JP2531548B2 - Porcelain composition for temperature compensation - Google Patents

Porcelain composition for temperature compensation

Info

Publication number
JP2531548B2
JP2531548B2 JP3185678A JP18567891A JP2531548B2 JP 2531548 B2 JP2531548 B2 JP 2531548B2 JP 3185678 A JP3185678 A JP 3185678A JP 18567891 A JP18567891 A JP 18567891A JP 2531548 B2 JP2531548 B2 JP 2531548B2
Authority
JP
Japan
Prior art keywords
value
sample
composition
porcelain
electrical characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3185678A
Other languages
Japanese (ja)
Other versions
JPH0517222A (en
Inventor
弘志 岸
博 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP3185678A priority Critical patent/JP2531548B2/en
Publication of JPH0517222A publication Critical patent/JPH0517222A/en
Application granted granted Critical
Publication of JP2531548B2 publication Critical patent/JP2531548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCu(銅)等の卑金属を
内部電極とする積層磁器コンデンサに好適な温度補償用
磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature compensating porcelain composition suitable for a laminated porcelain capacitor having a base metal such as Cu (copper) as an internal electrode.

【0002】[0002]

【従来の技術】従来、積層磁器コンデンサの内部電極と
してPd(パラジウム)等の貴金属が主として用いられ
てきた。しかし、近年、電極のコストダウンのために内
部電極を安価なNi等の卑金属で形成することが検討さ
れている。卑金属の使用を可能にするためには、磁器組
成物が卑金属の融点以下で焼結しなければならない。内
部電極としてNi(ニッケル)を使用したJIS規格S
L特性等の温度補償用磁器コンデンサは、特公昭62−
24388号公報、特開昭62−157604号公報、
特開昭62−157605号公報、特開昭62−157
606号公報、特開昭63−157607号公報、特開
昭63−86314号公報、特開昭63−86315号
公報、特開昭63−86316号公報、特開昭63−8
6317号公報、特開昭63−86318号公報、特開
昭63−86319号公報等に開示されている。上記の
公報に開示されている誘電体磁器組成物は、1200℃
以下の還元性雰囲気で焼結可能である。
2. Description of the Related Art Conventionally, a noble metal such as Pd (palladium) has been mainly used as an internal electrode of a laminated ceramic capacitor. However, in recent years, in order to reduce the cost of the electrodes, it has been studied to form the internal electrodes with an inexpensive base metal such as Ni. In order to allow the use of base metals, the porcelain composition must sinter below the melting point of the base metal. JIS standard S using Ni (nickel) as internal electrode
For temperature compensating porcelain capacitors such as L characteristics, please refer to
24388, JP-A-62-157604,
JP-A-62-157605 and JP-A-62-157.
606, JP-A-63-157607, JP-A-63-86314, JP-A-63-86315, JP-A-63-86316, and JP-A-63-8.
6317, JP-A-63-86318, JP-A-63-86319 and the like. The dielectric ceramic composition disclosed in the above publication is 1200 ° C.
It can be sintered in the following reducing atmosphere.

【0003】[0003]

【発明が解決しようとする課題】ところで、近年電子回
路の高周波化が著しく、数100MHz〜数GHzの高
周波に適した磁器コンデンサの要求が非常に強い。しか
しながら、Niは抵抗率が大きいので、Ni電極の抵抗
値が必然的に高くなり、またNiは強磁性体であるため
に高周波領域において表皮効果によるNi電極の実効抵
抗値が増大する。この結果、Ni電極の磁器コンデンサ
は高周波領域でQ値が著しく低下するという問題があっ
た。
By the way, in recent years, the frequency of electronic circuits has been remarkably increased, and there is a strong demand for a ceramic capacitor suitable for high frequencies of several 100 MHz to several GHz. However, since Ni has a high resistivity, the resistance value of the Ni electrode inevitably becomes high, and since Ni is a ferromagnetic material, the effective resistance value of the Ni electrode due to the skin effect increases in the high frequency region. As a result, there is a problem that the Q value of the Ni electrode porcelain capacitor is significantly reduced in the high frequency region.

【0004】上述の問題を解決するために、抵抗率が小
さく、非磁性体で高周波特性に優れたCu(銅)を使用
することが考えられる。しかし、Cuの融点は1083
℃である為、上記公報に開示されている誘電体磁器組成
物によって緻密化が十分な磁器を得ることは困難であ
る。
In order to solve the above-mentioned problems, it is conceivable to use Cu (copper), which has a low resistivity, is a non-magnetic material and has excellent high frequency characteristics. However, the melting point of Cu is 1083
Since it is ℃, it is difficult to obtain a porcelain sufficiently densified by the dielectric ceramic composition disclosed in the above publication.

【0005】そこで、本発明の目的は1050℃以下の
還元性雰囲気で焼成可能であり且つJIS規格SL特性
(+350〜−1000ppm/℃)に適合する誘電体
磁器組成物を提供することにある。
Therefore, an object of the present invention is to provide a dielectric ceramic composition which can be fired in a reducing atmosphere at 1050 ° C. or less and which conforms to JIS standard SL characteristics (+350 to −1000 ppm / ° C.).

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明は、(1−α−β){(Sr1-x Cax )O}
k {(Ti1-y Zry )O2 }+αLi2 SiO3 +β
MF2 ( 但し、MF2 はCaF2 、SrF2 、Ba
2 、MgF2 の内の少なくとも1種のアルカリ土類フ
ッ化物、αは0.01〜0.05の範囲の数値、βは
0.01〜0.05の範囲の数値、kは1.00〜1.
04の範囲の数値、xは0.35〜0.50の数値、y
は0.10以下の数値)から成る温度補償用磁器組成物
に係わるものである。
The present invention for achieving the above object is (1-α-β) {(Sr 1-x Ca x ) O}.
k {(Ti 1-y Zr y ) O 2 } + αLi 2 SiO 3 + β
MF 2 (However, MF 2 is CaF 2 , SrF 2 , Ba
At least one alkaline earth fluoride selected from F 2 and MgF 2 , α is a numerical value in the range of 0.01 to 0.05, β is a numerical value in the range of 0.01 to 0.05, and k is 1. 00-1.
Numerical value in the range of 04, x is a numerical value of 0.35 to 0.50, y
Relates to a temperature-compensating porcelain composition consisting of 0.10 or less).

【0007】[0007]

【作用】Li2 SiO3 ( ケイ酸リチウム)とアルカリ
土類フッ化物であるMF2 (CaF2 、SrF2 、Ba
2 、MgF2 )を添加することによって、焼成時に低
温で液相が生じ、1050℃以下の焼成で緻密化された
磁器を得ることができる。また、上記組成にすることに
よってJIS規格SL特性を得ることができる。
Function: Li 2 SiO 3 (lithium silicate) and alkaline earth fluoride MF 2 (CaF 2 , SrF 2 , Ba)
By adding F 2 and MgF 2 ), a liquid phase occurs at a low temperature during firing, and a densified porcelain can be obtained by firing at 1050 ° C. or less. In addition, with the above composition, JIS standard SL characteristics can be obtained.

【0008】[0008]

【実施例】次に、本発明の実施例及び比較例に係わる誘
電体磁器組成物及びこれを使用した温度補償用磁器コン
デンサを説明する。 (1−α−β){(Sr1-x Cax )O}k {(Ti
1-y Zry )O2 }+αLi2SiO3 +βMF2 の組成式に従う35種類の誘電体磁器組成物を得るため
に表1及び表2に示すように組成の異なる35の試料を
用意した。表1において(1−α−β)の欄は組成式に
おける主成分{(Sr1-x Cax )O}k{(Ti1-y
Zry )O2 }の割合をモル比で示す。1−x、xの欄
には組成式におけるこれ等の値が示されている。なお1
−x、xはSrとCaのモル比を示す。1−y、yの欄
には組成式におけるこれ等の値が示されている。なお、
1−y、yは組成式におけるTi(チタン)とZr(ジ
ルコニウム)との割合をモル比で示す。kの欄には組成
式におけるこの値が示されている。なお、kは主成分に
おける{(Sr1-x Cax )O}k の割合を示す値であ
る。表2におけるαの欄は組成式における第1の添加成
分であるLi2 SiO3 (ケイ酸リチウム)の割合をモ
ル比で示す。MF2 の欄は組成式におけるアルカリ土類
フッ化物の内容(MgF2 、CaF2 、BaF2 、Sr
2 )とこれ等のβ値(組成物全体に対するモル比)を
示す。βの欄はMF2 の全体のβ値即ち組成式における
βの値を示す。表1及び表2の各欄の値が与えられれ
ば、本発明に関係する組成式を特定することができる。
EXAMPLES Next, the dielectric ceramic compositions according to the examples and comparative examples of the present invention and temperature compensating ceramic capacitors using the same will be described. (1-α-β) {(Sr 1-x Ca x ) O} k {(Ti
35 samples having different compositions were prepared as shown in Tables 1 and 2 in order to obtain 35 kinds of dielectric ceramic compositions according to the composition formula of 1-y Zr y ) O 2 } + αLi 2 SiO 3 + βMF 2 . In Table 1, the column of (1-α-β) is the main component in the composition formula {(Sr 1-x Ca x ) O} k {(Ti 1-y
The ratio of Zr y ) O 2 } is shown by a molar ratio. These values in the composition formula are shown in columns 1-x and x. 1
-X, x show the molar ratio of Sr and Ca. In the columns 1-y, y, these values in the composition formula are shown. In addition,
1-y and y represent the ratios of Ti (titanium) and Zr (zirconium) in the composition formula by the molar ratio. This value in the composition formula is shown in the column of k. Note that k is a value indicating the proportion of {(Sr 1-x Ca x ) O} k in the main component. The column α in Table 2 shows the ratio of Li 2 SiO 3 (lithium silicate), which is the first additive component in the composition formula, in molar ratio. The column of MF 2 shows the content of the alkaline earth fluoride in the composition formula (MgF 2 , CaF 2 , BaF 2 , Sr.
F 2 ) and β values thereof (molar ratio to the entire composition) are shown. The β column shows the overall β value of MF 2 , that is, the β value in the composition formula. Given the values in each column of Table 1 and Table 2, the composition formula related to the present invention can be specified.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】次に、試料NO. 1に係わる誘電体磁器組成
物及びこれを使用した磁器コンデンサの製造方法を説明
する。試料NO. 1の誘電体磁器組成物は次式で示すこと
ができる。 0.94{(Sr0.65Ca0.35)O}1.01{(Ti0.95
Zr0.05)O2 }+0.03Li2 SiO3 +0.03
CaF2 まず、この組成物の主成分 0.94{(Sr0.65Ca0.35)O}1.01{(Ti0.95
Zr0.05)O2 } を得ることができるように純度99%以上のSrCO3
(炭酸ストロンチウム)、CaCO3 (炭酸カルシウ
ム)、TiO2 (酸化チタン)、ZrO2 (酸化ジルコ
ニウム)を秤量した。
Next, a method for manufacturing a dielectric ceramic composition according to sample No. 1 and a ceramic capacitor using the same will be described. The dielectric ceramic composition of sample No. 1 can be expressed by the following formula. 0.94 {(Sr 0.65 Ca 0.35 ) O} 1.01 {(Ti 0.95
Zr 0.05 ) O 2 } + 0.03Li 2 SiO 3 +0.03
CaF 2 First, the main component of this composition is 0.94 {(Sr 0.65 Ca 0.35 ) O} 1.01 {(Ti 0.95
Zr 0.05 ) O 2 } to obtain SrCO 3 having a purity of 99% or more.
(Strontium carbonate), CaCO 3 (calcium carbonate), TiO 2 (titanium oxide), and ZrO 2 (zirconium oxide) were weighed.

【0012】次に、秤量した主成分の原料を水及びジル
コニアボールと共にポットミルに入れ、15時間湿式混
合した。次に、この混合で得られたスラリーを、ステン
レスバットに入れ、熱風乾燥機で150℃、4時間乾燥
し、この乾燥物をトンネル炉に入れて大気中で1200
℃、2時間仮焼し、 (1−α−β){(Sr1-x Cax )O}k {(Ti
1-y Zry )O2 } に従う主成分を得た。
Next, the weighed raw materials of the main components were put in a pot mill together with water and zirconia balls, and wet mixed for 15 hours. Next, the slurry obtained by this mixing was put in a stainless steel vat and dried by a hot air dryer at 150 ° C. for 4 hours.
Calcination at ℃ for 2 hours, (1-α-β) {(Sr 1-x Ca x ) O} k {(Ti
A main component according to 1-y Zr y ) O 2 } was obtained.

【0013】次に、純度99%以上の第1の添加成分と
してのLi2 SiO3 と第2の添加成分としてのCaF
2 とをα=0.03、β=0.03になる割合に秤量
し、主成分{(Sr1-x Cax )O}k {(Ti1-y
y )O2 }の粉末に添加し、これ等を水及びジルコニ
アボールと共にポットミルに入れ、15時間湿式混合
し、得られたスラリーをステンレスバットに入れて熱風
乾燥し、誘電体磁器組成物(原料混合物)を得た。
Next, Li 2 SiO 3 as the first additional component and CaF as the second additional component having a purity of 99% or more.
2 and were weighed in such a ratio that α = 0.03 and β = 0.03, and the main component {(Sr 1-x Ca x ) O} k {(Ti 1-y Z
r y ) O 2} powder, put them in a pot mill together with water and zirconia balls, wet mix for 15 hours, put the obtained slurry in a stainless vat and dry with hot air to obtain a dielectric ceramic composition ( A raw material mixture) was obtained.

【0014】次に、原料混合物粉末に有機バインダーと
してポリビニルアルコールを3重量%加えて造粒し、こ
れを型に入れ、油圧プレスで2000kg/cm2 の圧
力で直径10mm、厚さ1mmの円板に成形した。次
に、この円板(成形体)に大気中500℃で5時間の加
熱処理(脱バインダー処理)を施して有機バインダーを
焼失させた後、H2 (0.1%)+N2(99.9%)
の弱還元性雰囲気中で940℃、2時間焼成した。
Next, 3% by weight of polyvinyl alcohol as an organic binder was added to the raw material mixture powder to granulate the mixture, which was put in a mold and pressed by a hydraulic press at a pressure of 2000 kg / cm 2 to obtain a disk having a diameter of 10 mm and a thickness of 1 mm. Molded into. Next, this disc (molded body) was subjected to heat treatment (debinding treatment) at 500 ° C. for 5 hours in the atmosphere to burn off the organic binder, and then H 2 (0.1%) + N 2 (99. 9%)
Was calcined in a weak reducing atmosphere at 940 ° C. for 2 hours.

【0015】次に、焼結した誘電体磁器円板の両面にI
n−Ga(インジウム−ガリウム)合金の導電ペースト
を塗布することによって、図1に示すように磁器円板1
と一対の電極2、3とから成るコンデンサを完成させ
た。
Next, I is formed on both sides of the sintered dielectric ceramic disk.
By applying a conductive paste of an n-Ga (indium-gallium) alloy, as shown in FIG.
And a pair of electrodes 2 and 3 was completed.

【0016】次に、完成した磁器コンデンサの比誘電率
εs 、Q値、静電容量の温度係数TC、抵抗率ρを測定
した。表3は各試料の電気的諸特性と焼成温度を示す。
なお、電気的特性は次の条件で測定した。 (A) 比誘電率εs は温度25℃、周波数1MHz、
電圧(実効値)1Vの条件でコンデンサの静電容量を測
定し、この測定結果と磁器円板の厚み及び電極面積から
計算で求めた。 (B) Q値はεs と同一の条件で測定した。 (C) 静電容量の温度係数TC(ppm/℃)は、コ
ンデンサの25℃の容量C25と125℃の容量C125
測定し、次式で算出した。 TC(ppm/℃)={(C125 −C25)/C25}×
{1/(125−25)}×106 (D) 抵抗率ρ(MΩ・cm)は、温度25℃におい
てDC1kVをコンデンサに1分間印加した後に抵抗値
を測定し、この測定値と寸法に基づいて計算で求めた。
Next, the relative permittivity ε s , Q value, temperature coefficient TC of capacitance, and resistivity ρ of the completed ceramic capacitor were measured. Table 3 shows the electrical characteristics and firing temperature of each sample.
The electrical characteristics were measured under the following conditions. (A) The relative permittivity ε s has a temperature of 25 ° C., a frequency of 1 MHz,
The capacitance of the capacitor was measured under the condition of a voltage (effective value) of 1 V, and calculated from the measurement result, the thickness of the porcelain disc and the electrode area. (B) The Q value was measured under the same conditions as ε s . (C) The temperature coefficient TC (ppm / ° C.) of the electrostatic capacity was calculated by the following equation by measuring the 25 ° C. capacity C 25 and the 125 ° C. capacity C 125 of the capacitor. TC (ppm / ° C.) = {(C 125 −C 25 ) / C 25 } ×
{1 / (125-25)} × 10 6 (D) The resistivity ρ (MΩ · cm) is measured by measuring the resistance value after applying 1 kV DC to the capacitor for 1 minute at a temperature of 25 ° C. Based on the calculation.

【0017】試料NO. 2〜35についても、誘電体磁器
組成物の組成を表1及び表2に示すように変え、且つ焼
成温度を表3に示す値にした他は試料NO. 1と同一の方
法で誘電体磁器円板及びコンデンサを作り、同一の方法
で電気的特性を測定した。
Sample Nos. 2 to 35 are also the same as Sample No. 1 except that the composition of the dielectric ceramic composition is changed as shown in Tables 1 and 2 and the firing temperature is set to the value shown in Table 3. Dielectric porcelain discs and capacitors were prepared by the method described above, and the electrical characteristics were measured by the same method.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】表3から明らかなように、試料NO. 1の磁
器コンデンサのεs は278、Qは7600、TCは−
950ppm/℃、ρは1.29×107 である。
As is clear from Table 3, ε s of the ceramic capacitor of sample No. 1 is 278, Q is 7600, and TC is −
950 ppm / ° C., ρ is 1.29 × 10 7 .

【0021】本発明では、1050℃以下で焼結可能で
あり、且つεs が200以上、TCが−760〜−99
0ppm/℃、Qが3000以上、ρが1×107 MΩ
・cm以上の電気的特性を得ることができる誘電体磁器
組成物を目標としている。多くの試料は目標特性即ち所
望特性を満足するが、試料NO. 4、5、12、13、1
7、18、22、29、34、35は所望特性を満足し
ないので、比較例である。
In the present invention, sintering is possible at 1050 ° C. or lower, ε s is 200 or higher, and TC is -760 to -99.
0ppm / ℃, Q is 3000 or more, ρ is 1 × 10 7
-The goal is a dielectric porcelain composition that can obtain electrical characteristics of cm or more. Many samples meet the desired or desired properties, but sample Nos. 4, 5, 12, 13, 1
Nos. 7, 18, 22, 29, 34, and 35 do not satisfy the desired characteristics, and are comparative examples.

【0022】35の試料の内で、NO. 1〜NO. 5はCa
の割合を示すx値の適正範囲を明らかにするものであ
り、NO. 6〜NO. 12はZrの割合を示すy値の適正範
囲を明らかにするためのものであり、NO. 13〜NO. 1
7はCa+SrのTi+Zrに対する割合を示すk値の
適正範囲を明らかにするためのものであり、NO. 23〜
28はMF2 としてMgF2 、CaF2 、BaF2 、S
rF2 のいずれか1つ又は複数を使用することができる
ことを明らかにするためのものであり、NO. 29〜35
はβ値の適正範囲を明らかにするためのものである。
Of the 35 samples, NO. 1 to NO. 5 are Ca
NO. 6 to NO. 12 are for clarifying the proper range of the x value showing the ratio of NO, and NO. 6 to NO. 12 are for clarifying the proper range of the y value showing the ratio of Zr. .1
7 is for clarifying the proper range of the k value indicating the ratio of Ca + Sr to Ti + Zr, and NO. 23-
28 is MgF 2 , CaF 2 , BaF 2 , S as MF 2.
It is intended to clarify that any one or more of rF 2 can be used, and NO.
Is for clarifying the proper range of β value.

【0023】次に、本発明に係わる誘電体磁器組成物の
組成の限定理由を説明する。xの値が試料NO. 1、19
〜21に示すように0.35の場合には、所望の電気的
特性を得ることができるが、試料NO. 4に示すように
0.30の場合には、容量の温度係数TCが−1300
ppm/℃と悪化する。従って、xの値の下限値は0.
35である。一方、xの値が試料NO. 3、30〜33に
示すように0.50の場合には所望の電気的特性を得る
ことができるが、試料NO. 5に示すように0.55の場
合には、容量の温度係数TCが−1180ppm/℃と
悪化する。従って、xの値の上限値は0.50である。
Next, the reasons for limiting the composition of the dielectric ceramic composition according to the present invention will be described. The value of x is sample No. 1, 19
21 to 0.35, desired electrical characteristics can be obtained, but as shown in Sample No. 4, in the case of 0.30, the temperature coefficient TC of the capacity is -1300.
It deteriorates to ppm / ° C. Therefore, the lower limit of the value of x is 0.
35. On the other hand, when the value of x is 0.50 as shown in sample No. 3 and 30 to 33, the desired electrical characteristics can be obtained, but in the case of 0.55 as shown in sample NO. In addition, the temperature coefficient TC of the capacity deteriorates to -1180 ppm / ° C. Therefore, the upper limit of the value of x is 0.50.

【0024】yの値が試料NO. 11に示すように0.1
0の場合には、所望の電気的特性を得ることができる
が、試料NO. 12に示すように0.12の場合には容量
の温度係数TCが−1350ppm/℃と悪化する。従
って、yの値の上限値は0.10である。ZrはQ値及
び抵抗率ρを高める作用を有するが、試料NO. 6に示す
ようにyの値が0の場合でも所望の電気的特性を得るこ
とができる。従って、yの値の範囲は0.10以下であ
る。
The value of y is 0.1 as shown in sample No. 11.
In the case of 0, desired electrical characteristics can be obtained, but in the case of 0.12 as shown in sample No. 12, the temperature coefficient TC of capacity deteriorates to -1350 ppm / ° C. Therefore, the upper limit of the value of y is 0.10. Zr has a function of increasing the Q value and the resistivity ρ, but desired electrical characteristics can be obtained even when the value of y is 0 as shown in Sample No. 6. Therefore, the range of the value of y is 0.10.

【0025】kの値が試料NO. 14に示すように1.0
0の場合には、所望の電気的特性を得ることができる
が、試料NO. 13に示すように0.98の場合には、Q
の値が急激に低下し、抵抗率ρも1×106 MΩ・cm
未満となる。従って、kの値の下限値は1.00であ
る。一方、kの値が試料NO. 16に示すように1.04
の場合には所望の電気的特性が得られるが、試料NO. 1
7に示すように1.06の場合には、1100℃で焼成
しても緻密な焼結体が得られない。従って、kの値の上
限値は1.04である。
The value of k is 1.0 as shown in sample No. 14.
In the case of 0, the desired electrical characteristics can be obtained, but in the case of 0.98 as shown in sample No. 13, Q
Value decreases sharply and the resistivity ρ is also 1 × 10 6 MΩ · cm
Less than Therefore, the lower limit of the value of k is 1.00. On the other hand, the value of k is 1.04 as shown in sample No. 16.
In the case of, the desired electrical characteristics can be obtained, but sample No. 1
As shown in 7, when 1.06, a dense sintered body cannot be obtained even if fired at 1100 ° C. Therefore, the upper limit of the value of k is 1.04.

【0026】Li2 SiO3 の割合を示すαの値が試料
NO. 19に示すように0.01の場合には、所望の電気
的特性を得ることができるが、試料NO. 18に示すよう
に0.005の場合には1100℃で焼成しても緻密な
焼結体が得られない。従って、αの値の下限値は0.0
1である。一方、αの値が試料NO. 21に示すように
0.05の場合には、所望の電気的特性を得ることがで
きるが、試料NO. 22に示すように0.06の場合には
容量の温度係数が−1100ppm/℃、比抵抗ρも1
×107 MΩ・cmとなる。従って、αの値の上限値は
0.05である。
The value of α indicating the proportion of Li 2 SiO 3 is the sample
In the case of 0.01 as shown in NO. 19, desired electrical characteristics can be obtained, but in the case of 0.005 as shown in sample NO. 18, it is dense even if fired at 1100 ° C. No sintered body can be obtained. Therefore, the lower limit of the value of α is 0.0
It is 1. On the other hand, when the value of α is 0.05 as shown in sample NO. 21, desired electrical characteristics can be obtained, but when the value of α is 0.06 as shown in sample NO. Has a temperature coefficient of -1100 ppm / ° C and a specific resistance ρ of 1
It becomes × 10 7 MΩ · cm. Therefore, the upper limit of the value of α is 0.05.

【0027】MF2 の割合を示すβの値が試料NO. 3
0、31に示すように0.01の場合には、所望の電気
的特性を得ることができるが、試料NO. 29に示すよう
に0.005の場合には1100℃で焼成しても緻密な
焼結体が得られない。従って、βの値の下限値は0.0
1である。一方、βの値が試料NO. 33に示すように
0.05の場合には、所望の電気的特性を得ることがで
きるが、試料NO. 34、35に示すように0.06の場
合には、容量の温度係数TCが−1100ppm/℃以
上、比抵抗ρが1×107 MΩ・cm未満となる。従っ
て、βの値の上限値は0.05である。また、試料NO.
23〜28に示すように、MF2 の成分としてはMgF
2 、CaF2 、BaF2 、SrF2 はほぼ同様に働き、
これ等から選択された1つを使用してもまたは複数を使
用しても同様な効果が得られる。
The value of β indicating the ratio of MF 2 is sample No. 3
In the case of 0.01 as shown in 0 and 31, desired electrical characteristics can be obtained, but in the case of 0.005 as shown in sample No. 29, it is dense even if fired at 1100 ° C. No sintered body can be obtained. Therefore, the lower limit of the value of β is 0.0
It is 1. On the other hand, when the value of β is 0.05 as shown in sample No. 33, desired electrical characteristics can be obtained, but in the case of 0.06 as shown in sample NO. 34 and 35. Has a temperature coefficient TC of capacity of −1100 ppm / ° C. or more and a specific resistance ρ of less than 1 × 10 7 MΩ · cm. Therefore, the upper limit of the value of β is 0.05. In addition, sample No.
As shown in 23 to 28, MgF is a component of MF 2.
2 , CaF 2 , BaF 2 , and SrF 2 work almost the same,
Similar effects can be obtained by using one selected from these or a plurality of selected ones.

【0028】上述の実施例では試料としての磁器コンデ
ンサの作製を容易にするために、In−Ga合金電極の
単層コンデンサを作製したが、この代りに本発明に従う
磁器組成物のグリーンシート(未焼結磁器シート)にC
u(銅)ペーストを塗布して乾燥したものを積層し、こ
の成形体の焼成と電極の焼付を還元性又は非酸化性雰囲
気、1050℃以下の条件で同時に行い、図2に示すよ
うに複数の誘電体磁器層1a、1b、1cの中に、Cu
から成る内部電極4、5を設け、更にこれに接続された
外部電極6、7を設けた構造の温度補償用積層磁器コン
デンサとすることができる。内部電極4、5を構成する
Cuは抵抗率が低く且つ非磁性体であるので、高周波特
性に優れたコンデンサが得られる。
In the above-mentioned embodiment, a single layer capacitor having an In--Ga alloy electrode was prepared in order to facilitate the preparation of a ceramic capacitor as a sample. Instead of this, a green sheet of a porcelain composition according to the present invention (not yet prepared) was prepared. C on the sintered porcelain sheet)
The u (copper) paste is applied and dried, and then the laminate is laminated, and the molded body and the electrodes are baked simultaneously in a reducing or non-oxidizing atmosphere at 1050 ° C. or lower, and a plurality of layers are formed as shown in FIG. Cu in the dielectric ceramic layers 1a, 1b, 1c of
It is possible to obtain a temperature compensating laminated ceramic capacitor having a structure in which the internal electrodes 4 and 5 are provided and the external electrodes 6 and 7 connected thereto are provided. Since Cu forming the internal electrodes 4 and 5 has a low resistivity and is a non-magnetic material, a capacitor having excellent high frequency characteristics can be obtained.

【0029】なお、本発明の目的を阻害しない範囲で、
微量のMnO2 (好ましくは0.05〜0.3重量%)
等の鉱化剤を添加すると、更に焼結性を向上させること
ができる。また{(Sr1-x Cax )O}k {(Ti
1-y Zry )O2 }を作製するための出発原料としては
実施例で示した以外の酸化物、水酸化物又はその他の化
合物を使用してもよい。
In the range that does not impair the object of the present invention,
Trace amount of MnO 2 (preferably 0.05 to 0.3% by weight)
The sinterability can be further improved by adding a mineralizing agent such as. In addition, {(Sr 1-x Ca x ) O} k {(Ti
As a starting material for producing 1-y Zr y ) O 2 }, oxides, hydroxides or other compounds other than those shown in the examples may be used.

【0030】[0030]

【発明の効果】上述から明らかなように、本発明によれ
ば、還元性雰囲気中で1050℃以下で焼結が可能であ
り、且つεs が200以上、TCが−760〜−990
ppm/℃、Qが3000以上、ρが1×107 MΩ・
cm以上の電気的特性を有する温度補償用磁器コンデン
サを提供することが可能になる。
As is apparent from the above, according to the present invention, it is possible to sinter at 1050 ° C. or lower in a reducing atmosphere, ε s is 200 or more, and TC is −760 to −990.
ppm / ° C, Q is 3000 or more, ρ is 1 × 10 7 MΩ ・
It is possible to provide a temperature-compensating porcelain capacitor having electrical characteristics of cm or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に従う磁器コンデンサを示す断
面図である。
FIG. 1 is a sectional view showing a porcelain capacitor according to an embodiment of the present invention.

【図2】本発明に従う積層磁器コンデンサを示す断面図
である。
FIG. 2 is a sectional view showing a laminated ceramic capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1 誘電体磁器円板 2 電極 3 電極 1 Dielectric porcelain disk 2 Electrode 3 Electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (1−α−β){(Sr1-x Cax
O}k {(Ti1-y Zry )O2 }+αLi2 SiO3
+βMF2 (但し、MF2 はCaF2 、SrF2 、BaF2 、Mg
2 の内の少なくとも1種のアルカリ土類フッ化物、 αは0.01〜0.05の範囲の数値、 βは0.01〜0.05の範囲の数値、 kは1.00〜1.04の範囲の数値、 xは0.35〜0.50の数値、 yは0.10以下の数値) から成る温度補償用磁器組成物。
1. (1-α-β) {(Sr 1-x Ca x ).
O} k {(Ti 1-y Zr y ) O 2 } + αLi 2 SiO 3
+ ΒMF 2 (However, MF 2 is CaF 2 , SrF 2 , BaF 2 , Mg
At least one alkaline earth fluoride of F 2 , α is a numerical value in the range of 0.01 to 0.05, β is a numerical value in the range of 0.01 to 0.05, and k is 1.00 to 1 A value in the range of 0.04, x is a value of 0.35 to 0.50, and y is a value of 0.10 or less).
JP3185678A 1991-06-28 1991-06-28 Porcelain composition for temperature compensation Expired - Fee Related JP2531548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185678A JP2531548B2 (en) 1991-06-28 1991-06-28 Porcelain composition for temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185678A JP2531548B2 (en) 1991-06-28 1991-06-28 Porcelain composition for temperature compensation

Publications (2)

Publication Number Publication Date
JPH0517222A JPH0517222A (en) 1993-01-26
JP2531548B2 true JP2531548B2 (en) 1996-09-04

Family

ID=16174955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185678A Expired - Fee Related JP2531548B2 (en) 1991-06-28 1991-06-28 Porcelain composition for temperature compensation

Country Status (1)

Country Link
JP (1) JP2531548B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698951B2 (en) * 2000-03-31 2005-09-21 三星電機株式会社 Dielectric ceramic composition, ceramic capacitor using the same, and method for manufacturing the same
WO2015178145A1 (en) 2014-05-23 2015-11-26 ポリプラスチックス株式会社 Molded article

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667784B2 (en) * 1985-04-30 1994-08-31 旭化成工業株式会社 Dielectric composition
JPS62157604A (en) * 1985-12-30 1987-07-13 太陽誘電株式会社 Dielectric porcelain compound

Also Published As

Publication number Publication date
JPH0517222A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
EP0534378B1 (en) Non-reducible dielectric ceramic composition
JP3028503B2 (en) Non-reducing dielectric porcelain composition
KR101258997B1 (en) Dielectric ceramic composition and electronic component
KR101432442B1 (en) Dielectic ceramic composition and electronic device
JPH0552604B2 (en)
JPH0518201B2 (en)
JPH0559523B2 (en)
JP2531548B2 (en) Porcelain composition for temperature compensation
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2531547B2 (en) Porcelain composition for temperature compensation
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JPH0551127B2 (en)
JP3588210B2 (en) Dielectric porcelain composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPH05266711A (en) Dielectric ceramic composition
JPH0518202B2 (en)
JPH0518203B2 (en)
JP2684754B2 (en) Dielectric porcelain composition
JPH1174144A (en) Laminated ceramic capacitor
JP3336194B2 (en) Dielectric porcelain
JP3512587B2 (en) Multilayer ceramic capacitors
JPH0551122B2 (en)
JPH0551125B2 (en)
JPH0551124B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960326

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees