386 1986-08-28
JP199963 1986-08-28
JP167034 1987-07-06
JP62167034A JPS63156062A (en) 1986-08-28 1987-07-06 High permittivity ceramic composition and manufacture

Publications (2)

Publication Number Publication Date
KR880002773A KR880002773A (en) 1988-05-11
KR890002696B1 true KR890002696B1 (en) 1989-07-24

Family

ID=16416515

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870009324A KR890002696B1 (en) 1986-08-28 1987-08-25 High dielectric constant ceramic material and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JPS63156062A (en)
KR (1) KR890002696B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188504A (en) * 1990-11-20 1992-07-07 Matsushita Electric Ind Co Ltd Dielectric porcelain composition
KR100496135B1 (en) * 2002-09-18 2005-06-16 (주) 알엔투테크놀로지 Low temperature cofired ceramic composition, and its use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54518A (en) * 1977-06-02 1979-01-05 Nippon Signal Co Ltd:The Comfirming method of operation of dot head
JPS56152102A (en) * 1980-04-28 1981-11-25 Kyoritsu Ceramic Materials Raw material composition for producing high dielectric porcelain
JPS58188004A (en) * 1982-04-26 1983-11-02 松下電器産業株式会社 High dielectric constant porcelain composition

Also Published As

Publication number Publication date
JPS63156062A (en) 1988-06-29
JPH054354B2 (en) 1993-01-19
KR880002773A (en) 1988-05-11

Similar Documents

Publication Publication Date Title
US4767732A (en) High dielectric constant ceramic material and method of manufacturing the same
JP3046436B2 (en) Ceramic capacitors
KR100414331B1 (en) Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same
US5296425A (en) Ceramic materials of improved dielectric constants, and capacitors fabricated therefrom
JP2566995B2 (en) High dielectric constant porcelain composition and ceramic capacitor
JPH0785460B2 (en) Multilayer porcelain capacitor
US4723193A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
KR890002696B1 (en) High dielectric constant ceramic material and method of manufacturing the same
JP3634930B2 (en) Dielectric porcelain composition
US4700268A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
JP2001089234A (en) Dielectric ceramic composition and multilayer ceramic parts
US4700267A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
JPH0652718A (en) Dielectric porcelain and porcelain capacitor
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
KR930006571B1 (en) Dielectric composition of ceramic condenser
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPH08119728A (en) Dielectric porcelain composition
JPH0684691A (en) Dielectric ceramic and ceramic capacitor
JPH056710A (en) Dielectric porcelain composition
JPH0360787B2 (en)
JP2872512B2 (en) Dielectric porcelain and porcelain capacitor
JPH0478577B2 (en)
JPH08183658A (en) Dielectric porcelain composition
JPH04363012A (en) Ceramic capacitor

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19960626

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee