JPH0652718A - Dielectric porcelain and porcelain capacitor - Google Patents

Dielectric porcelain and porcelain capacitor

Info

Publication number
JPH0652718A
JPH0652718A JP4225066A JP22506692A JPH0652718A JP H0652718 A JPH0652718 A JP H0652718A JP 4225066 A JP4225066 A JP 4225066A JP 22506692 A JP22506692 A JP 22506692A JP H0652718 A JPH0652718 A JP H0652718A
Authority
JP
Japan
Prior art keywords
porcelain
dielectric
compound
capacitor
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4225066A
Other languages
Japanese (ja)
Other versions
JP2915217B2 (en
Inventor
Koichi Chazono
広一 茶園
Yasuyuki Inomata
康之 猪又
Kazuyuki Shibuya
和行 渋谷
Katsuyuki Horie
克之 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP4225066A priority Critical patent/JP2915217B2/en
Priority to EP93112007A priority patent/EP0581251A3/en
Priority to US08/098,640 priority patent/US5296425A/en
Publication of JPH0652718A publication Critical patent/JPH0652718A/en
Application granted granted Critical
Publication of JP2915217B2 publication Critical patent/JP2915217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To improve relative inductivity and pressure resistance by blending a specific quantity of an erbium compound and a manganese compound with the basic parts consisting of barium-calcium titanozirconate compound. CONSTITUTION:A composition of a dielectric porcelain is composed of 100 molar parts of a basic component of a compound to be expressed by (Ba1-xCax)(Ti1-yZry)O3, 0.1 to 2.0 molar parts of an erbium compound and 0.03 to 0.30 molar parts of a manganese compound. In the formula, (x) is to be in the range of 0.01 to 0.10, (y) is to be in the range of 0.10 to 2.4. This composite is used for a dielectric porcelain base 12 of a porcelain contributes to an improvement of insulating pressure resistance and to an improvement to a relative dielectric constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い誘電率を有する誘
電体磁器及びこれを使用した単層又は積層の誘電体磁器
コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic having a high dielectric constant and a single-layer or laminated dielectric ceramic capacitor using the dielectric ceramic.

【0002】[0002]

【従来の技術】磁器コンデンサの誘電体磁器基体として
BaTiO3 (チタン酸バリウム)を主成分とした磁
器、又はBaTiO3 のBa(バリウム)の一部をCa
(カルシウム)に置換し、且つTi(チタン)の一部を
Zr(ジルコニウム)に置換した磁器を使用することは
公知である。また、これ等の磁器にMn(マンガン)の
化合物を含めることも公知である。この種の誘電体磁器
の比誘電率の最大値はほぼ14000である。
BACKGROUND ART porcelain the BaTiO 3 as a dielectric ceramic substrate for magnetic capacitor (barium titanate) as a main component, or a portion of Ba (barium) of BaTiO 3 Ca
It is known to use porcelain in which (calcium) is substituted and Ti (titanium) is partially substituted with Zr (zirconium). It is also known to include a compound of Mn (manganese) in these porcelains. The maximum value of the relative permittivity of this type of dielectric ceramic is about 14,000.

【0003】[0003]

【発明が解決しようとする課題】ところで、誘電体磁器
コンデンサの容量の増大及び信頼性の向上が要求されて
いる。容量の増大を図るためには一対の電極間に介在す
る誘電体磁器層の厚みを薄くすることが考えられる。し
かし、誘電体磁器層を薄くすると、一対の電極間の絶縁
耐圧が低下する。容量の増大を図るための別の方法とし
て、比誘電率が高く、且つ絶縁耐圧の高い誘電体磁器を
使用する方法がある。しかし、従来のBaTiO3 系の
誘電体磁器では比誘電率及び絶縁耐圧に限界があり、高
容量化に限界があった。
By the way, it is required to increase the capacity and reliability of the dielectric ceramic capacitor. In order to increase the capacitance, it can be considered to reduce the thickness of the dielectric ceramic layer interposed between the pair of electrodes. However, if the dielectric porcelain layer is made thin, the dielectric strength between the pair of electrodes is lowered. As another method for increasing the capacity, there is a method of using a dielectric ceramic having a high relative dielectric constant and a high withstand voltage. However, in the conventional BaTiO 3 -based dielectric ceramics, there is a limit in relative permittivity and withstand voltage, and there is a limit in increasing the capacity.

【0004】そこで、本発明の目的は、−25℃〜+8
5℃の範囲における比誘電率の最大値が14000以上
であり、20℃のtan δ(誘電体損失)が1.5%以下
であり、150℃における抵抗率が5×106 MΩ・c
m以上である誘電体磁器及びこれを使用した磁器コンデ
ンサを提供することにある。
Therefore, an object of the present invention is -25 ° C to +8.
The maximum relative permittivity in the range of 5 ° C is 14000 or more, tan δ (dielectric loss) at 20 ° C is 1.5% or less, and the resistivity at 150 ° C is 5 × 10 6 MΩ · c.
An object of the present invention is to provide a dielectric porcelain having a size of m or more and a porcelain capacitor using the same.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、 (Ba1-x Cax )(Ti1-y Zry )O3 ここで、xは0.01〜0.10の範囲の数値、yは
0.10〜0.24の範囲の数値、から成る100モル
部の基本成分と、0.1〜2.0モル部のエルビウム化
合物と、0.03〜0.30モル部のマンガン化合物と
から成る誘電体磁器に係わるものである。なお、請求項
2に示すように、請求項1の誘電体磁器を磁器コンデン
サの誘電体磁器基体として使用することができる。
The present invention for achieving the above object comprises: (Ba 1-x Ca x ) (Ti 1-y Zr y ) O 3 where x is 0.01 to 0.10. In the range of 0.10 to 0.24, 100 parts by mole of the basic component, 0.1 to 2.0 parts by mole of the erbium compound, and 0.03 to 0.30. The present invention relates to a dielectric ceramic composed of a manganese compound in a molar part. As described in claim 2, the dielectric ceramic of claim 1 can be used as a dielectric ceramic base of a ceramic capacitor.

【0006】[0006]

【発明の作用及び効果】誘電体磁器を本発明で特定した
組成にすると、−25℃〜+85℃の範囲における最大
比誘電率εmax が14000以上、20℃のtan δが
1.5%以下、150℃における抵抗率ρが5×106
MΩ・cm以上になる。本発明の磁器に含まれているエ
ルビウム(Er)化合物は絶縁耐圧の向上及び比誘電率
の向上に寄与している。即ち、エルビウム化合物は誘電
体磁器を構成している結晶粒子の平均粒径を例えば5μ
m以下のように小さくする作用を有する。またエルビウ
ム化合物は結晶粒子の平均粒径の例えば10倍以上のよ
うな異常粒子の発生を抑制する作用を有する。小さい結
晶粒子から成る誘電体磁器は、大きな結晶粒子から成る
誘電体磁器よりも大きな絶縁耐圧を示す。この結晶粒子
の大小は特に積層型磁器コンデンサにおける一対の電極
間の誘電体磁器を薄くする時に問題になる。
When the composition of the dielectric ceramic is specified in the present invention, the maximum relative permittivity ε max in the range of -25 ° C to + 85 ° C is 14000 or more, and the tan δ at 20 ° C is 1.5% or less. , The resistivity ρ at 150 ° C. is 5 × 10 6
MΩ · cm or more. The erbium (Er) compound contained in the porcelain of the present invention contributes to the improvement of withstand voltage and the relative permittivity. That is, the erbium compound has an average grain size of crystal grains constituting the dielectric ceramic of, for example, 5 μm.
It has a function of making it smaller than m. Further, the erbium compound has a function of suppressing the generation of abnormal particles, such as 10 times or more the average particle diameter of the crystal particles. Dielectric porcelain composed of small crystal grains has a higher dielectric strength than dielectric porcelain composed of large crystal grains. The size of the crystal grains becomes a problem especially when the dielectric ceramic between the pair of electrodes in the laminated ceramic capacitor is thinned.

【0007】[0007]

【第1の実施例】次に、本発明の第1の実施例において
は、図1に示す誘電体磁器コンデンサ10を作製した。
この磁器コンデンサ10は、円板状の誘電体磁器基体1
2と、この一対の主面に設けられた一対の電極14、1
6とから成る。
First Embodiment Next, in the first embodiment of the present invention, the dielectric ceramic capacitor 10 shown in FIG. 1 was produced.
This porcelain capacitor 10 is a disk-shaped dielectric porcelain substrate 1
2 and a pair of electrodes 14 and 1 provided on the pair of main surfaces
It consists of 6 and.

【0008】図1の磁器基体12を形成するために、ま
ず、チタン酸ジルコン酸バリウム・カルシウム化合物と
して(Ba1-x Cax )(Ti1-y Zry )O3 と、エ
ルビウム化合物としてエルビウム酸化物(Er2 3
と、マンガン化合物としてマンガン酸化物(MnO)と
を用意した。次に、(Ba1-x Cax )(Ti1-y Zr
y )O3 におけるx及びyの値と、Er2 3 及びMn
Oのモル部とを表1に示すように変化させて20種類の
試料のための20種類の誘電体磁器材料を用意した。
In order to form the porcelain substrate 12 shown in FIG. 1, first, (Ba 1-x Ca x ) (Ti 1-y Zr y ) O 3 is used as the barium calcium zirconate titanate compound, and erbium is used as the erbium compound. Oxide (Er 2 O 3 )
And manganese oxide (MnO) as a manganese compound were prepared. Next, (Ba 1-x Ca x ) (Ti 1-y Zr
and the values of x and y in y) O 3, Er 2 O 3 and Mn
20 kinds of dielectric porcelain materials for 20 kinds of samples were prepared by changing the molar part of O and as shown in Table 1.

【0009】試料NO. 1の誘電体磁器材料に従うコンデ
ンサを作製する場合には、基本成分のモル比を示すxが
0.05、yが0.19であるので、次式を満足する基
本成分を用意する。 (Ba0.95 Ca0.05)(Ti0.81 Zr0.19)O3 なお、基本成分は、この各元素のモル比を満足するよう
にBaCO3 (炭酸バリウム)とCaCO3 (炭酸カル
シウム)とTiO2 とZrO2 とを混合し、これを仮焼
きすることによって得た。次に、100モル部(100
0.00g)の基本成分に対して0.30モル部(4.
85g)のEr2 3 と0.10モル部(0.30g)
のMnOとを付加し、これをボールミルにて約15時間
混合及び粉砕し、しかる後150℃、3時間乾燥するこ
とによって磁器材料の粉末を得た。次に、この磁器材料
の粉末に有機バインダを添加して攪拌したものを使用し
て直径10mm、厚さ0.4mmの円板状成形体をプレ
ス成形によって形成した。次に、この磁器材料の成形体
を空気中1300℃で2時間焼成して焼結体から成る図
1に示した誘電体磁器基体12を得た。次に、この磁器
基体12の一方及び両方の主面にフリットを含まない銀
ペーストを印刷法で塗布し、しかる後800℃で焼付け
ることによって一対の電極14、16を形成し、磁器コ
ンデンサ10を完成させた。
When a capacitor according to the dielectric ceramic material of Sample No. 1 is manufactured, x and 0.05, which represent the molar ratio of the basic components, are 0.05 and 0.19, respectively, so that the basic components satisfying the following formula are satisfied. To prepare. (Ba 0.95 Ca 0.05 ) (Ti 0.81 Zr 0.19 ) O 3 The basic components are BaCO 3 (barium carbonate), CaCO 3 (calcium carbonate), TiO 2 and ZrO 2 so that the molar ratio of each element is satisfied. It was obtained by mixing and calcining. Next, 100 mole parts (100
0.30 mol part (4.
85 g of Er 2 O 3 and 0.10 part by mole (0.30 g)
MnO was added, and this was mixed and ground in a ball mill for about 15 hours, and then dried at 150 ° C. for 3 hours to obtain a powder of a porcelain material. Next, a disc-shaped compact having a diameter of 10 mm and a thickness of 0.4 mm was formed by press molding by using a powder obtained by adding an organic binder to the powder of the porcelain material and stirring the mixture. Next, the molded body of this porcelain material was fired in air at 1300 ° C. for 2 hours to obtain the dielectric ceramic base body 12 shown in FIG. Next, a silver paste containing no frit is applied to one and both main surfaces of the porcelain substrate 12 by a printing method, and then baked at 800 ° C. to form a pair of electrodes 14 and 16 and the porcelain capacitor 10 Was completed.

【0010】次に、完成した磁器コンデンサの最大比誘
電率εmax とtan δと抵抗率ρと磁器基体の結晶の径D
と異常粒子を次の要領で測定した。 (a) 最大比誘電率 磁器コンデンサを恒温槽に入れて−25℃から+85℃
まで温度を変化させた時の最大容量をインピーダンスア
ナライザで測定し、この最大容量と磁器基体との寸法に
基づいて比誘電率を計算した。 (b) tan δ(誘電体損失) 20℃におけるtan δを測定した。 (c) 抵抗率ρ 磁器コンデンサを150℃にして一対の電極14、16
間に直流100Vを20秒間印加して絶縁抵抗を測定
し、この絶縁抵抗の値と磁器基体12の寸法とから抵抗
率ρを計算した。 (d) 平均粒径D 磁器基体12を切断して5箇所を電子顕微鏡で2000
倍又は5000倍に撮影し、これ等の写真から200個
の結晶粒子をランダムに選んでこの寸法を測定し、平均
値を求めた。 (e) 異常粒子の判定 平均粒径Dを測定するために切断した磁器基体を電子顕
微鏡で100倍で観察し、結晶の平均粒径の10倍以上
の結晶の有無を調べ、10倍以上の結晶を異常粒子とし
た。
Next, the maximum relative permittivity ε max , tan δ, the resistivity ρ, and the diameter D of the crystal of the porcelain substrate of the completed ceramic capacitor.
And the abnormal particles were measured as follows. (A) Maximum relative permittivity Put a porcelain capacitor in a constant temperature bath to -25 ℃ to + 85 ℃
The maximum capacitance when the temperature was changed up to was measured with an impedance analyzer, and the relative permittivity was calculated based on the maximum capacitance and the dimensions of the porcelain substrate. (B) tan δ (dielectric loss) tan δ at 20 ° C was measured. (C) Resistivity ρ The pair of electrodes 14 and 16 was set to 150 ° C. for the porcelain capacitor.
In the meantime, 100 V DC was applied for 20 seconds to measure the insulation resistance, and the resistivity ρ was calculated from the value of this insulation resistance and the size of the porcelain substrate 12. (D) Average particle diameter D The porcelain substrate 12 was cut and the five points were measured with an electron microscope at 2000
Two times or 5000 times was photographed, 200 crystal grains were randomly selected from these photographs, the size was measured, and the average value was obtained. (E) Abnormal Particle Judgment The porcelain substrate cut to measure the average particle size D is observed with an electron microscope at 100 times, and the presence or absence of crystals 10 times or more of the average particle size of the crystals is checked to determine if the particles are 10 times or more. The crystals were regarded as abnormal particles.

【0011】試料NO. 1の場合には、表1に示すよう
に、εmax は22000、tan δは0.42%、ρは
1.1×107 MΩ・cm、平均粒径Dは3.6μmで
あり、また異常粒子は存在していなかった。
In the case of sample No. 1, as shown in Table 1, ε max is 22000, tan δ is 0.42%, ρ is 1.1 × 10 7 MΩ · cm, and average particle diameter D is 3 It was 0.6 μm, and no abnormal particles were present.

【0012】試料NO. 2〜20においても試料NO. 1と
同様な方法で磁器コンデンサを作り、同様な方法でε
max 、tan δ、ρ、及びDを測定し、更に異常粒子の有
無を判定した。なお、異常粒子は試料NO. 3及び9での
み発生し、この他の試料では発生しなかった。
Also in sample Nos. 2 to 20, porcelain capacitors were prepared in the same manner as in sample No. 1, and ε was formed in the same manner.
The max , tan δ, ρ, and D were measured, and the presence or absence of abnormal particles was further determined. The abnormal particles were generated only in Sample Nos. 3 and 9, and were not generated in the other samples.

【0013】[0013]

【表1】 [Table 1]

【0014】表1から明らかなように、本発明で特定し
た組成を満足する試料NO. 1、2、5、8、10、14
〜20の磁器コンデンサは、本発明で目標としている−
25℃〜+85℃の範囲における最大比誘電率εmax
1400以上、20℃のtanδが1.5%以下、150
℃における抵抗率ρが5×106 MΩ・cm以上、平均
粒径Dが5μm以下を満足している。また、これ等では
異常粒子が発生しない。表1の試料NO. 3、4、6、
7、9、11、12、13の磁器コンデンサは本発明で
目標とする特性を得ることができないので、本発明以外
のものである。
As is clear from Table 1, sample Nos. 1, 2, 5, 8, 10, 14 satisfying the composition specified in the present invention.
~ 20 porcelain capacitors are targeted in the present invention-
Maximum relative permittivity ε max in the range of 25 ° C to + 85 ° C is 1400 or more, tan δ at 20 ° C is 1.5% or less, 150
The resistivity ρ at 5 ° C. is 5 × 10 6 MΩ · cm or more, and the average particle diameter D is 5 μm or less. Moreover, these do not generate abnormal particles. Sample Nos. 3, 4, 6 of Table 1
The ceramic capacitors of 7, 9, 11, 12, and 13 are not included in the present invention because the characteristics targeted by the present invention cannot be obtained.

【0015】誘電体磁器の組成の限定理由を次に述べ
る。xの値が0の場合は、試料NO. 3に示すようにε
max が所望値未満であるばかりでなく、異常粒子が発生
する。一方、試料NO. 16に示すようにxの値が0.0
1になると、所望特性が得られる。従って、xの下限は
0.01である。試料NO. 4に示すように、xの値が
0.12になると、εmax が所望値未満になる。一方、
試料NO. 5及び15に示すようにxの値が0.10の場
合には所望特性が得られる。従って、xの上限は0.1
0である。
The reasons for limiting the composition of the dielectric ceramic will be described below. When the value of x is 0, as shown in sample No. 3, ε
Not only is max less than the desired value, but abnormal particles occur. On the other hand, as shown in sample No. 16, the value of x is 0.0
When it becomes 1, desired characteristics are obtained. Therefore, the lower limit of x is 0.01. As shown in sample No. 4, when the value of x becomes 0.12, ε max becomes less than the desired value. on the other hand,
As shown in Sample Nos. 5 and 15, the desired characteristics are obtained when the value of x is 0.10. Therefore, the upper limit of x is 0.1
It is 0.

【0016】試料NO. 6に示すようにyの値が0.08
の場合にはεmax が所望値未満となり、且つtan δが所
望範囲よりも大きくなる。一方、試料NO. 2に示すよう
にyの値が0.10になると所望の特性が得られる。従
って、yの下限は0.10である。試料NO. 7に示すよ
うにyの値が0.25の場合には、εmax が所望値未満
となる。一方、試料NO. 8に示すようにyが0.24に
なると所望特性が得られる。従って、yの上限は0.2
4である。
As shown in sample No. 6, the value of y is 0.08.
In the case of, ε max becomes less than the desired value, and tan δ becomes larger than the desired range. On the other hand, as shown in sample No. 2, when the value of y becomes 0. 10, desired characteristics are obtained. Therefore, the lower limit of y is 0.10. When the value of y is 0.25 as shown in sample No. 7, ε max is less than the desired value. On the other hand, as shown in sample No. 8, when y is 0.24, desired characteristics are obtained. Therefore, the upper limit of y is 0.2
It is 4.

【0017】試料NO. 9に示すようにEr2 3 が0の
場合には結晶の平均粒径の10倍以上の異常粒子が生じ
る。一方、試料NO. 10に示すようにEr2 3 を0.
10モル部含めると、異常粒子が発生せず且つ所望の特
性を得ることができる。従って、Er2 3 の下限は
0.10モル部である。試料NO. 11に示すようにEr
2 3 が2.10モル部の場合にはεmax が所望値未満
になる。一方、試料NO.2に示すようにEr2 3
2.00モル部の場合には所望の特性を得ることができ
る。従って、Er2 3 の上限は2.00モル部であ
る。
As shown in sample No. 9, when Er 2 O 3 is 0, abnormal particles having a size 10 times or more of the average particle diameter of crystals are produced. On the other hand, as shown in sample No. 10, Er 2 O 3 was added to 0.
If 10 mol parts are included, abnormal particles are not generated and desired characteristics can be obtained. Therefore, the lower limit of Er 2 O 3 is 0.10 part by mol. Er as shown in sample No. 11
When 2 O 3 is 2.10 parts by mole, ε max becomes less than the desired value. On the other hand, as shown in Sample No. 2, when Er 2 O 3 is 2.00 parts by mol, desired characteristics can be obtained. Therefore, the upper limit of Er 2 O 3 is 2.00 parts by mol.

【0018】試料NO. 12に示すようにMnOが0.0
2モル部の場合にはρが所望値未満である。一方、試料
NO. 2に示すようにMnOが0.03モル部の場合には
所望の特性が得られる。従って、MnOの下限は0.3
モル部である。試料NO. 13に示すようにMnOが0.
32の場合にはεmax 及びρが所望値未満である。一
方、試料NO. 14に示すようにMnOが0.30モル部
の場合には、所望の特性が得られる。従って、MnOの
上限は0.30モル部である。
As shown in sample No. 12, MnO was 0.0
In the case of 2 mol parts, ρ is less than the desired value. Meanwhile, the sample
As shown in NO. 2, when MnO is 0.03 part by mole, desired characteristics are obtained. Therefore, the lower limit of MnO is 0.3.
The molar part. As shown in sample No. 13, MnO was less than 0.
In the case of 32, ε max and ρ are less than desired values. On the other hand, as shown in sample No. 14, when MnO is 0.30 part by mol, desired characteristics are obtained. Therefore, the upper limit of MnO is 0.30 part by mole.

【0019】[0019]

【第2の実施例】図2は第2の実施例の積層型磁器コン
デンサ18を示す。この磁器コンデンサ18は誘電体磁
器基体20と、複数の第1の内部電極22と、複数の第
2の内部電極24と、第1及び第2の外部電極26、2
8とから成る。誘電体磁器基体20は、図1の誘電体磁
器基体12と同様に、 (Ba1-x Cax )(Ti1-y Zry )O3 から成る100モル部の基本成分と、0.1〜2.0モ
ル部のエルビウム酸化物と、0.03〜0.30モル部
のマンガン酸化物とから成る組成物で形成されている。
第1及び第2の内部電極22、24は誘電体磁器基体2
0にそれぞれ埋設され、これ等の一端が誘電体磁器基体
20の一対の側面に露出し、ここに設けられた第1及び
第2の外部電極26、28に接続されている。第1及び
第2の内部電極22、24は誘電体磁器基体20の一部
から成る誘電体磁器層を介して互いに対向しているの
で、これ等の間に容量を得ることができる。
[Second Embodiment] FIG. 2 shows a laminated ceramic capacitor 18 according to a second embodiment. This porcelain capacitor 18 includes a dielectric porcelain substrate 20, a plurality of first inner electrodes 22, a plurality of second inner electrodes 24, first and second outer electrodes 26, 2.
8 and. The dielectric porcelain substrate 20, like the dielectric porcelain substrate 12 of FIG. 1, contains 100 mol parts of the basic component of (Ba 1-x Ca x ) (Ti 1-y Zr y ) O 3 and 0.1 .About.2.0 mol parts of erbium oxide and 0.03 to 0.30 mol parts of manganese oxide.
The first and second internal electrodes 22, 24 are the dielectric ceramic base 2
0 is embedded in each of them, one end of which is exposed on a pair of side surfaces of the dielectric ceramic substrate 20 and is connected to the first and second external electrodes 26 and 28 provided therein. Since the first and second internal electrodes 22 and 24 are opposed to each other with the dielectric porcelain layer formed of a part of the dielectric porcelain base body 20 in between, a capacitance can be obtained between them.

【0020】積層型磁器コンデンサを製造する時には、
周知のように、誘電体磁器材料から成るグリーンシート
(未焼成セラミックシート)を複数枚用意する。次に複
数のグリーンシートに第1及び第2の内部電極22、2
4を得るための導電ペーストを所望パターンに塗布して
積層し、更にこの上下に導電ペーストを重ね、これ等を
圧着した後に、所望形状にカッテングして焼成する。こ
れにより、図2に示す第1及び第2の内部電極22、2
4を伴なった磁器基体20が得られる。しかる後、磁器
基体20の側面に導電ペーストを塗布して焼付けること
によって第1及び第2の外部電極26、28を形成す
る。
When manufacturing a laminated porcelain capacitor,
As is well known, a plurality of green sheets (unfired ceramic sheets) made of a dielectric ceramic material are prepared. Next, the first and second internal electrodes 22, 2 are formed on the plurality of green sheets.
The conductive paste for obtaining 4 is applied in a desired pattern and laminated, and the conductive paste is further laminated on the upper and lower sides, these are pressure-bonded, and then cut into a desired shape and baked. As a result, the first and second internal electrodes 22, 2 shown in FIG.
A porcelain substrate 20 with 4 is obtained. Thereafter, the side surfaces of the porcelain substrate 20 are coated with a conductive paste and baked to form the first and second external electrodes 26, 28.

【0021】図2の積層コンデンサ18についても、図
1の磁器コンデンサ10と同様に表1の試料NO. 1、
2、5、8、10、14〜20と同一の組成の種々の試
料を作成し、これ等のεmax 、tan δ、ρ、Dを測定し
たところ、本発明の目標特性を満足していた。また、異
常粒子の発生が見られなかった。
As with the porcelain capacitor 10 of FIG. 1, the multilayer capacitor 18 of FIG.
When various samples having the same composition as 2, 5, 8, 10, 14 to 20 were prepared, and ε max , tan δ, ρ, and D of these samples were measured, the target characteristics of the present invention were satisfied. . In addition, no abnormal particles were observed.

【0022】[0022]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) 基本成分(Ba1-x Cax )(Ti1-y
y )O3 を得るために、BaT3 とCaZrO3
とを適当な比率で配合すること、又はBa(Ti1-y
y )O3 とCaTiO3 とを適当な比率で配合するこ
と、又はBaTiO3 とCaTiO3 とBaZrO3
を適当な比率で配合することができる。 (2) 焼成温度は例えば1100〜1400℃の範囲
で変えることができる 。 (3) 誘電体磁器材料の出発物質として、Er2
3 の代りにEr(OH)3 等のエルビウム化合物を使
用することができる。 (4) 誘電体磁器材料の出発物質としてMnOの代り
に、Mn3 4 、Mn2 3 、MnO2 等の酸化物、M
n(OH)2 、MnO(OH)等の水酸化物を使用する
ことができる。 (5) 基本成分を得るための仮焼工程を省いて、例え
ばBaTiO3 と、CaZrO3 と、Er2 3 と、M
nOとを混合し、この混合物の成形体を作って焼成して
もよい。
MODIFICATION The present invention is not limited to the above-mentioned embodiments, and the following modifications are possible. (1) Basic component (Ba 1-x Ca x ) (Ti 1-y Z
To obtain r y) O 3, BaT i O 3 and CaZrO 3
And (or Ba (Ti 1-y Z
r y ) O 3 and CaTiO 3 can be blended in an appropriate ratio, or BaTiO 3 , CaTiO 3, and BaZrO 3 can be blended in an appropriate ratio. (2) The firing temperature can be changed in the range of 1100 to 1400 ° C, for example. (3) Er 2 as a starting material of the dielectric ceramic material
Instead of O 3 can be used Er (OH) erbium compounds such as 3. (4) instead of MnO as the starting material for the dielectric ceramic material, Mn 3 O 4, Mn 2 O 3, oxides such as MnO 2, M
Hydroxides such as n (OH) 2 and MnO (OH) can be used. (5) For example, BaTiO 3 , CaZrO 3 , Er 2 O 3 , and M are omitted by omitting the calcination step for obtaining the basic components.
Alternatively, nO may be mixed, and a molded body of this mixture may be formed and fired.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の磁器コンデンサを示す正面図で
ある。
FIG. 1 is a front view showing a porcelain capacitor of a first embodiment.

【図2】第2の実施例の積層磁器コンデンサを示す断面
図である。
FIG. 2 is a sectional view showing a laminated ceramic capacitor of a second embodiment.

【符号の説明】[Explanation of symbols]

12 誘電体磁器基体 14、16 電極 12 Dielectric Porcelain Substrate 14, 16 Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀江 克之 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuyuki Horie 6-16-20 Ueno, Taito-ku, Tokyo Taiyo Induction Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (Ba1-x Cax )(Ti1-y Zry )O3 ここで、xは0.01〜0.10の範囲の数値、 yは0.10〜0.24の範囲の数値、から成る100
モル部の基本成分と、 0.1〜2.0モル部のエルビウム化合物と、 0.03〜0.30モル部のマンガン化合物とから成る
誘電体磁器。
1. (Ba 1-x Ca x ) (Ti 1-y Zr y ) O 3 where x is a numerical value in the range of 0.01-0.10 and y is 0.10-0.24. A range of numbers, consisting of 100
A dielectric porcelain comprising a molar part of a basic component, 0.1 to 2.0 parts by mass of an erbium compound, and 0.03 to 0.30 parts by mass of a manganese compound.
【請求項2】 誘電体磁器基体とこの誘電体磁器基体に
接触している少なくとも2つの電極とから成る磁器コン
デンサであって、前記誘電体磁器基体が、 (Ba1-x Cax )(Ti1-y Zry )O3 ここで、xは0.01〜0.10の範囲の数値、 yは0.10〜0.24の範囲の数値、から成る100
モル部の基本成分と、 0.1〜2.0モル部のエルビウム化合物と、 0.03〜0.30モル部のマンガン化合物とから成る
ことを特徴とする誘電体磁器コンデンサ。
2. A porcelain capacitor comprising a dielectric porcelain base and at least two electrodes in contact with the dielectric porcelain base, wherein the dielectric porcelain base is (Ba 1-x Ca x ) (Ti 1-y Zr y ) O 3 wherein x is a numerical value in the range of 0.01 to 0.10. Y is a numerical value in the range of 0.10 to 0.24 100
A dielectric ceramic capacitor comprising a molar part of a basic component, 0.1 to 2.0 molar part of an erbium compound, and 0.03 to 0.30 molar part of a manganese compound.
JP4225066A 1992-07-31 1992-07-31 Dielectric porcelain and porcelain capacitor Expired - Lifetime JP2915217B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4225066A JP2915217B2 (en) 1992-07-31 1992-07-31 Dielectric porcelain and porcelain capacitor
EP93112007A EP0581251A3 (en) 1992-07-31 1993-07-27 Ceramic materials of improved dielectric constants, and capacitors fabricated therefrom.
US08/098,640 US5296425A (en) 1992-07-31 1993-07-28 Ceramic materials of improved dielectric constants, and capacitors fabricated therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4225066A JP2915217B2 (en) 1992-07-31 1992-07-31 Dielectric porcelain and porcelain capacitor

Publications (2)

Publication Number Publication Date
JPH0652718A true JPH0652718A (en) 1994-02-25
JP2915217B2 JP2915217B2 (en) 1999-07-05

Family

ID=16823506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4225066A Expired - Lifetime JP2915217B2 (en) 1992-07-31 1992-07-31 Dielectric porcelain and porcelain capacitor

Country Status (1)

Country Link
JP (1) JP2915217B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226263A (en) * 2001-01-30 2002-08-14 Kyocera Corp Dielectric ceramic and laminated ceramic capacitor
JP2002274937A (en) * 2001-03-21 2002-09-25 Kyocera Corp Dielectric ceramic excellent in temperature characteristics
US6485672B1 (en) 1999-02-26 2002-11-26 Tdk Corporation Method of manufacturing dielectric ceramic composition and electronic device containing dielectric layer
JP2017108149A (en) * 2011-07-05 2017-06-15 キヤノン株式会社 Piezoelectric element, laminated piezoelectric element, liquid discharging head, liquid discharging device, ultrasonic motor, optical apparatus, and electronic apparatus
US10424721B2 (en) 2011-07-05 2019-09-24 Canon Kabushiki Kaisha Piezoelectric element, multilayered piezoelectric element, liquid discharge head, liquid discharge apparatus, ultrasonic motor, optical apparatus, and electronic apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221504A (en) * 1987-03-09 1988-09-14 ティーディーケイ株式会社 Non-linear dielectric element
JPH0412055A (en) * 1990-04-28 1992-01-16 Kyocera Corp Ceramic composition having high dielectric constant
JPH04115409A (en) * 1990-09-05 1992-04-16 Murata Mfg Co Ltd Non-reducing dielectric ceramic composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221504A (en) * 1987-03-09 1988-09-14 ティーディーケイ株式会社 Non-linear dielectric element
JPH0412055A (en) * 1990-04-28 1992-01-16 Kyocera Corp Ceramic composition having high dielectric constant
JPH04115409A (en) * 1990-09-05 1992-04-16 Murata Mfg Co Ltd Non-reducing dielectric ceramic composite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485672B1 (en) 1999-02-26 2002-11-26 Tdk Corporation Method of manufacturing dielectric ceramic composition and electronic device containing dielectric layer
JP2002226263A (en) * 2001-01-30 2002-08-14 Kyocera Corp Dielectric ceramic and laminated ceramic capacitor
JP2002274937A (en) * 2001-03-21 2002-09-25 Kyocera Corp Dielectric ceramic excellent in temperature characteristics
JP2017108149A (en) * 2011-07-05 2017-06-15 キヤノン株式会社 Piezoelectric element, laminated piezoelectric element, liquid discharging head, liquid discharging device, ultrasonic motor, optical apparatus, and electronic apparatus
US10424721B2 (en) 2011-07-05 2019-09-24 Canon Kabushiki Kaisha Piezoelectric element, multilayered piezoelectric element, liquid discharge head, liquid discharge apparatus, ultrasonic motor, optical apparatus, and electronic apparatus
JP2019212921A (en) * 2011-07-05 2019-12-12 キヤノン株式会社 Piezoelectric element, laminated piezoelectric element, liquid discharging head, liquid discharging device, ultrasonic motor, optical apparatus, and electronic apparatus

Also Published As

Publication number Publication date
JP2915217B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
JP4446324B2 (en) Dielectric porcelain composition and capacitor using the same
EP1350777B1 (en) High permittivity dielectric ceramic composition and electronic device
JPH06302403A (en) Lamination type semiconductor ceramic element
JP2004238251A (en) Dielectric ceramic composition and ceramic electronic component
JP2915217B2 (en) Dielectric porcelain and porcelain capacitor
JP3325051B2 (en) Dielectric porcelain composition
JP3634930B2 (en) Dielectric porcelain composition
JP2779740B2 (en) Dielectric porcelain and porcelain capacitor
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JP2003104774A (en) Dielectric porcelain composition and capacitor using the same
JP2660010B2 (en) High dielectric constant porcelain composition and ceramic capacitor
JP2875936B2 (en) Dielectric porcelain and porcelain capacitor
JP2784864B2 (en) Dielectric porcelain and porcelain capacitor
JP2872502B2 (en) Dielectric porcelain capacitors
JP2872512B2 (en) Dielectric porcelain and porcelain capacitor
JPS61251563A (en) High permittivity ceramic composition
JP2958826B2 (en) Dielectric porcelain composition
JP2513527B2 (en) Dielectric porcelain composition
JPH0987014A (en) Production of high dielectric constant porcelain composition
KR0165557B1 (en) Ceramic composition
JP2985442B2 (en) Porcelain composition
JPH06203635A (en) Dielectric ceramic and ceramic capacitor
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition
JPH054354B2 (en)
JPH06251622A (en) Dielectric ceramic and ceramic capacitor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990330