JP3588210B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition Download PDF

Info

Publication number
JP3588210B2
JP3588210B2 JP33204196A JP33204196A JP3588210B2 JP 3588210 B2 JP3588210 B2 JP 3588210B2 JP 33204196 A JP33204196 A JP 33204196A JP 33204196 A JP33204196 A JP 33204196A JP 3588210 B2 JP3588210 B2 JP 3588210B2
Authority
JP
Japan
Prior art keywords
dielectric
perovskite
dielectric constant
peak
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33204196A
Other languages
Japanese (ja)
Other versions
JPH10167814A (en
Inventor
明宏 金内
成一 小泉
匠 牛窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33204196A priority Critical patent/JP3588210B2/en
Publication of JPH10167814A publication Critical patent/JPH10167814A/en
Application granted granted Critical
Publication of JP3588210B2 publication Critical patent/JP3588210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘電体磁器組成物に関するものであり、特に、高周波領域で好適に使用され、かつ高誘電率、低損失の誘電体磁器組成物に関するものである。
【0002】
【従来技術】
近年のエレクトロニクスの発展に伴い電子回路の高周波化、小型化が急速に進行し、電子部品も高周波化、小型化が要求されるようになってきている。
【0003】
特に、高周波大電流回路では、損失による自己加熱が問題となる場合があり、この場合には低損失のコンデンサが使用されていた。従来、このようなコンデンサとしては、低損失で、温度特性、電圧依存性が小さい等の特性を有するフィルムコンデンサが用いられている。
【0004】
しかしながら、フィルムコンデンサはモールドタイプが殆どであり、小型化、表面実装に対応できない。
【0005】
また、低損失高容量の領域に用いられる誘電体磁器組成物として、特公昭57−37963号公報および特公平7−45337号公報に開示されるようなものが知られている。
【0006】
特公昭57−37963号公報に開示された誘電体磁器組成物は、Sr、Ti、Bi、PbおよびCaからなる基本成分と、CuとMnからなる添加成分とから構成されている。そして、SrTiO、Bi、TiO、PbTiO、CaTiO、CuO、MnCOを混合し、930℃で仮焼し、1200〜1400℃で焼成して作製されている。この誘電体磁器組成物では、測定周波数1KHzでの比誘電率が500〜1500、誘電損失tanδが0.15〜0.5%であった。
【0007】
また、特公平7−45337号公報に開示された誘電体磁器組成物は、Sr、Ti、Bi、Pb、CaおよびSnからなる基本成分と、希土類元素酸化物と、ガラス成分とから構成されている。そして、SrCO、Pb、CaCO、Bi、TiO、SnO、希土類元素酸化物を混合し、950℃で仮焼し、940〜1240℃で焼成して作製されている。この誘電体磁器組成物では、測定周波数1KHzでの比誘電率が1240〜1470、誘電損失tanδが0.25〜0.36%であった。
【0008】
【発明が解決しようとする課題】
しかしながら、特公昭57−37963号公報および特公平7−45337号公報に開示された誘電体磁器組成物では、1500以上の比誘電率を有し、かつ0.35%以下の低損失を達成できなかった。
【0009】
即ち、一般的に比誘電率が高い誘電体磁器組成物は誘電損失が大きくなる傾向があり、比誘電率を上げれば誘電損失が大きくなり、例えば、上記したように、高周波大電流回路では損失による自己加熱が問題となった。
【0010】
本発明は、1500以上の比誘電率εrを有し、かつ誘電損失tanδが0.35%以下の誘電体磁器組成物を提供することを目的とするもので、フィルムコンデンサと同等の特性を有し、特に高周波領域において有用な誘電体磁器組成物を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の誘電体磁器組成物では、少なくとも金属元素としてSr、Pb、BiおよびTiを含有し、ペロブスカイト型結晶相を主結晶相とする誘電体磁器組成物であって、X線回折における前記ペロブスカイト型結晶相の(110)面の主ピークと、前記ペロブスカイト型結晶相の(100)面の主ピークとの間に検出され、かつBiを含有する異相のピークの強度が、前記(110)面の主ピークの強度の3%以下のものである。
【0012】
また、誘電体磁器組成物は、モル比による組成式を(Sr1−w−x−yCaPbBi)Ti3+aと表した時、前記x、y、zおよびwが、0≦w≦0.20、0.05≦x≦0.20、0.01≦y≦0.30、1.00≦z≦1.20、w+x+y≦0.50を満足することが重要である。aは過剰酸素量である。さらに、誘電体磁器組成物は、前記主成分100重量部に対して、LiおよびBのうち少なくとも一種を含有する添加成分を0.1〜10重量部含有することが重要であるさらに測定周波数1KHzでの比誘電率を1500以上、誘電損失を0.35%以下を特徴とする。
【0013】
【作用】
本発明の誘電体磁器組成物は、ペロブスカイト型結晶相の(110)面の主ピークと(100)面の主ピークとの間の、Biを含有する異相のピークの強度が、(110)面の主ピークの強度の3%以下であるため、Biの殆どはペロブスカイト型結晶相に固溶することになり、高誘電率のペロブスカイト型結晶相が増加し、低誘電率で誘電損失の大きなBiを含有する異相が減少することになり、このため、測定周波数1KHzでの比誘電率を1500以上、誘電損失を0.35%以下、特には0.2%以下とすることができる。
【0014】
従来の特公昭57−37963号公報および特公平7−45337号公報に開示された誘電体磁器組成物は、基本成分を950℃程度で仮焼し、高誘電率のペロブスカイト相を析出させているが、仮焼温度が低いためBiがペロブスカイト相中に固溶せず、あるいは固溶してもその固溶量は少なく、本願でいうBiを含有する異相として存在していると考えられ、このため比誘電率が1500以下と小さく、しかも誘電損失も大きいと考えられる。
【0015】
本願では、Biをペロブスカイト相中に固溶させるために、1100℃以上の仮焼温度で反応させている。このため、Biが高誘電率のペロブスカイト相中に大量に固溶し、Biを含有する異相のピークの強度が(110)面の主ピークの強度の3%以下となり、上記したような作用効果を有するのである。
【0016】
さらに、誘電体磁器組成物として、LiおよびBのうち少なくとも一種を含有する添加成分を0.1〜10重量部含有することにより、1000〜1200℃の低温焼成が可能となる。このため、内部電極としてPdの含有量の少ないAg−Pd電極材料を用いることができ、PdとBiとの反応を抑制でき、これによりAg−Pd電極材料と誘電体材料との同時焼成が可能となる。
【0017】
【発明の実施の形態】
本発明の誘電体磁器組成物は、X線回折におけるペロブスカイト型結晶相の(110)面の主ピークと、ペロブスカイト型結晶相の(100)面の主ピークとの間に検出され、かつBiを含有する異相のピークの強度を、(110)面の主ピークの強度の3%以下としたものである。
【0018】
ここで、Biを含む異相の割合を(110)面の主ピークの強度の3%以下と限定した理由は、Biがペロブスカイト相に固溶することにより、高誘電率、低損失、温度特性に優れた材料となるからであり、Biが固溶せずに、(110)面の主ピークの強度の3%よりも多く異相を形成すると、いずれの特性も劣化してしまうからである。この異相のピークは存在しない方が望ましいが、Biをペロブスカイト相中に固溶させるためにBiを添加するため、全く存在しないということはあり得ないと考えられる。異相のピーク強度は、(110)面の主ピークの強度の1%以下、特には0.5%以下が望ましい。
【0019】
尚、ペロブスカイト型結晶相の(110)面の主ピークと、ペロブスカイト型結晶相の(100)面の主ピークは、それぞれ単一のピークからなることが、高誘電率および低損失という観点から望ましい。
【0020】
ペロブスカイト型結晶相の(110)面のピークは、X線源としてCu−kα線を用いた場合のX線回折図において、2θ=32度付近に生じ、また、(100)面のピークは2θ=23度付近に生じる。そして、これらのピークの間にBiを含有する異相が生じるが、異相としては、BiTi12、BiTi、SrBiTi13、SrBiTi14、PbBiTi13、PbBiTi14等があり、これらは、主に2θ=30度付近に生じる。その他の結晶相としてTiOが析出する場合もある。
【0021】
また、本発明の誘電体磁器組成物では、Ba、Mg、Zr、Nb、Al、Fe等の不純物が混入しても良いし、粉砕ボールからボール成分、例えばZrO、Alが混入する場合もある。さらに、本発明の誘電体磁器組成物では、CuO、MnO、Al、希土類元素酸化物、SnOを添加しても良い。
【0022】
本発明の誘電体磁器組成物は、モル比による組成式を(Sr1−w−x−y CaPbBi)Ti3+a と表した時、x、y、zおよびwが、0≦w≦0.20、0.05≦x≦0.20、0.01≦y≦0.30、1.00≦z≦1.20、w+x+y≦0.50を満足することが望ましい。
【0023】
ここで、Aサイト中のSrのCaによる置換量wを0〜0.2としたのは、Caの置換により比誘電率が向上し、DCバイアス特性が向上するが、wが0.2よりも大きい場合には比誘電率が低くなる傾向があるからである。wは、比誘電率を向上するという観点から0.04≦w≦0.13であることが望ましい。
【0024】
また、Aサイト中のSrのPbによる置換量xを0.05〜0.2としたのは、xが0.05よりも小さい場合には比誘電率が低く、一方0.2よりも大きい場合には誘電損失が大きくなる傾向があるからである。xは、比誘電率および誘電損失の点から、0.10≦x≦0.17が望ましい。
【0025】
さらに、Aサイト中のSrのBiによる置換量yを0.01〜0.3としたのは、yが0.01よりも小さい場合には誘電損失が大きく、yが0.30よりも大きくなると比誘電率が低くなる傾向があるからである。yは、比誘電率および誘電損失の点から、0.13≦y≦0.24が望ましい。
【0026】
また、B/A比を示すzを1〜1.2としたのは、zが1よりも小さい場合には比誘電率が低く、誘電損失が悪く、zが1.20よりも大きくなると比誘電率が低くなる傾向にあるからである。zは、比誘電率および誘電損失の点から、1.1≦z≦1.2が望ましい。
【0027】
さらに、Aサイト中のSrのCa、Pb、Biによる置換量w+x+yを0.50以下としたのは、0.5よりも多い場合には比誘電率が低くなるからである。特に、比誘電率向上という観点から、0.30≦w+x+y≦0.40が望ましい。また、上記組成式におけるaは、過剰酸素量を示しており、aは0〜0.55、特には0.15〜0.4であることが望ましい。
【0028】
そして、本発明の誘電体磁器組成物では、上記主成分100重量部に対して、LiおよびBのうち少なくとも一種を含有する添加成分を0.1〜10重量部含有することが望ましい。添加成分の量が0.1重量部未満では添加効果が無く、10重量部以上では比誘電率が低下し、誘電損失が増大するからである。添加成分にLiおよびBのうち少なくとも一種を含有せしめたのは、Li、Bを含まないと誘電特性を劣化させずに、焼成温度が1100℃以下とならないからである。添加量は、誘電損失を小さくするという点で0.5〜5重量%が望ましい。
【0029】
本発明の誘電体磁器組成物は、例えば、SrCO、CaCO、PbO、Bi、TiOの各原料粉末を所定量となるように秤量し、混合粉砕し、これを1100〜1200℃の温度で大気中で1〜3時間仮焼する。仮焼温度は、Biのペロブスカイト相への固溶を促進するという観点から1150℃以上が望ましい。
【0030】
得られた仮焼物と、所望により所定量の添加成分を秤量し、混合粉砕し、例えは、ドクターブレード法等の公知手段により成形し、大気中等の酸化性雰囲気において1050〜1200℃において0.5〜2時間焼成を行い、本発明の誘電体磁器組成物が得られる。
【0031】
【実施例】
参考例1
先ず、純度99%以上のSrCO、CaCO、PbO、Bi、TiOの各原料粉末を表1に示す割合で秤量し、該原料粉末に媒体として純水を加えて24時間ZrO2 ボールを用いたボールミルにて混合した後、該混合物を乾燥し、次いで、該乾燥物を1150℃の温度で大気中2時間仮焼した。得られた仮焼物に分散剤、分散媒とともに、24時間ボールミルにて混合粉砕し、原料スラリーを調整した。
【0032】
このスラリーに有機バインダー、可塑剤を加え、十分撹拌後ドクターブレード法によりフィルム状に成形した。このフィルムを積層、熱圧着後切断して試料を得た。この試料を大気中、300℃の温度で4時間加熱して脱バインダー処理し、引き続いて1200℃大気中で2時間焼成し、直径10mm×厚み1mmの試料を得た。この試料の両面にIn−Ga電極を塗布し、評価試料を作製した。
【0033】
次にこれらの評価試料を、LCRメーター4284Aを用いて、周波数1.0kHz、入力信号レベル1.0Vrmsにて静電容量を測定した。静電容量から比誘電率を算出した。また、得られた磁器を乳鉢で粉末状に解砕し、Cu−Kα線を用いたX線回折の測定を行い、ペロブスカイト型結晶相の主ピーク(110)と、ペロブスカイト型結晶相のピーク(100)との間に検出される、Biを含む異相のピークの強度比を測定した。強度比は、ペロブスカイト型結晶相の主ピーク(110)の強度に対する比として求めた。この結果を表1に示す。また、Sr、Ca、Pb、Biの合計モル数をAとし、Tiのモル数をBとした時B/Aを求め、この値も記載した。
【0034】
【表1】

Figure 0003588210
【0035】
この表1によれば、本発明の誘電体磁器組成物は、比誘電率εrが1500以上、測定周波数1kHzでの誘電損失が0.35%以下の優れた特性を有することがわかる。また、B/A比が1以上である場合には、誘電損失が0.2%以下であることが判る。
【0036】
尚、試料No.1、2、10は、仮焼温度を950℃とした場合であり、これらの場合にはBiを含む異相のピークの強度比が3%よりも大きくなり、比誘電率および誘電損失が悪化することが判る。
【0037】
参考例2
先ず、純度99%以上のSrCO、CaCO、PbO、Bi、TiOの各原料粉末を表2に示す割合で秤量し、該原料粉末に媒体として純水を加えて24時間ZrO2 ボールを用いたボールミルにて混合した後、該混合物を乾燥し、次いで、該乾燥物を1150℃の温度で大気中2時間仮焼した。得られた仮焼物を分散剤、分散媒とともに24時間ボールミルにて混合粉砕し、原料スラリーを調整した。
【0038】
このスラリーに有機バインダー、可塑剤を加え、十分撹拌後ドクターブレード法によりフィルム状に成形した。このフィルムを積層、熱圧着後切断して試料を得た。この試料を大気中、300℃の温度で4時間加熱して脱バインダー処理し、引き続いて1200℃で大気中で2時間焼成し、直径10mm×厚み1mmの試料を得た。この試料の両面にIn−Ga電極を塗布し、評価試料を作製した。
【0039】
また得られた試料を平面研磨を行い厚み100μmの試料を得た。この両面にAuを蒸着し、電極とした。
【0040】
次にこれらの評価試料を、LCRメーター4274Aを用いて、周波数1.0kHz、入力信号レベル1.0Vrmsにて静電容量を測定した。静電容量から比誘電率を算出した。また、厚み100μmの試料にDC200Vを印可し、無印可時との容量から、変化率を算出した。また、得られた磁器を乳鉢で粉末状に解砕し、Cu−Kα線を用いたX線回折の測定を行い、実施例1と同様にBiを含む異相のピークの強度比を測定した。この結果を表2に示す。
【0041】
【表2】
Figure 0003588210
【0042】
この表2によれば、本発明の誘電体磁器組成物は、比誘電率εrが1500以上、1kHzでの誘電損失が0.35%以下、DCバイアス特性が±10%以内(DC2kV/mm)の優れた特性を有することがわかる。尚、試料No.33、38、39については仮焼温度を950℃とした場合であり、これらの場合にはBiを含む異相のピークの強度比が3%よりも大きくなり、比誘電率および誘電損失が悪化することが判る。本発明の試料No.28と、比較例No.33のX線回折図を図1、図2に示す。
【0043】
実施例1
先ず、純度99%以上のSrCO、CaCO、PbO、Bi、TiOの各原料粉末を表3に示す割合で秤量し、該原料粉末に媒体として純水を加えて24時間ZrO2 ボールも用いたボールミルにて混合した後、該混合物を乾燥し、次いで、該乾燥物を1150℃の温度で大気中2時間仮焼した。得られた仮焼物に、表4に示す所定量のガラスを加え、分散剤、分散媒とともに24時間ボールミルにて混合粉砕し、原料スラリーを調整した。
【0044】
この後、焼成温度を1100℃で焼成する以外は、上記実施例2と同様にして試料を得、評価した。この結果を表3に示す。
【0045】
【表3】
Figure 0003588210
【0046】
【表4】
Figure 0003588210
【0047】
この表3によれば、本発明の試料では、焼成温度1100℃で、比誘電率εrが1500以上、1kHzでの誘電損失が0.35%以下、DCバイアス特性が±10%以内(DC2kV/mm)の優れた特性を有することがわかる。尚、試料No.56、61、62、68については仮焼温度を950℃とした場合であり、これらの場合にはBiを含む異相のピークの強度比が3%よりも大きくなり、比誘電率および誘電損失が悪化することが判る。
【0048】
【発明の効果】
以上詳述した通り、本発明の誘電体磁器組成物は、1500以上の高い比誘電率を有するとともに、誘電損失が0.35%以下と小さく、かつ静電容量の電圧依存性も優れているため、高周波用のコンデンサとして用いた時、自己発熱が小さく、小型かつ高性能な、フィルムコンデンサと同等の特性のコンデンサを提供できる。
【図面の簡単な説明】
【図1】試料No.28のX線回折図である。
【図2】比較例の試料No.33のX線回折図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dielectric porcelain composition, and more particularly to a dielectric porcelain composition suitably used in a high frequency region and having a high dielectric constant and a low loss.
[0002]
[Prior art]
With the development of electronics in recent years, the frequency and size of electronic circuits are rapidly increasing, and electronic components are also required to have higher frequency and smaller size.
[0003]
Particularly, in a high-frequency high-current circuit, self-heating due to loss may be a problem. In this case, a low-loss capacitor has been used. Conventionally, as such a capacitor, a film capacitor having characteristics such as low loss, low temperature characteristics, and low voltage dependency has been used.
[0004]
However, most film capacitors are of a mold type, and cannot be reduced in size and surface mounted.
[0005]
Further, as a dielectric porcelain composition used in a low-loss high-capacity region, those disclosed in Japanese Patent Publication No. 57-37963 and Japanese Patent Publication No. 7-45337 are known.
[0006]
The dielectric porcelain composition disclosed in Japanese Patent Publication No. 57-37963 is composed of a basic component composed of Sr, Ti, Bi, Pb and Ca, and an additive component composed of Cu and Mn. Then, SrTiO 3 , Bi 2 O 3 , TiO 2 , PbTiO 3 , CaTiO 3 , CuO, and MnCO 3 are mixed, calcined at 930 ° C., and calcined at 1200 to 1400 ° C. In this dielectric ceramic composition, the relative dielectric constant at a measurement frequency of 1 KHz was 500 to 1500, and the dielectric loss tan δ was 0.15 to 0.5%.
[0007]
Further, the dielectric ceramic composition disclosed in Japanese Patent Publication No. 7-45337 includes a basic component including Sr, Ti, Bi, Pb, Ca and Sn, a rare earth element oxide, and a glass component. I have. Then, SrCO 3 , Pb 3 O 4 , CaCO 3 , Bi 2 O 3 , TiO 2 , SnO 2 , and a rare earth element oxide are mixed, calcined at 950 ° C., and calcined at 940 to 1240 ° C. I have. In this dielectric ceramic composition, the relative dielectric constant at a measurement frequency of 1 KHz was 1240 to 1470, and the dielectric loss tan δ was 0.25 to 0.36%.
[0008]
[Problems to be solved by the invention]
However, the dielectric porcelain compositions disclosed in JP-B-57-37963 and JP-B-7-45337 have a relative dielectric constant of 1500 or more and a low loss of 0.35% or less. Did not.
[0009]
That is, generally, a dielectric ceramic composition having a high relative dielectric constant tends to have a large dielectric loss, and if the relative dielectric constant is increased, the dielectric loss becomes large. Self-heating caused a problem.
[0010]
An object of the present invention is to provide a dielectric porcelain composition having a relative dielectric constant εr of 1500 or more and a dielectric loss tan δ of 0.35% or less, having characteristics equivalent to those of a film capacitor. It is another object of the present invention to provide a dielectric ceramic composition useful particularly in a high frequency region.
[0011]
[Means for Solving the Problems]
The dielectric ceramic composition of the present invention is a dielectric ceramic composition containing at least Sr, Pb, Bi, and Ti as metal elements and having a perovskite-type crystal phase as a main crystal phase, wherein the perovskite in X-ray diffraction is used. The intensity of the peak of the hetero-phase containing Bi, which is detected between the main peak of the (110) plane of the crystal phase and the main peak of the (100) plane of the perovskite crystal phase, is higher than that of the (110) plane. Is less than 3% of the intensity of the main peak.
[0012]
The dielectric ceramic composition, when expressed the composition formula by molar ratio (Sr 1-w-x- y Ca w Pb x Bi y) Ti z O 3 + a, the x, y, z and w are, It is important to satisfy 0 ≦ w ≦ 0.20, 0.05 ≦ x ≦ 0.20, 0.01 ≦ y ≦ 0.30, 1.00 ≦ z ≦ 1.20, w + x + y ≦ 0.50. There is . a is the excess oxygen amount. Further, it is important that the dielectric ceramic composition contains 0.1 to 10 parts by weight of an additive component containing at least one of Li and B based on 100 parts by weight of the main component. Further, it is characterized in that the relative dielectric constant at a measurement frequency of 1 KHz is 1500 or more and the dielectric loss is 0.35% or less.
[0013]
[Action]
In the dielectric ceramic composition of the present invention, the intensity of the Bi-containing heterophase peak between the main peak of the (110) plane and the main peak of the (100) plane of the perovskite-type crystal phase has the (110) plane. Is less than 3% of the intensity of the main peak of Bi, most of the Bi is dissolved in the perovskite-type crystal phase, the perovskite-type crystal phase having a high dielectric constant increases, and Bi has a low dielectric constant and a large dielectric loss. , And the relative dielectric constant at a measurement frequency of 1 KHz can be 1500 or more, and the dielectric loss can be 0.35% or less, particularly 0.2% or less.
[0014]
The conventional dielectric porcelain composition disclosed in Japanese Patent Publication No. 57-37963 and Japanese Patent Publication No. 7-45337 has a basic component calcined at about 950 ° C. to precipitate a high dielectric constant perovskite phase. However, since the calcination temperature is low, Bi does not form a solid solution in the perovskite phase, or even if it forms a solid solution, the amount of the solid solution is small, and it is considered that Bi exists as a hetero phase containing Bi as referred to in the present application. Therefore, it is considered that the relative dielectric constant is as small as 1500 or less and the dielectric loss is large.
[0015]
In the present invention, Bi is reacted at a calcination temperature of 1100 ° C. or more in order to form a solid solution in Bi in the perovskite phase. For this reason, Bi forms a large amount of solid solution in the perovskite phase having a high dielectric constant, and the intensity of the peak of the hetero phase containing Bi becomes 3% or less of the intensity of the main peak of the (110) plane. It has.
[0016]
Further, by containing 0.1 to 10 parts by weight of an additive component containing at least one of Li and B as a dielectric porcelain composition, low-temperature firing at 1000 to 1200 ° C is possible. For this reason, an Ag-Pd electrode material having a low content of Pd can be used as the internal electrode, and the reaction between Pd and Bi can be suppressed, whereby simultaneous firing of the Ag-Pd electrode material and the dielectric material is possible. It becomes.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The dielectric porcelain composition of the present invention is detected between the main peak of the (110) plane of the perovskite crystal phase and the main peak of the (100) plane of the perovskite crystal phase in X-ray diffraction. The peak intensity of the contained hetero phase is set to 3% or less of the intensity of the main peak of the (110) plane.
[0018]
Here, the reason for limiting the proportion of the hetero phase containing Bi to 3% or less of the intensity of the main peak of the (110) plane is that Bi forms a solid solution in the perovskite phase, resulting in high dielectric constant, low loss, and temperature characteristics. This is because it becomes an excellent material, and if Bi forms more than 3% of the intensity of the main peak on the (110) plane without forming a solid solution, all the characteristics are deteriorated. It is desirable that the peak of this heterophase does not exist, but it is considered impossible that Bi does not exist at all because Bi is added to form a solid solution of Bi in the perovskite phase. The peak intensity of the hetero phase is preferably 1% or less, particularly preferably 0.5% or less of the intensity of the main peak on the (110) plane.
[0019]
The main peak of the (110) plane of the perovskite-type crystal phase and the main peak of the (100) plane of the perovskite-type crystal phase preferably consist of a single peak from the viewpoint of high dielectric constant and low loss. .
[0020]
The peak of the (110) plane of the perovskite-type crystal phase occurs near 2θ = 32 ° in the X-ray diffraction diagram when Cu-kα rays are used as the X-ray source, and the peak of the (100) plane is 2θ. = Approximately 23 degrees. A different phase containing Bi is generated between these peaks, and the different phases are Bi 4 Ti 3 O 12 , Bi 2 Ti 2 O 7 , SrBi 4 Ti 4 O 13 , and Sr 2 Bi 4 Ti 5 O 14. , PbBi 4 Ti 4 O 13 , Pb 2 Bi 4 Ti 5 O 14, etc., which mainly occur around 2θ = 30 degrees. TiO 2 may be precipitated as another crystal phase.
[0021]
Further, in the dielectric ceramic composition of the present invention, impurities such as Ba, Mg, Zr, Nb, Al, and Fe may be mixed, or ball components such as ZrO 2 and Al 2 O 3 may be mixed from the pulverized ball. In some cases. Further, in the dielectric ceramic composition of the present invention, CuO, MnO, Al 2 O 3 , a rare earth element oxide, and SnO 2 may be added.
[0022]
The dielectric ceramic composition of the present invention, when expressed the composition formula by molar ratio (Sr 1-w-x- y Ca w Pb x Bi y) Ti z O 3 + a, x, y, z and w are, It is desirable to satisfy 0 ≦ w ≦ 0.20, 0.05 ≦ x ≦ 0.20, 0.01 ≦ y ≦ 0.30, 1.00 ≦ z ≦ 1.20, and w + x + y ≦ 0.50.
[0023]
Here, the reason why the substitution amount w of Ca for Sr in the A site is set to 0 to 0.2 is that the relative dielectric constant is improved by the substitution of Ca, and the DC bias characteristic is improved. Is too large, the relative permittivity tends to be low. It is desirable that w is 0.04 ≦ w ≦ 0.13 from the viewpoint of improving the relative dielectric constant.
[0024]
The reason why the substitution amount x of Pr for Sr in the A site is set to 0.05 to 0.2 is that when x is smaller than 0.05, the relative dielectric constant is low, while it is larger than 0.2. This is because the dielectric loss tends to increase in some cases. x preferably satisfies 0.10 ≦ x ≦ 0.17 from the viewpoint of relative dielectric constant and dielectric loss.
[0025]
Furthermore, the reason why the substitution amount y of Bi in Sr in the A site is 0.01 to 0.3 is that when y is smaller than 0.01, the dielectric loss is large and y is larger than 0.30. This is because the relative dielectric constant tends to decrease. y is preferably 0.13 ≦ y ≦ 0.24 from the viewpoint of the relative dielectric constant and the dielectric loss.
[0026]
Further, z indicating the B / A ratio is set to 1 to 1.2 because when z is smaller than 1, the relative permittivity is low, the dielectric loss is poor, and when z is larger than 1.20, the ratio is small. This is because the dielectric constant tends to decrease. z is desirably 1.1 ≦ z ≦ 1.2 from the viewpoint of the relative dielectric constant and the dielectric loss.
[0027]
Further, the reason why the substitution amount w + x + y of Sr in the A site by Ca, Pb, and Bi is set to 0.50 or less is that when it is more than 0.5, the relative dielectric constant becomes low. In particular, 0.30 ≦ w + x + y ≦ 0.40 is desirable from the viewpoint of improving the relative dielectric constant. Further, a in the above composition formula indicates an excess oxygen amount, and a is preferably 0 to 0.55, particularly preferably 0.15 to 0.4.
[0028]
The dielectric porcelain composition of the present invention desirably contains 0.1 to 10 parts by weight of an additive component containing at least one of Li and B based on 100 parts by weight of the main component. When the amount of the added component is less than 0.1 part by weight, the effect of addition is not obtained, and when the amount is 10 parts by weight or more, the relative dielectric constant is reduced and the dielectric loss is increased. The reason why at least one of Li and B is contained in the additive component is that if Li and B are not included, the sintering temperature does not become 1100 ° C. or lower without deteriorating the dielectric characteristics. The addition amount is desirably 0.5 to 5% by weight from the viewpoint of reducing the dielectric loss.
[0029]
The dielectric porcelain composition of the present invention, for example, weighs each raw material powder of SrCO 3 , CaCO 3 , PbO, Bi 2 O 3 , and TiO 2 so as to have a predetermined amount, mixes and pulverizes the powder, and mixes and pulverizes it. Calcination is performed in the air at a temperature of ° C. for 1 to 3 hours. The calcination temperature is desirably 1150 ° C. or higher from the viewpoint of promoting the solid solution of Bi in the perovskite phase.
[0030]
The obtained calcined material and, if desired, a predetermined amount of an additional component are weighed, mixed and pulverized. For example, the mixture is molded by a known means such as a doctor blade method, and is dried at a temperature of 1050 to 1200 ° C. in an oxidizing atmosphere such as the air. The firing is performed for 5 to 2 hours to obtain the dielectric ceramic composition of the present invention.
[0031]
【Example】
Reference Example 1
First, raw material powders of SrCO 3 , CaCO 3 , PbO, Bi 2 O 3 , and TiO 2 having a purity of 99% or more were weighed at the ratio shown in Table 1, and pure water was added as a medium to the raw material powders for 24 hours. After mixing in a ball mill using balls, the mixture was dried, and then the dried product was calcined in the atmosphere at a temperature of 1150 ° C. for 2 hours. The obtained calcined material was mixed and pulverized with a dispersant and a dispersion medium in a ball mill for 24 hours to prepare a raw material slurry.
[0032]
An organic binder and a plasticizer were added to the slurry, and after sufficient stirring, the slurry was formed into a film by a doctor blade method. This film was laminated, thermocompressed, and then cut to obtain a sample. This sample was heated in the air at a temperature of 300 ° C. for 4 hours to remove the binder, and subsequently fired in a 1200 ° C. air for 2 hours to obtain a sample having a diameter of 10 mm and a thickness of 1 mm. An In-Ga electrode was applied to both surfaces of this sample to prepare an evaluation sample.
[0033]
Next, the capacitance of these evaluation samples was measured at a frequency of 1.0 kHz and an input signal level of 1.0 Vrms using an LCR meter 4284A. The relative permittivity was calculated from the capacitance. In addition, the obtained porcelain was crushed into a powder in a mortar, and X-ray diffraction measurement was performed using Cu-Kα radiation. The main peak of the perovskite crystal phase (110) and the peak of the perovskite crystal phase (110) 100), and the intensity ratio of the peak of the hetero-phase containing Bi, which was detected between 100 and 100). The intensity ratio was determined as a ratio to the intensity of the main peak (110) of the perovskite-type crystal phase. Table 1 shows the results. Further, when the total number of moles of Sr, Ca, Pb, and Bi is A, and the number of moles of Ti is B, B / A is determined, and this value is also described.
[0034]
[Table 1]
Figure 0003588210
[0035]
According to Table 1, it is understood that the dielectric ceramic composition of the present invention has excellent characteristics such that the relative dielectric constant εr is 1500 or more and the dielectric loss at a measurement frequency of 1 kHz is 0.35% or less. When the B / A ratio is 1 or more, the dielectric loss is 0.2% or less.
[0036]
In addition, sample No. 1, 2, and 10 are cases where the calcination temperature is 950 ° C., and in these cases, the intensity ratio of the peak of the hetero phase including Bi becomes larger than 3%, and the relative dielectric constant and the dielectric loss are deteriorated. You can see that.
[0037]
Reference Example 2
First, raw material powders of SrCO 3 , CaCO 3 , PbO, Bi 2 O 3 , and TiO 2 having a purity of 99% or more were weighed at the ratios shown in Table 2, and pure water was added to the raw material powders as a medium for 24 hours. After mixing in a ball mill using balls, the mixture was dried, and then the dried product was calcined in the atmosphere at a temperature of 1150 ° C. for 2 hours. The obtained calcined product was mixed and pulverized with a dispersant and a dispersion medium in a ball mill for 24 hours to prepare a raw material slurry.
[0038]
An organic binder and a plasticizer were added to the slurry, and after sufficient stirring, the slurry was formed into a film by a doctor blade method. This film was laminated, thermocompressed, and then cut to obtain a sample. The sample was heated in the air at a temperature of 300 ° C. for 4 hours to remove the binder, and subsequently baked at 1200 ° C. in the air for 2 hours to obtain a sample having a diameter of 10 mm and a thickness of 1 mm. An In-Ga electrode was applied to both surfaces of this sample to prepare an evaluation sample.
[0039]
Further, the obtained sample was subjected to plane polishing to obtain a sample having a thickness of 100 μm. Au was deposited on both surfaces to form electrodes.
[0040]
Next, the capacitance of these evaluation samples was measured using an LCR meter 4274A at a frequency of 1.0 kHz and an input signal level of 1.0 Vrms. The relative permittivity was calculated from the capacitance. In addition, DC200V was applied to a sample having a thickness of 100 μm, and the rate of change was calculated from the capacity when no application was performed. Further, the obtained porcelain was crushed into a powder in a mortar, X-ray diffraction measurement was performed using Cu-Kα radiation, and the intensity ratio of the peak of the hetero-phase containing Bi was measured in the same manner as in Example 1. Table 2 shows the results.
[0041]
[Table 2]
Figure 0003588210
[0042]
According to Table 2, the dielectric ceramic composition of the present invention has a relative dielectric constant εr of 1500 or more, a dielectric loss at 1 kHz of 0.35% or less, and a DC bias characteristic of ± 10% or less (DC 2 kV / mm). It turns out that it has the excellent characteristic of. In addition, sample No. In the case of 33, 38 and 39, the calcining temperature was 950 ° C., and in these cases, the intensity ratio of the peak of the hetero phase containing Bi was larger than 3%, and the relative dielectric constant and the dielectric loss were deteriorated. You can see that. Sample No. of the present invention 28 and Comparative Example No. 28. The X-ray diffraction pattern of No. 33 is shown in FIGS.
[0043]
Example 1
First, raw material powders of SrCO 3 , CaCO 3 , PbO, Bi 2 O 3 , and TiO 2 having a purity of 99% or more were weighed at the ratios shown in Table 3, and pure water was added to the raw material powders as a medium for 24 hours. After mixing in a ball mill using balls as well, the mixture was dried, and then the dried product was calcined in the atmosphere at a temperature of 1150 ° C. for 2 hours. To the obtained calcined product, a predetermined amount of glass shown in Table 4 was added and mixed and pulverized for 24 hours with a dispersant and a dispersion medium in a ball mill to prepare a raw material slurry.
[0044]
Thereafter, a sample was obtained and evaluated in the same manner as in Example 2 except that the firing was performed at a firing temperature of 1100 ° C. Table 3 shows the results.
[0045]
[Table 3]
Figure 0003588210
[0046]
[Table 4]
Figure 0003588210
[0047]
According to Table 3, in the sample of the present invention, at a firing temperature of 1100 ° C., the relative dielectric constant εr is 1500 or more, the dielectric loss at 1 kHz is 0.35% or less, and the DC bias characteristic is ± 10% or less (DC 2 kV / mm). In addition, sample No. For 56, 61, 62, and 68, the calcining temperature was 950 ° C., and in these cases, the intensity ratio of the peak of the hetero-phase containing Bi became larger than 3%, and the relative dielectric constant and the dielectric loss were reduced. It turns out that it gets worse.
[0048]
【The invention's effect】
As described in detail above, the dielectric ceramic composition of the present invention has a high relative dielectric constant of 1500 or more, a small dielectric loss of 0.35% or less, and excellent voltage dependency of capacitance. Therefore, when used as a high-frequency capacitor, it is possible to provide a small-sized, high-performance capacitor equivalent to a film capacitor with low self-heating.
[Brief description of the drawings]
FIG. 28 is an X-ray diffraction diagram of No. 28. FIG.
FIG. 2 shows a sample No. of a comparative example. FIG. 33 is an X-ray diffraction pattern of No. 33.

Claims (1)

少なくとも金属元素としてSr、Pb、BiおよびTiを含有し、ペロブスカイト型結晶相を主結晶相とする誘電体磁器組成物であって、
これらの金属元素の、モル比による組成式を
(Sr 1−w−x−y Ca Pb Bi )Ti 3+a
と表した時、前記x、y、zおよびwが
0 ≦w≦0.20
0.05≦x≦0.20
0.01≦y≦0.30
1.00≦z≦1.20
w+x+y≦0.50
aは過剰酸素量
を満足する主成分と該主成分100重量部に対して、LiおよびBのうち少なくとも一種を含有する添加成分を0.1〜10重量部含有するとともに、X線回折における前記ペロブスカイト型結晶相の(110)面の主ピークと、前記ペロブスカイト型結晶相の(100)面の主ピークとの間に検出され、かつBiを含有する異相のピークの強度が、前記(110)面の主ピークの強度の3%以下であり、比誘電率が1500以上、誘電損失が0.35%以下であることを特徴とする誘電体磁器組成物。
A dielectric ceramic composition containing at least Sr, Pb, Bi, and Ti as metal elements, and having a perovskite-type crystal phase as a main crystal phase,
The composition formula of these metal elements by the molar ratio is
(Sr 1-w-x- y Ca w Pb x Bi y) Ti z O 3 + a
Where x, y, z and w are
0 ≦ w ≦ 0.20
0.05 ≦ x ≦ 0.20
0.01 ≦ y ≦ 0.30
1.00 ≦ z ≦ 1.20
w + x + y ≦ 0.50
a is excess oxygen
And 0.1 to 10 parts by weight of an additive containing at least one of Li and B with respect to 100 parts by weight of the main component, and the perovskite crystal phase in X-ray diffraction. Is detected between the main peak of the (110) plane and the main peak of the (100) plane of the perovskite-type crystal phase, and the intensity of the peak of the hetero phase containing Bi is the main peak of the (110) plane. A dielectric ceramic composition having a strength of 3% or less, a relative dielectric constant of 1500 or more, and a dielectric loss of 0.35% or less .
JP33204196A 1996-12-12 1996-12-12 Dielectric porcelain composition Expired - Fee Related JP3588210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33204196A JP3588210B2 (en) 1996-12-12 1996-12-12 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33204196A JP3588210B2 (en) 1996-12-12 1996-12-12 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH10167814A JPH10167814A (en) 1998-06-23
JP3588210B2 true JP3588210B2 (en) 2004-11-10

Family

ID=18250486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33204196A Expired - Fee Related JP3588210B2 (en) 1996-12-12 1996-12-12 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3588210B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772965B1 (en) 2005-11-25 2007-11-02 수원대학교산학협력단 The dielectric ceramic composition for trimmer capacitor and manufacture method thereof
JP5839157B2 (en) * 2010-03-02 2016-01-06 セイコーエプソン株式会社 Liquid ejecting head, liquid ejecting apparatus, piezoelectric element, ultrasonic sensor and infrared sensor

Also Published As

Publication number Publication date
JPH10167814A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
JP3470703B2 (en) Non-reducing dielectric ceramic, multilayer ceramic capacitor using the same, and method for producing non-reducing dielectric ceramic
US6617273B2 (en) Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic
JPH05217426A (en) Non-reducing dielectric ceramic composition
JPH10310469A (en) Production of powdery starting material for dielectric ceramic and dielectric ceramic composition
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3588210B2 (en) Dielectric porcelain composition
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3720521B2 (en) Dielectric porcelain
JP3663294B2 (en) Dielectric porcelain
JP3512587B2 (en) Multilayer ceramic capacitors
JP3634951B2 (en) Dielectric porcelain
JPH10330159A (en) Microwave dielectric ceramic composition
JPH1174144A (en) Laminated ceramic capacitor
JPH0680467A (en) Dielectric ceramic composition
JP2531548B2 (en) Porcelain composition for temperature compensation
JP2992197B2 (en) Dielectric porcelain material and method of manufacturing the same
JP2000185971A (en) Dielectric ceramic and multilayer ceramic capacitor
JP2011046560A (en) Dielectric ceramic and capacitor
JPH11199320A (en) Microwave dielectric porcelain composition
KR0165557B1 (en) Ceramic composition
JP2022111644A (en) Dielectric composition and electronic component
JPH09148180A (en) Laminated capacitor
JP2624195B2 (en) Porcelain composition and dielectric component using the same
JP2001240465A (en) Porcelain of dielectrics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees