JP3389947B2 - Dielectric ceramic composition and thick film capacitor using the same - Google Patents

Dielectric ceramic composition and thick film capacitor using the same

Info

Publication number
JP3389947B2
JP3389947B2 JP31433998A JP31433998A JP3389947B2 JP 3389947 B2 JP3389947 B2 JP 3389947B2 JP 31433998 A JP31433998 A JP 31433998A JP 31433998 A JP31433998 A JP 31433998A JP 3389947 B2 JP3389947 B2 JP 3389947B2
Authority
JP
Japan
Prior art keywords
dielectric
thick film
composition
ceramic composition
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31433998A
Other languages
Japanese (ja)
Other versions
JP2000143337A (en
Inventor
康弘 社藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP31433998A priority Critical patent/JP3389947B2/en
Publication of JP2000143337A publication Critical patent/JP2000143337A/en
Application granted granted Critical
Publication of JP3389947B2 publication Critical patent/JP3389947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品に使用さ
れる高誘電率の誘電体磁器組成物に関する。更にこの組
成物を用いた厚膜コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high dielectric constant dielectric ceramic composition used for electronic parts. Furthermore, it relates to a thick film capacitor using this composition.

【0002】[0002]

【従来の技術】小型化や高信頼性が望まれる電子機器に
おいては、実装密度の高いハイブリッドIC化が進めら
れており、従来の積層チップコンデンサに代って、厚膜
コンデンサに対する要望が高まっている。また厚膜抵抗
と厚膜コンデンサを組合わせたCRチップ電子部品の需
要も高まっている。厚膜コンデンサはセラミック基板上
の下部電極に誘電体の厚膜を形成し、その上に上部電極
を形成して作られる。ハイブリッドICやCRチップに
使用される厚膜コンデンサ用の誘電体材料が厚膜抵抗用
の抵抗ペーストを焼成する850℃程度の温度でかつ短
時間に焼成できれば、この厚膜抵抗を製造しているベル
ト炉を使用して高い効率で生産することができる。
2. Description of the Related Art In electronic devices that are required to be compact and highly reliable, hybrid ICs with a high packaging density are being promoted, and there is an increasing demand for thick film capacitors in place of conventional multilayer chip capacitors. There is. Demand for CR chip electronic components that combine thick film resistors and thick film capacitors is also increasing. A thick film capacitor is manufactured by forming a thick film of a dielectric material on a lower electrode on a ceramic substrate and then forming an upper electrode on the thick film. If the dielectric material for the thick film capacitor used for the hybrid IC or the CR chip can be fired at the temperature of about 850 ° C. for firing the resistance paste for the thick film resistor in a short time, this thick film resistor is manufactured. It can be produced with high efficiency using a belt furnace.

【0003】しかし、これまで積層チップコンデンサに
用いられているチタン酸バリウム(BaTiO3)系や
鉛リラクサ系の誘電体材料を焼成するためには、100
0℃以上の高い焼成温度で数時間保持しなければならな
ず、またこの誘電体材料を低温かつ短時間で焼成する
と、誘電体材料が未焼成(未焼結)になり、いずれも厚
膜コンデンサ用誘電体材料に適さない。従来、厚膜コン
デンサ用誘電体材料に適するものとして、PbTiO3
−Pb(Mg1/3Nb2/3)O3−PbZrO3系にMnO
2を添加した誘電体磁器組成物が開示されている(特開
平5−314816)。この誘電体磁器組成物は誘電率
を損なわず、大気中、中性雰囲気中或いは還元雰囲気中
にて800〜1000℃で、短時間焼成が可能でかつ誘
電損失が小さい特長がある。
However, in order to fire the barium titanate (BaTiO 3 ) or lead relaxor dielectric materials used in multilayer chip capacitors, it is necessary to use 100
It must be held at a high firing temperature of 0 ° C. or higher for several hours, and if this dielectric material is fired at a low temperature for a short time, the dielectric material becomes unfired (unsintered), and both are thick films. Not suitable as a dielectric material for capacitors. Conventionally, PbTiO 3 has been used as a material suitable for a dielectric material for thick film capacitors.
-Pb MnO in (Mg 1/3 Nb 2/3) O 3 -PbZrO 3 series
2 dielectric ceramic composition obtained by adding a has been disclosed (JP-A-5-314816). This dielectric ceramic composition is characterized in that it does not impair the permittivity, can be fired in the air, a neutral atmosphere or a reducing atmosphere at 800 to 1000 ° C. for a short time and has a small dielectric loss.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記特開平5
−314816号公報に示される誘電体磁器組成物は、
その実施例で明らかなように誘電率が200〜465程
度であってそれ程高くなく、誘電損失が0.5〜0.9
5%程度であってそれ程小さくない。このため更に誘電
特性の優れた誘電体磁器組成物が望まれていた。本発明
の目的は、誘電率が大きくて誘電損失が小さく、900
℃以下の低温度で短時間の焼成が可能な誘電体磁器組成
物を提供することにある。本発明の別の目的は、この誘
電体磁器組成物を用いた厚膜コンデンサを提供すること
にある。
However, the above-mentioned Japanese Unexamined Patent Application Publication No.
The dielectric ceramic composition disclosed in Japanese Patent Publication No. 314816-
As is clear from the example, the dielectric constant is about 200 to 465, which is not so high, and the dielectric loss is 0.5 to 0.9.
It is about 5%, which is not so small. Therefore, a dielectric ceramic composition having further excellent dielectric properties has been desired. It is an object of the present invention that the dielectric constant is large and the dielectric loss is small.
An object of the present invention is to provide a dielectric ceramic composition that can be fired at a low temperature of ℃ or less for a short time. Another object of the present invention is to provide a thick film capacitor using this dielectric ceramic composition.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
Pb(Mg1/3Nb2/3)O3、Pb(Fe1/2Nb1/2
3及びPbTiO3の3成分からなり下記式(1)で表
される組成物の主成分と、MgOと、PbO、ZnO、
Bi23及びGeO2の4成分からなりBi23をBi
3/2に換算することにより下記(2)で表されるフラ
ックスとを含む誘電体磁器組成物であって、MgOを主
成分に対して0.5〜5.0モル%含み、フラックスを
主成分とMgOの合計に対して3〜10重量%含むこと
を特徴とする誘電体磁器組成物である。 xPb(Mg1/3Nb2/3)O3・yPb(Fe1/2Nb1/2)O3・zPbTiO3 ……(1) (式中、x、y、zはモル比でx+y+z=1、0.8
0≦x≦0.92、0.02≦y≦0.19、0.00
5≦z≦0.06) a(PbO)・b(ZnO)・c{(BiO3/21-n(GeO2n}……(2) (式中、a、b、cはモル比でa+b+c=1、0.3
0≦a≦0.80、0.15≦c≦0.50、0<n≦
0.75) 上記特定組成の主成分に対して、特定割合のMgOと特
定組成のフラックスとを添加した組成にすることによ
り、低温焼成が可能となり、高誘電率で誘電損失の小さ
い磁器組成物を実現することができる。
The invention according to claim 1 is
Pb (Mg 1/3 Nb 2/3 ) O 3 , Pb (Fe 1/2 Nb 1/2 )
The main component of the composition represented by the following formula (1) consisting of three components of O 3 and PbTiO 3 , MgO, PbO, ZnO,
Bi 2 O 3 and GeO 2 composed of 4 components Bi 2 O 3
A dielectric ceramic composition containing a flux represented by the following (2) when converted to O 3/2 , containing 0.5 to 5.0 mol% of MgO with respect to the main component and containing the flux. The dielectric ceramic composition is characterized by containing 3 to 10% by weight with respect to the total of the main component and MgO. xPb (Mg 1/3 Nb 2/3 ) O 3 · yPb (Fe 1/2 Nb 1/2 ) O 3 · zPbTiO 3 (1) (where x, y and z are molar ratios x + y + z = 1, 0.8
0 ≦ x ≦ 0.92, 0.02 ≦ y ≦ 0.19, 0.00
5 ≦ z ≦ 0.06) a (PbO) · b (ZnO) · c {(BiO 3/2 ) 1-n (GeO 2 ) n } (2) (where a, b and c are Molar ratio a + b + c = 1, 0.3
0 ≦ a ≦ 0.80, 0.15 ≦ c ≦ 0.50, 0 <n ≦
0.75) A porcelain composition with a high dielectric constant and a small dielectric loss that enables low temperature firing by adding MgO in a specific ratio and a flux of a specific composition to the main component of the specific composition described above. Can be realized.

【0006】請求項2に係る発明は、図2に示すように
セラミック基板11上に設けられた下部電極12と、こ
の下部電極12上に設けられた請求項1記載の誘電体磁
器組成物からなる誘電体層13と、この誘電体層13上
に設けられた上部電極14とを備えた厚膜コンデンサで
ある。
The invention according to claim 2 relates to a lower electrode 12 provided on a ceramic substrate 11 as shown in FIG. 2, and a dielectric ceramic composition according to claim 1 provided on the lower electrode 12. A thick film capacitor having a dielectric layer 13 and an upper electrode 14 provided on the dielectric layer 13.

【0007】[0007]

【発明の実施の形態】本発明の誘電体磁器組成物の前記
式(1)で表される主成分組成は、図1に示すように3
成分系組成図において、A〜Eの各点で囲まれた斜線の
範囲内にあるものである。即ち、図1におけるA,B,
C,D及びEの各点の組成(u,v,w)はPb(Mg
1/3Nb2/3)O3をuモル%、Pb(Fe1/2Nb1/2
3をvモル%、PbTiO3をwモル%としたとき、A
(80,14,6)、B(92,2,6)、C(92,
7,0.5)、D(81,19,0.5)及びE(8
0,19,1)である。
BEST MODE FOR CARRYING OUT THE INVENTION The main component composition represented by the above formula (1) of the dielectric ceramic composition of the present invention is 3 as shown in FIG.
In the composition chart of the component system, it is within the range of the diagonal line surrounded by the points A to E. That is, A, B, in FIG.
The composition (u, v, w) at each point of C, D and E is Pb (Mg
1/3 Nb 2/3 ) O 3 in u mol%, Pb (Fe 1/2 Nb 1/2 ).
When O 3 is v mol% and PbTiO 3 is w mol%, A
(80, 14, 6), B (92, 2, 6), C (92,
7, 0.5), D (81, 19, 0.5) and E (8)
0, 19, 1).

【0008】主成分の式(1)のxPb(Mg1/3Nb
2/3)O3・yPb(Fe1/2Nb1/2)O3・zPbTiO3
において、xが0.80未満であると誘電損失が大きく
なり、xが0.92を超えると焼成温度が高くなる。こ
のためxの範囲は0.80≦x≦0.92に決められ
る。好ましくは0.83≦x≦0.91である。またy
が0.02未満であると焼成温度が高くなり、yが0.
19を超えると比抵抗が小さくなる。このためyの範囲
は0.02≦y≦0.19に決められる。好ましくは
0.07≦y≦0.16である。更にzが0.005未
満であると誘電率が小さくなり、zが0.06を超える
と誘電損失が大きくなる。このためzの範囲は0.00
5≦z≦0.06に決められる。好ましくは0.005
≦x≦0.04である。本発明の主成分に対してMgO
が0.5〜5.0モル%含まれる。MgOが0.5モル
%未満であると誘電率の向上にほとんど寄与することが
なく、5.0モル%を超えると誘電率が低くなる。好ま
しくは1.0〜3.0モル%である。
XPb (Mg 1/3 Nb of the formula (1) of the main component
2/3 ) O 3 · yPb (Fe 1/2 Nb 1/2 ) O 3 · zPbTiO 3
In, when x is less than 0.80, the dielectric loss becomes large, and when x exceeds 0.92, the firing temperature becomes high. Therefore, the range of x is determined to be 0.80 ≦ x ≦ 0.92. Preferably 0.83 ≦ x ≦ 0.91. See y
Is less than 0.02, the firing temperature is high, and y is 0.
If it exceeds 19, the specific resistance decreases. Therefore, the range of y is determined to be 0.02 ≦ y ≦ 0.19. Preferably 0.07 ≦ y ≦ 0.16. Further, when z is less than 0.005, the dielectric constant becomes small, and when z exceeds 0.06, the dielectric loss becomes large. Therefore, the range of z is 0.00
It is determined that 5 ≦ z ≦ 0.06. Preferably 0.005
≦ x ≦ 0.04. MgO for the main component of the present invention
Is contained in an amount of 0.5 to 5.0 mol%. When MgO is less than 0.5 mol%, it hardly contributes to the improvement of the dielectric constant, and when it exceeds 5.0 mol%, the dielectric constant becomes low. It is preferably 1.0 to 3.0 mol%.

【0009】本発明の主成分とMgOの合計に対して、
PbO、ZnO、Bi23及びGeO2の4成分からな
るフラックス(融剤)が3〜10重量%、好ましくは4
〜7重量%含まれる。フラックスの添加量が3重量%未
満であると低温度で短時間の焼成が困難となり、10重
量%を超えると誘電率が低下する不具合を生じる。また
フラックスの前記式(2)のa(PbO)・b(Zn
O)・c{(BiO3/21-n(GeO2n}において、
aが0.30未満であると低温度で短時間の焼成が困難
となり、0.80を超えると誘電損失が大きくなる。c
が0.15未満であると低温度で短時間の焼成が困難と
なり、0.50を超えると結晶粒が大きくなる。またn
が0であると、GeO2成分が含まれなくなり、低温度
の焼成がより一層困難になり、0.75を超えると誘電
率が低くなる。bに関してはa+b+c=1と上記aの
範囲と上記cの範囲から決められる範囲において任意で
ある。
With respect to the total of the main component of the present invention and MgO,
The flux (fluxing agent) consisting of four components of PbO, ZnO, Bi 2 O 3 and GeO 2 is 3 to 10% by weight, preferably 4
~ 7% by weight. If the added amount of the flux is less than 3% by weight, it is difficult to perform firing at a low temperature for a short time, and if it exceeds 10% by weight, the dielectric constant lowers. In addition, the flux of a (PbO) · b (Zn in the above formula (2) is
In O) · c {(BiO 3/2 ) 1-n (GeO 2) n},
When a is less than 0.30, it becomes difficult to perform firing at a low temperature for a short time, and when it exceeds 0.80, dielectric loss increases. c
Is less than 0.15, it becomes difficult to fire at low temperature for a short time, and if it exceeds 0.50, the crystal grains become large. Also n
Is 0, the GeO 2 component is not contained, and low temperature firing becomes more difficult, and when it exceeds 0.75, the dielectric constant becomes low. Regarding b, a + b + c = 1, and it is optional in a range determined from the above range of a and the range of c.

【0010】このような本発明の誘導体磁器組成物を製
造するには、例えば一酸化鉛(PbO)、酸化マグネシ
ウム(MgO)、五酸化ニオブ(Nb25)、酸化第二
鉄(Fe23)、酸化チタニウム(TiO2)、或いは
これらの複合酸化物等の粉末を所定の割合になるように
秤量し、純水を加えて湿式ボールミル等により十分に混
合する。次にこの混合物を乾燥した後、必要に応じて7
00〜900℃の範囲で数時間仮焼する。得られた仮焼
物を湿式ボールミル等で粉砕し、この仮焼粉を乾燥す
る。一方、一酸化鉛(PbO)、酸化亜鉛(ZnO)、
酸化ホウ素(B23)及び酸化ゲルマニウム(Ge
2)を所定の割合になるように秤量し、湿式ボールミ
ル等により十分に混合してフラックスを調製する。この
フラックスを上記仮焼粉に所定量加え混合する。
To produce such a derivative ceramic composition of the present invention, for example, lead monoxide (PbO), magnesium oxide (MgO), niobium pentoxide (Nb 2 O 5 ), ferric oxide (Fe 2 Powders of O 3 ), titanium oxide (TiO 2 ), or a complex oxide of these are weighed so as to have a predetermined ratio, pure water is added, and sufficiently mixed by a wet ball mill or the like. The mixture is then dried and, if necessary, 7
Calcination is performed in the range of 00 to 900 ° C for several hours. The obtained calcined product is pulverized by a wet ball mill or the like, and the calcined powder is dried. On the other hand, lead monoxide (PbO), zinc oxide (ZnO),
Boron oxide (B 2 O 3 ) and germanium oxide (Ge
O 2 ) is weighed so as to have a predetermined ratio and sufficiently mixed by a wet ball mill or the like to prepare a flux. A predetermined amount of this flux is added to the calcined powder and mixed.

【0011】この誘電体材料から厚膜コンデンサを作る
場合には、上記フラックスを添加した混合物を乾燥して
粉砕し、誘電体粉末を作る。この誘電体粉末に有機ビヒ
クルを加えて混練し、誘電体ペーストを調製する。図2
に示すように、アルミナ基板のような絶縁性セラミック
基板11の上にCu、Ag、Ag−Pdのいずれかの金
属粉末とガラス粉末と有機ビヒクルを含む電極ペースト
をスクリーン印刷し乾燥した後、焼成して下部電極12
を形成する。この下部電極12の上に上記誘電体ペース
トをスクリーン印刷し乾燥した後、焼成して誘電体層1
3を形成する。次にこの誘電体層13の上にCu、A
g、Ag−Pdのいずれかの金属粉末とガラス粉末と有
機ビヒクルを含む電極ペーストをスクリーン印刷し乾燥
した後、焼成して下部電極14を形成する。なお、この
誘電体材料からセラミックコンデンサを作ることも可能
である。この誘電体材料から円板状又は円筒状のセラミ
ックコンデンサを作る場合には、上記フラックスを添加
した混合物にポリビニルブチラール(PVB)を主成分
とする有機バインダを加えて造粒し、これを円板状又は
円筒状にプレス成形した後、焼成する。またこの誘電体
材料から積層セラミックコンデンサを作る場合には、上
記フラックスを添加した混合物にポリビニルブチラール
を主成分とする有機バインダを加えてセラミックグリー
ンシートを作製し、このグリーンシートと電極とを交互
に多数枚積層した後、焼成する。本発明の誘導体磁器組
成物は、いずれの形態のコンデンサを作る場合にも、そ
の焼成は700〜900℃の温度範囲で5〜15分間行
う。
When making a thick film capacitor from this dielectric material, the above-mentioned flux-added mixture is dried and pulverized to make a dielectric powder. An organic vehicle is added to this dielectric powder and kneaded to prepare a dielectric paste. Figure 2
As shown in FIG. 3, an electrode paste containing a metal powder of Cu, Ag, or Ag—Pd, a glass powder, and an organic vehicle is screen-printed on an insulating ceramic substrate 11 such as an alumina substrate, dried, and then baked. Then lower electrode 12
To form. The dielectric paste is screen-printed on the lower electrode 12, dried, and fired to form the dielectric layer 1.
3 is formed. Next, Cu, A on the dielectric layer 13
The lower electrode 14 is formed by screen-printing an electrode paste containing a metal powder of g or Ag-Pd, a glass powder, and an organic vehicle, drying the paste, and then firing the paste. It is also possible to make a ceramic capacitor from this dielectric material. When a disk-shaped or cylindrical ceramic capacitor is made from this dielectric material, an organic binder containing polyvinyl butyral (PVB) as a main component is added to the above flux-added mixture, and the mixture is granulated. After press-forming into a cylindrical or cylindrical shape, it is fired. When making a monolithic ceramic capacitor from this dielectric material, an organic binder whose main component is polyvinyl butyral is added to the above-mentioned flux-added mixture to make a ceramic green sheet, and the green sheet and the electrodes are alternated. After laminating a large number of sheets, they are fired. The dielectric porcelain composition of the present invention is fired in a temperature range of 700 to 900 ° C. for 5 to 15 minutes in making a capacitor of any form.

【0012】[0012]

【実施例】次に本発明の実施例を比較例とともに説明す
る。この例では、電気特性を容易に調べるために厚膜コ
ンデンサの形態でなく、円板状のセラミックコンデンサ
を作製した。出発原料としてPbO、MgNb26、F
eNbO4及びTiO2の主成分とMgOを使用し、これ
らを表1に示す配合比となるように秤量し、ボールミル
中で純水とともに23時間湿式混合した。次いでこの混
合物を脱水し乾燥した後、750℃で2時間仮焼した。
この仮焼物を再びボールミルにより純水とともに23時
間湿式混合した後、脱水し乾燥した。次にPbO、Bi
23、ZnO及びGeO2をを表1に示す配合比となる
ように秤量し、乳鉢を用いて十分に混合した後、600
℃で4時間仮焼した。この仮焼物を再度乳鉢を用いて十
分に粉砕してフラックスを得た。
EXAMPLES Next, examples of the present invention will be described together with comparative examples. In this example, a disk-shaped ceramic capacitor was manufactured instead of the thick film capacitor in order to easily investigate the electrical characteristics. PbO, MgNb 2 O 6 , F as starting materials
The main components of eNbO 4 and TiO 2 and MgO were used, these were weighed so as to have the compounding ratio shown in Table 1, and wet-mixed with pure water in a ball mill for 23 hours. Next, this mixture was dehydrated, dried, and then calcined at 750 ° C. for 2 hours.
The calcined product was again wet mixed with pure water in a ball mill for 23 hours, dehydrated and dried. Next, PbO and Bi
2 O 3 , ZnO and GeO 2 were weighed so that the compounding ratio shown in Table 1 was obtained, thoroughly mixed with a mortar, and then 600
It was calcined at ℃ for 4 hours. This calcined product was thoroughly crushed again using a mortar to obtain a flux.

【0013】上記主成分とMgOを含む乾燥物に上記フ
ラックスを表1に示す割合で加えて混合した。この混合
物に溶剤のエタノールを加え、ボールミルで23時間混
合した後、乾燥して粉末化した。この乾燥粉末に有機バ
インダとしてポリビニルブチラールを加え、120℃で
1時間乾燥した後、2トン/cm2の圧力で加圧成形し
て円板状の成形体を作製した。この成形体を大気中10
0℃/時間の割合で昇温し、700〜900℃程度の温
度範囲で10分間保持して焼成した。このようにして得
られた直径12mm、厚さ0.8mmの円板状の磁器素
体の上面及び下面にAgペーストをそれぞれ塗布して7
50℃で焼付けて上部電極及び下部電極を形成し、円板
状のセラミックコンデンサを得た。このセラミックコン
デンサの電気特性を調べた。その結果を表2に示す。な
お、電気特性の誘電率及び誘電損失(tanδ)はYH
PデジタルLCRメータモデル4274Aを用い、測定
周波数1kHz、測定電圧1.0Vrms、温度25℃に
て測定した。また上記磁器素体の密度も示した。
The above flux was added to the dried product containing the above main component and MgO in the ratio shown in Table 1 and mixed. Ethanol as a solvent was added to this mixture, and the mixture was mixed by a ball mill for 23 hours, then dried and pulverized. Polyvinyl butyral as an organic binder was added to this dry powder, and the mixture was dried at 120 ° C. for 1 hour and pressure-molded at a pressure of 2 ton / cm 2 to produce a disk-shaped molded body. This molded body was placed in the atmosphere for 10
The temperature was raised at a rate of 0 ° C./hour, and the temperature was kept at about 700 to 900 ° C. for 10 minutes for firing. The Ag paste was applied to each of the upper surface and the lower surface of the disk-shaped porcelain body having a diameter of 12 mm and a thickness of 0.8 mm thus obtained.
An upper electrode and a lower electrode were formed by baking at 50 ° C. to obtain a disk-shaped ceramic capacitor. The electrical characteristics of this ceramic capacitor were investigated. The results are shown in Table 2. Note that the dielectric constant and dielectric loss (tan δ) of the electrical characteristics are YH
Using a P digital LCR meter model 4274A, measurement was performed at a measurement frequency of 1 kHz, a measurement voltage of 1.0 Vrms, and a temperature of 25 ° C. The density of the porcelain body is also shown.

【0014】[0014]

【表1】 [Table 1]

【0015】なお、表1において、※1は主成分に対す
る添加量を、※2は主成分とMgOとの合計に対する添
加量をそれぞれ示す。
In Table 1, * 1 indicates the amount added to the main component, and * 2 indicates the amount added to the total of the main component and MgO.

【0016】[0016]

【表2】 [Table 2]

【0017】表1及び表2より明らかなように、主成分
組成比、MgOの添加量、フラックス組成比及びフラッ
クス添加量が本発明の範囲内の実施例1〜17では、8
50〜900℃の低い温度で焼成した誘電体磁器組成物
の密度はいずれも大きいことが判る。またこれらの誘電
体磁器組成物から得られるセラミックコンデンサは誘電
率(比誘電率)が大きく、誘電損失(tanδ)が小さ
いことが判る。これに対して、主成分組成比、MgOの
添加量、フラックス組成比及びフラックス添加量が本発
明の範囲外の比較例1〜14では、実施例1〜17と比
べて良好な結果が得られなかった。
As is clear from Tables 1 and 2, in Examples 1 to 17 in which the main component composition ratio, the amount of MgO added, the flux composition ratio and the amount of flux added were within the scope of the present invention, 8
It can be seen that the density of the dielectric ceramic composition fired at a low temperature of 50 to 900 ° C. is high. Further, it can be seen that the ceramic capacitors obtained from these dielectric ceramic compositions have a large dielectric constant (relative dielectric constant) and a small dielectric loss (tan δ). On the other hand, in Comparative Examples 1 to 14 in which the main component composition ratio, the amount of MgO added, the flux composition ratio, and the amount of flux added were outside the scope of the present invention, good results were obtained as compared with Examples 1 to 17. There wasn't.

【0018】[0018]

【発明の効果】以上述べたように、本発明の誘電体磁器
組成物は誘電率が大きくかつ誘電損失が小さいため、セ
ラミックコンデンサの誘電体材料として極めて有用であ
る。また本発明の誘電体磁器組成物は低温度かつ短時間
で焼成し、高密度になるため、ハイブリッドICに使用
される厚膜コンデンサに適したものとなる。このため、
ハイブリッドIC回路の厚膜抵抗を製造するベルト炉の
製造ラインで厚膜コンデンサを作製できるため、厚膜コ
ンデンサを高い効率でしかも厚膜抵抗とともに生産する
ことができる。
As described above, since the dielectric ceramic composition of the present invention has a large dielectric constant and a small dielectric loss, it is extremely useful as a dielectric material for ceramic capacitors. Further, since the dielectric ceramic composition of the present invention is fired at a low temperature for a short time to have a high density, it is suitable for a thick film capacitor used in a hybrid IC. For this reason,
Since the thick film capacitor can be manufactured on the belt furnace production line for manufacturing the thick film resistor of the hybrid IC circuit, the thick film capacitor can be produced with high efficiency and together with the thick film resistor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の誘電体磁器組成物の組成範囲を示すP
b(Mg1/3Nb2/3)O3・Pb(Fe1/2Nb1/2
3・PbTiO3三成分系組成図。
FIG. 1 is a P showing a composition range of a dielectric ceramic composition of the present invention.
b (Mg 1/3 Nb 2/3 ) O 3 · Pb (Fe 1/2 Nb 1/2 )
O 3 · PbTiO 3 ternary composition diagram.

【図2】(a)本発明の厚膜コンデンサの上面図。 (b)図2(a)のA−A線断面図。FIG. 2A is a top view of the thick film capacitor of the present invention. (B) The sectional view on the AA line of FIG.

【符号の説明】[Explanation of symbols]

11 セラミック基板 12 下部電極 13 誘電体層 14 上部電極 11 Ceramic substrate 12 Lower electrode 13 Dielectric layer 14 Upper electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−31233(JP,A) 特開 平6−263517(JP,A) 特開 平5−330909(JP,A) 特開 平2−263761(JP,A) 特開 昭60−200513(JP,A) 特開 平5−190376(JP,A) 特開 平6−191941(JP,A) 特開 昭54−110500(JP,A) 特開 平8−259324(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04B 35/42 - 35/50 H01B 3/12 CA(STN) REGISTRY(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-8-31233 (JP, A) JP-A-6-263517 (JP, A) JP-A-5-330909 (JP, A) JP-A-2- 263761 (JP, A) JP 60-200513 (JP, A) JP 5-190376 (JP, A) JP 6-191941 (JP, A) JP 54-110500 (JP, A) JP-A-8-259324 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H04B 35/42-35/50 H01B 3/12 CA (STN) REGISTRY (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Pb(Mg1/3Nb2/3)O3、Pb(F
1/2Nb1/2)O3及びPbTiO3の3成分からなり下
記式(1)で表される組成物の主成分と、MgOと、P
bO、ZnO、Bi23及びGeO2の4成分からなり
Bi23をBiO3/2に換算することにより下記(2)
で表されるフラックスとを含む誘電体磁器組成物であっ
て、 MgOを前記主成分に対して0.5〜5.0モル%含
み、 前記フラックスを前記主成分と前記MgOの合計に対し
て3〜10重量%含むことを特徴とする誘電体磁器組成
物。 xPb(Mg1/3Nb2/3)O3・yPb(Fe1/2Nb1/2)O3・zPbTiO3 ……(1) (式中、x、y、zはモル比でx+y+z=1、0.8
0≦x≦0.92、0.02≦y≦0.19、0.00
5≦z≦0.06) a(PbO)・b(ZnO)・c{(BiO3/21-n(GeO2n}……(2) (式中、a、b、cはモル比でa+b+c=1、0.3
0≦a≦0.80、0.15≦c≦0.50、0<n≦
0.75)
1. Pb (Mg 1/3 Nb 2/3 ) O 3 , Pb (F
e 1/2 Nb 1/2 ) O 3 and PbTiO 3 which are the three main components of the composition represented by the following formula (1), MgO, and P
It consists of four components of bO, ZnO, Bi 2 O 3 and GeO 2 , and by converting Bi 2 O 3 to BiO 3/2 , the following (2)
A dielectric porcelain composition including a flux represented by the following: 0.5 to 5.0 mol% of MgO with respect to the main component, and the flux with respect to the total of the main component and the MgO. A dielectric ceramic composition comprising 3 to 10% by weight. xPb (Mg 1/3 Nb 2/3 ) O 3 · yPb (Fe 1/2 Nb 1/2 ) O 3 · zPbTiO 3 (1) (where x, y and z are molar ratios x + y + z = 1, 0.8
0 ≦ x ≦ 0.92, 0.02 ≦ y ≦ 0.19, 0.00
5 ≦ z ≦ 0.06) a (PbO) · b (ZnO) · c {(BiO 3/2 ) 1-n (GeO 2 ) n } (2) (where a, b and c are Molar ratio a + b + c = 1, 0.3
0 ≦ a ≦ 0.80, 0.15 ≦ c ≦ 0.50, 0 <n ≦
0.75)
【請求項2】 セラミック基板(11)上に設けられた下部
電極(12)と、前記下部電極(12)上に設けられた請求項1
記載の誘電体磁器組成物からなる誘電体層(13)と、前記
誘電体層(13)上に設けられた上部電極(14)とを備えた厚
膜コンデンサ。
2. The lower electrode (12) provided on a ceramic substrate (11), and the lower electrode (12) provided on the lower electrode (12).
A thick film capacitor comprising: a dielectric layer (13) made of the dielectric ceramic composition described above; and an upper electrode (14) provided on the dielectric layer (13).
JP31433998A 1998-11-05 1998-11-05 Dielectric ceramic composition and thick film capacitor using the same Expired - Fee Related JP3389947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31433998A JP3389947B2 (en) 1998-11-05 1998-11-05 Dielectric ceramic composition and thick film capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31433998A JP3389947B2 (en) 1998-11-05 1998-11-05 Dielectric ceramic composition and thick film capacitor using the same

Publications (2)

Publication Number Publication Date
JP2000143337A JP2000143337A (en) 2000-05-23
JP3389947B2 true JP3389947B2 (en) 2003-03-24

Family

ID=18052146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31433998A Expired - Fee Related JP3389947B2 (en) 1998-11-05 1998-11-05 Dielectric ceramic composition and thick film capacitor using the same

Country Status (1)

Country Link
JP (1) JP3389947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023235980A1 (en) * 2022-06-10 2023-12-14 Uti Limited Partnership Solid solution compositions and uses thereof

Also Published As

Publication number Publication date
JP2000143337A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
US5248640A (en) Non-reducible dielectric ceramic composition
EP0605904A2 (en) Nonreducible dielectric ceramic composition
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
US4809131A (en) Low temperature sintered ceramic capacitor having a high resistivity and bending strength, and method of manufacture
US4809130A (en) Low temperature sintered ceramic capacitor having a high resistivity and bending strength, and method of manufacture
JP2000223352A (en) Multilayer ceramic capacitor
JP2005162505A (en) Dielectric ceramic composition, electronic component and method of manufacturing the same
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JPH05148005A (en) Dielectric porcelain composition
JP2000169221A (en) Dielectric ceramic and production thereof
JP2531548B2 (en) Porcelain composition for temperature compensation
JPH0551127B2 (en)
JPS6234707B2 (en)
JPH0855519A (en) Dielectric ceramic composition
JP2531547B2 (en) Porcelain composition for temperature compensation
JP3450134B2 (en) Dielectric porcelain composition
JPH08119728A (en) Dielectric porcelain composition
JPH1174144A (en) Laminated ceramic capacitor
JP3336194B2 (en) Dielectric porcelain
JPH054354B2 (en)
JPH05139813A (en) Non-reducing dielectric ceramic composition
JPH0955332A (en) Laminated ceramic capacitor and its manufacture
JPH07101659B2 (en) Dielectric ceramic composition and multilayer capacitor element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021218

LAPS Cancellation because of no payment of annual fees