JPH0360787B2 - - Google Patents

Info

Publication number
JPH0360787B2
JPH0360787B2 JP59222924A JP22292484A JPH0360787B2 JP H0360787 B2 JPH0360787 B2 JP H0360787B2 JP 59222924 A JP59222924 A JP 59222924A JP 22292484 A JP22292484 A JP 22292484A JP H0360787 B2 JPH0360787 B2 JP H0360787B2
Authority
JP
Japan
Prior art keywords
dielectric constant
temperature
value
present
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59222924A
Other languages
Japanese (ja)
Other versions
JPS61101460A (en
Inventor
Yohachi Yamashita
Osamu Furukawa
Mitsuo Harada
Takashi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59222924A priority Critical patent/JPS61101460A/en
Priority to EP85113411A priority patent/EP0180132B1/en
Priority to DE8585113411T priority patent/DE3586118D1/en
Priority to KR1019850007827A priority patent/KR890004286B1/en
Priority to CA000493775A priority patent/CA1266374A/en
Publication of JPS61101460A publication Critical patent/JPS61101460A/en
Priority to US07/157,149 priority patent/US4818736A/en
Publication of JPH0360787B2 publication Critical patent/JPH0360787B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は高誘電率磁器組成物に係り、特に、
Pb(Zn1/3Nb2/3)O3を主体とした誘電率の温度変
化の小さい高誘電率磁器組成物に関する。 [発明の技術的背景とその問題点] 誘電体材料として要求される電気的特性として
は、誘電率、誘電率温度係数、誘電損失、誘電率
バイアス電界依存性、容量抵抗積等があげられ
る。 特に容量抵抗積(CR値)は、十分高い値を取
る必要があり、EIJA(日本電子機械工業会)の電
子機器用積層磁器コンデンサ(チツプ型)規格
RC−3698Bに常温で、500MΩ・μF以上と規定さ
れている。さらにより厳しい条件でも使用できる
ように、高温(例えば米国防省規格MIL−C−
55681Bでは125℃でのCR値が定められている。)
でも高い容量抵抗積を維持することが要求され
る。 また、誘電率温度係数の小さいことが要求され
るが、一般に誘電率(K)の大きい材料では温度
係数(T.C.C)が大きい傾向があり、K/T.C.C
が大きいこと、すなわち、誘電率の変化の相対値
の小さいことが要求される。 さらに積層タイプの素子を考えた場合、電極層
と誘電体層とは一体的に焼成されるため。電極材
料としては誘電体材料の焼成温度でも安定なもの
を用いる必要がある。従つて誘電体材料の焼成温
度が高いとPt,Pd等の高価な材料を用いなけれ
ばならず、Ag等の安価な材料を使用できるよう
に、1100℃以下程度の低温での焼成が可能である
ことが要求される。 従来から知られている高誘電率磁器組成物とし
てチタン酸バリウムをベースとして、これに錫酸
塩、ジルコン酸塩、チタン酸塩等を固溶したもの
がある。確かに誘電率の高いものを得ることはで
きるが、誘電率が高くなると温度特性が劣化し、
また、バイアス電界依存性も大きくなつてしまう
という問題があつた。さらに、チタン酸バリウム
系の材料の焼成温度は1300〜1400℃程度と高温で
あり、電極材料として必然的に白金、パラジウム
等の高温で耐えうる高価な材料を用いなければな
らず、コスト高の原因となる。 このチタン酸バリウム系の問題点を解消すべ
く、各種組成物の研究がなされている。例えば鉄
ニオブ酸鉛を主体としたもの(特開昭57−57204
号)、マグネシウム・ニオブ酸鉛を主体としたも
の(特開昭55−51758),マグネシウム・タングス
テン酸鉛を主体としたもの(特開昭52−21699号)
等がある。鉄ニオブ酸鉛を主体としたものは、
CR値の焼成温度による変化が大きく、特に高温
におけるCR値の低下が大きいという問題点があ
る。マグネシウム・ニオブ酸鉛を主体としてもの
は焼成温度が比較的高く、また、マグネシウム・
タングステン酸鉛を主体としたものは、CR値が
大きいと誘電率が小さく、誘電率が大きいとCR
値が小さいという問題点が有つた。さらにこれら
の材料の誘電率の温度係数はチタン酸バリウム系
より優れてはいるものの十分ではない。 さらに、亜鉛ニオブ酸鉛とニツケル・ニオブ酸
塩との固溶体で必要に応じ鉛の一部をバリウム、
ストロンチウム、カルシウムで置換した材料につ
いても研究されている(特開昭58−214201号)。
しかしながらこの材料の誘電率の温度係数は−25
〜85℃で最良のものでも−33%であり、十分とは
言えない。さらに、CR値については述べられて
おらず、コンデンサ材料としての有用性は明らか
ではない。 [発明の目的] 本発明は以上の点を考慮してなされたもので、
誘電率が大きく、かつその温度係数の小さい高誘
電率磁器組成物を提供することを目的とする。 [発明の概要] 本発明は、亜鉛ニオブ酸塩もしくはこれを主体
としたものであり、 一般式 (Pb1-xMex)[(Zn1/3Nb2/31-1Tiy]O3で表わし
たとき(ただし、MeはBa及びSrの少なくとも一
種)、 0.1<x<0.35 0≦y<0.5 を満たすことを特徴とする高誘電率磁器組成物で
ある。 従来から誘電体材料として各種のペロブスカイ
ト型の磁器材料が検討されているが、Pb(Zn1/3
Nb2/3)O3は磁器とした場合、ペロブスカイト構
造を取りにくく、誘電体材料としては適さないと
考えられていた(NEC Research &
Development No.29April 1973 p.15〜21参照)。
しかしながら本発明者等の研究によれば、Pb
(Zn1/3Nb2/3)O3のPbサイトをBaまたはSrで適量
置換することにより、磁器で安定なペロブスカイ
ト構造を形成できることがわかつた。さらに、こ
の様な磁器組成物は、非常に高い誘電率および絶
縁抵抗を示し、かつ、その温度特性も極めて良好
であることがわかつた。 以下に本発明組成物の組成範囲について説明す
る。 Me=Ba,SrはPb(Zn1/3Nb2/3)O3ペロブスカ
イト構造を形成するために必要な元素であり、x
=0.1以下だと、パイクロール構造が混在し、高
い誘電率および高に絶縁抵抗を示さない。x=
0.35以上では誘電率が1000程度と小さくなつてし
まい、また、焼成温度が1100℃以上と高くなつて
しまう。よつて、0.1<x<0.35とする。この様
子を第1図に示す。第1図はxの値を変えたとき
の誘電率およびCR値を示したものであり、いず
れも25℃での値である。第1図から明らかな様
に、0.1<x<0.35で各特性に優れていることが
わかる。特に、0.16<x<0.30でCR値が3000M
Ω・μF以上と高信頼性が得られることがわかる。 誘電体材料においては誘電率を高くするため、
キユリー温度が常温付近にくるようにする。本発
明のMe成分はキユリー温度を下げる働きがある
のに対し、Tiはキユリー温度を上げる働きがあ
り、Tiの添加含有はMe成分と合せて誘電率を高
くする効果を有する。しかしながらTi成分を余
り多くすると絶縁抵抗が低下しCR値が小さくな
つてしまうため、Ti量であるyは、y>0.5とす
る。また、yが0.5以上となると焼成温度も1100
℃と高温になつてしまう。特に、基本成分である
Pb(Zn1/3Nb2/3)O3の効果を考慮して、y<0.4の
場合が好ましい。Tiを含有しない係(y=0)
でも十分に優れた高誘電率磁器組成物を構成する
がTiを含有する場合は、y>0.05程度からその添
加含有の効果が顕著に見られる。 なお本発明は、 (Pb1-xMex)[(Zn1/3Nb2/31-yTiy]O3を主体と
するものであるが、多少化学量論比がずれても構
わない。この組成物を酸化物に換算すると、 PbO 46.13〜65.00wt% BaO 0.00〜18.10wt% SrO 0.00〜12.99wt% ZnO 4.32〜9.13wt% Nb2O5 14.11〜29.83wt% TiO2 0.00〜14.31wt% (ただし、BaOとSrOとの合計で3.17〜18.10wt
%) となる。 また、本発明の効果を損わない範囲での不純
物、添加物等の含有も構わない。例えば、
MnO2,CoO,NiO,MgO等の遷移金属があげら
れる。これらの添加物の含有量は、多くても1wt
%程度である。 特にMn,Coは有効であり、0.01〜0.5wt%程
度の少量の添加が効果的である。 次に本発明組成物の製造方法について説明す
る。 出発原料としてPb,Ba,Sr,Zn,Nb,Tiの
酸化物もしくは焼成により酸化物になる炭酸塩、
しゆう酸塩等の塩類、水酸化物、有機化合物等を
所定の割合で秤量し、十分混合した後に仮焼す
る。この仮焼は700℃〜850℃程度で行う。余り仮
焼温度が低いと焼結密度が低下し、また、余り高
いと、やはり焼結密度が低下し、絶縁抵抗が低下
する。次いで仮焼物を粉砕し原料粉末を製造す
る。平均粒径は0.8〜2μm程度が好ましく、余り
大きいと焼結体中にポアーが増加し、小さいと成
型性が低下する。この様な原料粉末を用い所望の
形状に成型した後、焼成することにより、高誘電
率セラミツクを得る。本発明の組成物を用いるこ
とにより焼成は1100℃以下、980〜1080℃程度と
比較的低温で行うことができる。 積層タイプの素子を製造する場合は、前述の原
料粉末にバインダー、溶剤等を加えスラリー化し
て、グリーンシートを形成しこのグリーンシート
上に内部電極を印刷した後、所定の枚数を積層・
圧着し、焼成することにより製造する。この時、
本発明の誘電体材料は低温で焼結ができるため、
内部電極材料として例えばAg主体の安価な材料
を用いることができる。 また、このように低温で焼成が可能であること
から、回路基板上等に印刷・焼成する厚膜誘電体
ペーストの材料としても有効である。 この様な本発明磁器組成物は、高誘電率かつ、
その温度特性が良好である。また、CR値も大き
く、特に高温でも十分な値を有し、高温での信頼
性に優れている。 誘電率の温度変化の小さいことは本発明の大き
な特徴であり、これは、K≧5000のごとくの大き
な誘電率の場合特に顕著である。この様に誘電率
の大きい場合には、(誘電率)/温度変化率の絶
対値)の大きいことが要求される。本発明ではこ
の点に関しても非常に優れている。 さらに誘電率バイアス電界依存性も優れてお
り、4kV/mmでも10%以下程度の材料を得ること
もできる。したがつて、高圧用の材料として有効
である。また誘電損失が小さく、交流用、高周波
用として有効である。 さらに前述のごとく誘電率の温度特性に優れて
いるため、電歪素子へ応用した場合でも変位量の
温度変化の小さい素子を得ることができる。 さらに、焼成時のグレインサイズも1〜3μmと
均一化されるため耐圧性にも優れている。 以上電気的特性について述べたが、機械的強度
も十分に優れたものである。 〔発明の効果〕 以上説明したように、本発明によれば、高誘電
率でかつ温度特性、バイアス特性に優れた高誘電
率磁器組成物を得ることができる。特に、この様
な各種特性に優れた磁器を低温焼成で得ることが
できるため、積層セラミツクコンデンサ,積層型
セラミツク変位発生素子等の積層タイプのセラミ
ツク素子への応用に適している。 〔発明の実施例〕 以下に本発明の実施例を説明する。 出発原料としてPb,Ba,Sr,Zn,Nb,Tiの
酸化物、炭酸化物等の出発原料をールミル等で混
合し、700〜850℃で仮焼する。次いでこの仮焼体
をボールミル等で粉砕し乾燥の後、バインダーを
加え造粒し、プレスして直径17mm、厚さ約2mmの
円板状素体を形成した。混合、粉砕用のボール
は、不純物の混入を防止するため、部分安定化ジ
ルコニアボール等の硬度が大きく、かつ靭性の高
いボールを用いることが好ましい。 この素体を空気中980〜1080℃、2時間の条件
で焼結し、両主面に銀電極を焼付け各特性を測定
した。誘電損失、容量は、1KHz、1Vrms、25℃
の条件でのデジタルLCRメーターによる測定値
であり、この値から誘電率を算出した。また、絶
縁抵抗は、100Vの電圧を1分間印加した後、絶
縁抵抗計を用いて測定した値から算出した。な
お、誘電率の温度特性は、25℃の値を基準とし、
−25℃、85℃での変化率で表わした。容量抵抗積
は、25℃および125℃での(誘電率)×(絶縁抵抗)
×(真空の誘電率)から求めた。絶縁抵抗の測定
は、空気中の湿気の効果を除くためシリコーンオ
イル中で行つた。その結果を第1表に示す。
[Technical Field of the Invention] The present invention relates to a high dielectric constant ceramic composition, and in particular,
This invention relates to a high dielectric constant ceramic composition mainly composed of Pb (Zn 1/3 Nb 2/3 ) O 3 and whose dielectric constant changes little with temperature. [Technical background of the invention and its problems] Electrical properties required for dielectric materials include dielectric constant, temperature coefficient of dielectric constant, dielectric loss, dependence of dielectric constant on electric field, and capacitance-resistance product. In particular, the capacitance-resistance product (CR value) must take a sufficiently high value, and must comply with the EIJA (Japan Electronics Industries Association) multilayer ceramic capacitor (chip type) standard for electronic equipment.
RC-3698B specifies 500MΩ・μF or more at room temperature. In addition, high temperature (for example, U.S. Department of Defense standard MIL-C-
55681B has a CR value at 125℃. )
However, it is required to maintain a high capacitance-resistance product. In addition, although it is required that the temperature coefficient of dielectric constant be small, in general, materials with a large dielectric constant (K) tend to have a large temperature coefficient (TCC), and K/TCC
is required to be large, that is, the relative value of the change in dielectric constant is required to be small. Furthermore, when considering a multilayer type device, the electrode layer and dielectric layer are fired as one unit. As the electrode material, it is necessary to use a material that is stable even at the firing temperature of the dielectric material. Therefore, if the firing temperature of the dielectric material is high, expensive materials such as Pt and Pd must be used.In order to use cheaper materials such as Ag, it is possible to fire at a low temperature of about 1100℃ or less. something is required. Conventionally known high dielectric constant ceramic compositions include barium titanate as a base and solid solutions of stannate, zirconate, titanate, etc. therein. It is true that it is possible to obtain a material with a high dielectric constant, but as the dielectric constant increases, the temperature characteristics deteriorate,
Further, there was a problem in that the dependence on the bias electric field also increased. Furthermore, the firing temperature of barium titanate-based materials is as high as 1,300 to 1,400 degrees Celsius, which necessitates the use of expensive materials such as platinum and palladium that can withstand high temperatures as electrode materials, resulting in high costs. Cause. In order to solve the problems of barium titanate, various compositions have been studied. For example, those based on lead iron niobate (Japanese Patent Application Laid-Open No. 57-57204
No.), those mainly composed of magnesium and lead niobate (Japanese Patent Application Laid-open No. 55-51758), those mainly composed of magnesium and lead tungstate (Japanese Patent Application Laid-Open No. 52-21699)
etc. Those mainly based on lead iron niobate are
There is a problem that the CR value varies greatly depending on the firing temperature, and the CR value decreases particularly at high temperatures. The firing temperature for products made mainly of magnesium and lead niobate is relatively high;
For materials mainly made of lead tungstate, the higher the CR value, the lower the dielectric constant, and the higher the dielectric constant, the higher the CR value.
There was a problem that the value was small. Furthermore, although the temperature coefficient of dielectric constant of these materials is superior to that of barium titanate, it is not sufficient. Furthermore, if necessary, a part of the lead can be replaced with barium, a solid solution of lead zinc niobate and nickel niobate.
Materials substituted with strontium and calcium are also being studied (Japanese Patent Application Laid-open No. 214201/1983).
However, the temperature coefficient of dielectric constant of this material is −25
Even the best one at ~85°C is -33%, which is not sufficient. Furthermore, there is no mention of CR value, and its usefulness as a capacitor material is unclear. [Object of the invention] The present invention has been made in consideration of the above points, and
It is an object of the present invention to provide a high dielectric constant ceramic composition having a large dielectric constant and a small temperature coefficient. [Summary of the invention] The present invention is based on zinc niobate or zinc niobate, and has the general formula (Pb 1-x M x ) [(Zn 1/3 Nb 2/3 ) 1-1 T iy ] It is a high dielectric constant ceramic composition that satisfies 0.1<x<0.35 and 0≦y<0.5 when expressed as O 3 (where Me is at least one of Ba and Sr). Various perovskite-type ceramic materials have been studied as dielectric materials, but Pb (Zn 1/3
When Nb 2/3 ) O 3 is made into porcelain, it is difficult to form a perovskite structure and was thought to be unsuitable as a dielectric material (NEC Research &
Development No.29April 1973 p.15-21).
However, according to the research of the present inventors, Pb
It was found that by replacing the Pb site of (Zn 1/3 Nb 2/3 )O 3 with an appropriate amount of Ba or Sr, a stable perovskite structure can be formed in porcelain. Furthermore, it has been found that such a ceramic composition exhibits extremely high dielectric constant and insulation resistance, and also has extremely good temperature characteristics. The composition range of the composition of the present invention will be explained below. Me=Ba, Sr are elements necessary to form the Pb (Zn 1/3 Nb 2/3 ) O 3 perovskite structure, and x
= 0.1 or less, a pichlor structure is present, and high dielectric constant and high insulation resistance are not exhibited. x=
If it is 0.35 or more, the dielectric constant will be as small as about 1000, and the firing temperature will be as high as 1100°C or more. Therefore, 0.1<x<0.35. This situation is shown in FIG. Figure 1 shows the dielectric constant and CR value when the value of x is changed, and both values are at 25°C. As is clear from FIG. 1, it can be seen that each property is excellent when 0.1<x<0.35. In particular, when 0.16<x<0.30, the CR value is 3000M
It can be seen that high reliability can be obtained with Ω・μF or more. In order to increase the permittivity of dielectric materials,
Make sure that the temperature of the cuirie comes to around room temperature. The Me component of the present invention has the effect of lowering the Curie temperature, while Ti has the effect of increasing the Curie temperature, and the addition of Ti has the effect of increasing the dielectric constant together with the Me component. However, if the Ti component is too large, the insulation resistance will decrease and the CR value will become small, so y, which is the amount of Ti, is set to y>0.5. Also, when y is 0.5 or more, the firing temperature is also 1100.
It becomes as high as ℃. In particular, the basic ingredients
Considering the effect of Pb(Zn 1/3 Nb 2/3 )O 3 , it is preferable that y<0.4. Contains no Ti (y=0)
However, in the case where a sufficiently excellent high dielectric constant ceramic composition is constituted, but it contains Ti, the effect of its addition becomes noticeable from about y>0.05. Although the present invention is mainly based on (Pb 1-x M x ) [(Zn 1/3 Nb 2/3 ) 1-y T iy ]O 3 , even if the stoichiometric ratio is slightly shifted, I do not care. In terms of oxides, this composition is: PbO 46.13-65.00wt% BaO 0.00-18.10wt% SrO 0.00-12.99wt% ZnO 4.32-9.13wt% Nb 2 O 5 14.11-29.83wt% TiO 2 0.00-14.31wt% (However, the total of BaO and SrO is 3.17 to 18.10wt
%). Further, impurities, additives, etc. may be contained within a range that does not impair the effects of the present invention. for example,
Examples include transition metals such as MnO 2 , CoO, NiO, and MgO. The content of these additives is at most 1wt.
It is about %. Mn and Co are particularly effective, and addition of small amounts of about 0.01 to 0.5 wt% is effective. Next, a method for producing the composition of the present invention will be explained. Starting materials include oxides of Pb, Ba, Sr, Zn, Nb, and Ti, or carbonates that become oxides by calcination.
Salts such as oxalates, hydroxides, organic compounds, etc. are weighed out in predetermined proportions, thoroughly mixed, and then calcined. This calcination is performed at about 700°C to 850°C. If the calcination temperature is too low, the sintered density will decrease, and if it is too high, the sintered density will also decrease and the insulation resistance will decrease. Next, the calcined product is pulverized to produce raw material powder. The average particle size is preferably about 0.8 to 2 μm; if it is too large, pores will increase in the sintered body, and if it is too small, moldability will deteriorate. A high dielectric constant ceramic is obtained by molding such raw material powder into a desired shape and firing it. By using the composition of the present invention, firing can be performed at a relatively low temperature of 1100°C or lower, about 980 to 1080°C. When manufacturing a laminated type element, a binder, a solvent, etc. are added to the above-mentioned raw material powder to form a slurry, a green sheet is formed, internal electrodes are printed on this green sheet, and a predetermined number of sheets are laminated.
Manufactured by crimping and firing. At this time,
Since the dielectric material of the present invention can be sintered at low temperatures,
For example, an inexpensive material mainly composed of Ag can be used as the internal electrode material. Furthermore, since it can be fired at such a low temperature, it is also effective as a material for thick film dielectric pastes printed and fired on circuit boards and the like. Such a ceramic composition of the present invention has a high dielectric constant and
Its temperature characteristics are good. It also has a large CR value, which is sufficient even at high temperatures, and has excellent reliability at high temperatures. A small temperature change in dielectric constant is a major feature of the present invention, and this is particularly noticeable when the dielectric constant is large, such as K≧5000. When the dielectric constant is large as described above, it is required that (dielectric constant)/absolute value of temperature change rate) be large. The present invention is also very superior in this respect. Furthermore, the dielectric constant bias electric field dependence is excellent, and even at 4kV/mm, it is possible to obtain a material with a dielectric constant of less than 10%. Therefore, it is effective as a material for high pressure applications. Furthermore, it has low dielectric loss and is effective for AC and high frequency applications. Furthermore, as described above, since the dielectric constant has excellent temperature characteristics, even when applied to an electrostrictive element, an element with small temperature change in displacement can be obtained. Furthermore, since the grain size during firing is uniform at 1 to 3 μm, it also has excellent pressure resistance. Although the electrical properties have been described above, the mechanical strength is also sufficiently excellent. [Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a high dielectric constant ceramic composition that has a high dielectric constant and excellent temperature characteristics and bias characteristics. In particular, since porcelain with such excellent properties can be obtained by firing at low temperatures, it is suitable for application to laminated ceramic elements such as laminated ceramic capacitors and laminated ceramic displacement generating elements. [Embodiments of the Invention] Examples of the present invention will be described below. Starting materials such as oxides and carbonates of Pb, Ba, Sr, Zn, Nb, and Ti are mixed in a Rumil or the like and calcined at 700 to 850°C. Next, this calcined body was pulverized with a ball mill or the like, and after drying, a binder was added and granulated, and pressed to form a disc-shaped element having a diameter of 17 mm and a thickness of about 2 mm. As balls for mixing and grinding, it is preferable to use balls with high hardness and high toughness, such as partially stabilized zirconia balls, in order to prevent contamination of impurities. This element body was sintered in air at 980 to 1080°C for 2 hours, and silver electrodes were baked on both main surfaces to measure each characteristic. Dielectric loss, capacity is 1KHz, 1Vrms, 25℃
This is the value measured by a digital LCR meter under the following conditions, and the dielectric constant was calculated from this value. Moreover, the insulation resistance was calculated from the value measured using an insulation resistance meter after applying a voltage of 100V for 1 minute. In addition, the temperature characteristics of the dielectric constant are based on the value of 25℃,
Expressed as the rate of change at -25°C and 85°C. The capacitance-resistance product is (permittivity) x (insulation resistance) at 25℃ and 125℃
It was calculated from × (dielectric constant of vacuum). Insulation resistance measurements were performed in silicone oil to eliminate the effects of atmospheric moisture. The results are shown in Table 1.

【表】【table】

【表】 第1表から明らかなように、本発明磁器組成物
は、高誘電率(K=1400以上)かつ、温度特性が
良好(−25〜85℃で±32%以内)である。CR値
も1100MΩ・μF(25℃)以上と大きく、特に、
125℃でも、260MΩ・μF以上であり、高温での
信頼性に優れている。また、誘電率の温度変化の
小さいことはK≧5000のごとくの大きな誘電率の
場合特に顕著である。この様に誘電率の大きい場
合には、(誘電率)/(温度変化率の絶対値)の
大きいことが要求される。本発明実施例では、K
≧5000のときこの値が200以上なり、非常に優れ
ている。さらに誘電率バイアス電界依存性も
1KV/mmで15%以内と優れている。また誘電損
失が25℃、1KHzで2.4%以下と小さい。 参考例は、本発明組成の範囲外のものである。 Me成分を含まないものは(参考例3,4)、誘
電率が小さく、またCR値も極めて小さい。また、
参考例1,2はMe成分を過剰に加えたものであ
るが、誘電率が小さく、その温度変化も極めて大
きい。 第2図に誘電率の温度特性を示す。比較のた
め、(BaTiO3)0.89−(CaTiO3)0.10−
〔MgZrO3)0.01のチタン酸バリウム系の材料の
特性を合せて示した(参考例5)。参考例5は25
℃で6000程度の大きい誘電率を示すものの−25℃
および85℃では−50%以上の変化率を示す。これ
に対し、本発明では、K=8500(25℃)のもので
も(実施例27)わずか−32%以内であり、K=
3900(25℃)のものでは(実施例16)−9.5%と極
めて小さい。この誘電率の温度特性は、常温での
値に対する負の変化より正の変化のほうが重視さ
れ、+30%以上の変化を示す材料はEIA,EIAJの
コンデンサのどの規格も満足せず、コンデンサ材
料としては全く実用性がない。たとえば、チタン
酸鉛に代えニツケル・ニオブ酸鉛を用いた
0.3PbNi1/3Nb2/3O3−0.7PbZn1/3Nb2/3O3でPbの10
原子%をBaで置換した材料では、−25℃での変化
率が+35%であり、コンデンサ材料としては全く
実用的ではない。 第3図は直流バイアス電界依存性を示す図であ
る。一般に誘電率はバイアス電界が高くなるにつ
れ低下する傾向があり、この傾向は誘電率が高い
ほど顕著になる。参考例5は誘電率が6000程度で
あるが、1kV/mmで−25%、2kV/mmで−63%と
非常に大きな低下の傾向を示している。これに対
し実施例12は誘電率が6900と大きいにもかかわら
ず、1kV/mmで−11%と極めて小さく、2KV/
mmでも−28%程度に過ぎない。 さらにチタン酸バリウム(参考例6)は実施例
11と同程度の誘電率を示すが、3kV/mmで−50%
の変化を示すのに対し、実施例11では−10%と極
めて小さい。このように直流バイアス電界依存性
の小さい本発明組成物は高圧用のコンデンサ材料
として有効である。また、積層コンデンサを考え
た場合、同一形状で大容量化を考えた場合、誘電
体層一層当たりの厚みを薄くする必要があるが、
この場合、一層あたりの印加電界が高くなること
になる。しかしながら本発明の組成物はバイアス
特性に優れているため。この様な素子に応用した
場合でも特性を劣化することがない。 第4図にCR値の温度特性を示す。本発明の場
合は、高温においてもCR値の低下は僅かであり、
実施例15で4000MΩ・μF(125℃)、実施例16で
1600MΩ・μF(125℃)と非常に高い値を示し、
信頼性に優れている。これに対し参考例5は、常
温で4000MΩ・μF程度と高い値を示しているが、
125℃では100MΩ・μFと極端に低下してしまう。 第5図は実施例15のX線デイフラクシヨンパタ
ーン図であるが、ほぼ完全なペロブスカイト相と
なつている。従つて、誘電率が6300,CR値
6500MΩ・μF(25℃)、4000MΩ・μF(125℃)と
優れた値を示している。これに対しPbサイトの
Baによる置換のない参考例4の場合は、第6図
に示したように多量のパイロクロール相が見られ
る。従つて、誘電率が990と小さく、CR値も
150MΩ・μF(25℃)と極めて小さく、全く実用
的ではない。 次いで実施例12の組成を用いて積層セラミツク
コンデンサを作成した実施例を説明する。まず、
この様な組成を有する焙焼粉にバインダー、有機
溶剤を加えてスラリー化した後ドクターブレイド
型キヤスターを用いて30μmのグリーンシートを
作成した。このグリーンシート上に80Ag/20Pd
の電極ペーストを所定のパターンで印刷し、この
様な電極パターンを有するシートを20層積層圧着
した。その後、所定の形状に切断し、脱脂を行い
1020℃、2Hの条件で焼成を行つた。焼結後、外
部電極としてAgペーストを焼付け、積層セラミ
ツクコンデンサを製造した。その電気的特性を第
2表に示す。
[Table] As is clear from Table 1, the ceramic composition of the present invention has a high dielectric constant (K=1400 or more) and good temperature characteristics (within ±32% at -25 to 85°C). The CR value is also large, over 1100MΩ・μF (25℃), especially,
Even at 125℃, it has a resistance of 260MΩ・μF or more, which means it has excellent reliability at high temperatures. Furthermore, the small temperature change in the dielectric constant is particularly noticeable in the case of a large dielectric constant such as K≧5000. When the dielectric constant is large like this, it is required that (permittivity)/(absolute value of temperature change rate) be large. In the embodiment of the present invention, K
When ≧5000, this value becomes 200 or more, which is very good. Furthermore, the dielectric constant bias electric field dependence
It is excellent within 15% at 1KV/mm. In addition, dielectric loss is low at 2.4% or less at 25°C and 1KHz. Reference examples are outside the scope of the composition of the present invention. Those containing no Me component (Reference Examples 3 and 4) have a low dielectric constant and an extremely low CR value. Also,
Reference Examples 1 and 2 contain an excessive amount of Me component, but their dielectric constants are small and their temperature changes are also extremely large. Figure 2 shows the temperature characteristics of the dielectric constant. For comparison, (BaTiO 3 ) 0.89− (CaTiO 3 ) 0.10−
The properties of barium titanate-based material with [MgZrO 3 )0.01 are also shown (Reference Example 5). Reference example 5 is 25
Although it shows a large dielectric constant of about 6000 at -25℃
At 85°C, the rate of change is -50% or more. On the other hand, in the present invention, even when K=8500 (25°C) (Example 27), it is within -32%, and K=
3900 (25°C) (Example 16), it is extremely small at -9.5%. Regarding the temperature characteristics of this dielectric constant, positive changes are more important than negative changes relative to the value at room temperature, and materials that exhibit a change of +30% or more do not meet any EIA or EIAJ capacitor standards and are not suitable for capacitor materials. is completely impractical. For example, using lead nickel niobate instead of lead titanate
0.3PbNi 1/3 Nb 2/3 O 3 −0.7PbZn 1/3 Nb 2/3 O 3 with Pb 10
In a material in which atomic percent is replaced with Ba, the rate of change at -25°C is +35%, which is completely impractical as a capacitor material. FIG. 3 is a diagram showing the DC bias electric field dependence. Generally, the dielectric constant tends to decrease as the bias electric field increases, and this tendency becomes more pronounced as the dielectric constant increases. Reference Example 5 has a dielectric constant of about 6000, but shows a very large tendency to decrease by -25% at 1 kV/mm and -63% at 2 kV/mm. On the other hand, although the dielectric constant of Example 12 is as high as 6900, it is extremely small at -11% at 1kV/mm.
Even in mm, it is only about -28%. Furthermore, barium titanate (Reference Example 6) is an example
11, but -50% at 3kV/mm
In contrast, in Example 11, the change is extremely small at -10%. As described above, the composition of the present invention having a small dependence on a DC bias electric field is effective as a material for a high-voltage capacitor. In addition, when considering multilayer capacitors, if we consider increasing the capacity with the same shape, it is necessary to reduce the thickness of each dielectric layer.
In this case, the applied electric field per layer will be higher. However, the composition of the present invention has excellent bias characteristics. Even when applied to such devices, the characteristics do not deteriorate. Figure 4 shows the temperature characteristics of the CR value. In the case of the present invention, the CR value decreases only slightly even at high temperatures,
4000MΩ・μF (125℃) in Example 15,
It shows a very high value of 1600MΩ・μF (125℃),
Excellent reliability. On the other hand, reference example 5 shows a high value of about 4000MΩ・μF at room temperature,
At 125℃, the resistance drops to 100MΩ・μF. FIG. 5 is an X-ray diffraction pattern diagram of Example 15, which shows an almost perfect perovskite phase. Therefore, the dielectric constant is 6300, CR value
It shows excellent values of 6500MΩ・μF (25℃) and 4000MΩ・μF (125℃). In contrast, the Pb site
In the case of Reference Example 4 without substitution with Ba, a large amount of pyrochlore phase is observed as shown in FIG. Therefore, the dielectric constant is as low as 990, and the CR value is also low.
It is extremely small at 150MΩ・μF (25℃) and is not practical at all. Next, an example in which a multilayer ceramic capacitor was manufactured using the composition of Example 12 will be described. first,
A binder and an organic solvent were added to the roasted powder having such a composition to form a slurry, and then a 30 μm green sheet was created using a doctor blade type caster. 80Ag/20Pd on this green sheet
The electrode paste was printed in a predetermined pattern, and 20 sheets having such an electrode pattern were laminated and pressure-bonded. After that, cut it into the specified shape and degrease it.
Firing was performed at 1020°C for 2 hours. After sintering, Ag paste was baked as an external electrode to produce a multilayer ceramic capacitor. Its electrical characteristics are shown in Table 2.

【表】 得られた積層セラミツクコンデンサの誘電率は
約6500であり、また、第2表に示したごとく各特
性が十分に優れていることが分る。特に温度特性
は−25〜85℃で±15%以内であり、HIAJのC特
性およびEIAのW5R特性を満足するものである。 前述の如く、本発明の効果を損なわない範囲、
1wt%以下程度、好ましくは0.5wt%以下のMn,
Co等を添加しても良い。この様な添加物は、、耐
圧の向上、T.C.Cの改良、誘電損失の低減等の効
果を得ることもでき、少量、0.01wt%程度でその
効果は現れる。第3表に実施例16の組成にMnO
を添加した場合の諸特性を示す。CoO等でも同様
の効果を得ることができる。 また第2表と同様に実施例12の組成に0.25mol
%のMnO及びCoOを添加したものを用い、同様
に積層セラミツクコンデンサを製造した。その結
果を第4表に示す。 この様に、本発明の高誘電率磁器組成物は、温
度特性等の各種特性に優れており、特に積層セラ
ミツクコンデンサ用の材料として有効である。
[Table] The dielectric constant of the obtained multilayer ceramic capacitor was approximately 6500, and as shown in Table 2, it was found that each property was sufficiently excellent. In particular, the temperature characteristics are within ±15% from -25 to 85°C, satisfying HIAJ's C characteristics and EIA's W5R characteristics. As mentioned above, within the range that does not impair the effects of the present invention,
Mn of about 1wt% or less, preferably 0.5wt% or less,
Co or the like may be added. Such additives can also have effects such as improving breakdown voltage, improving TCC, and reducing dielectric loss, and these effects appear in small amounts, about 0.01 wt%. Table 3 shows the composition of Example 16 with MnO
The following shows the characteristics when adding . A similar effect can be obtained with CoO, etc. Also, as in Table 2, 0.25 mol in the composition of Example 12
A multilayer ceramic capacitor was manufactured in the same manner using a capacitor containing % MnO and CoO. The results are shown in Table 4. As described above, the high dielectric constant ceramic composition of the present invention has excellent various properties such as temperature properties, and is particularly effective as a material for laminated ceramic capacitors.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Me量とCR値および誘電率の関係を
示す特性曲線図、第2図は、誘電率の温度特性曲
線図、第3図は、誘電率の直流バイアス電界特性
曲線図、第4図は、CR値の温度特性曲線図、第
5図および第6図は、X線デイフラクシヨンパタ
ーン図。
Figure 1 is a characteristic curve diagram showing the relationship between Me content, CR value, and permittivity, Figure 2 is a temperature characteristic curve diagram of permittivity, and Figure 3 is a DC bias electric field characteristic curve diagram of permittivity. Figure 4 is a temperature characteristic curve diagram of CR value, and Figures 5 and 6 are X-ray diffraction pattern diagrams.

Claims (1)

【特許請求の範囲】 1 一般式 (Pb1-xMex)[(Zn1/3Nb2/31-yTiy]O3で表わし
たとき(ただし、MeはBa及びSrの少なくとも一
種)、 0.1<x<0.35 0≦y<0.5 を満たすことを特徴とする高誘電率磁器組成物。
[Claims] 1 When expressed by the general formula (Pb 1-x M x ) [(Zn 1/3 Nb 2/3 ) 1-y T iy ]O 3 (where Me is at least one of Ba and Sr) A high dielectric constant ceramic composition satisfying the following conditions: 0.1<x<0.35 and 0≦y<0.5.
JP59222924A 1984-10-25 1984-10-25 High permittivity ceramic composition Granted JPS61101460A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59222924A JPS61101460A (en) 1984-10-25 1984-10-25 High permittivity ceramic composition
EP85113411A EP0180132B1 (en) 1984-10-25 1985-10-22 High dielectric constant type ceramic composition
DE8585113411T DE3586118D1 (en) 1984-10-25 1985-10-22 CERAMIC COMPOSITION WITH A HIGH DIELECTRIC CONSTANT.
KR1019850007827A KR890004286B1 (en) 1984-10-25 1985-10-23 High dielectric constant type ceramic composition
CA000493775A CA1266374A (en) 1984-10-25 1985-10-24 High dielectric constant type ceramic composition
US07/157,149 US4818736A (en) 1984-10-25 1988-02-11 High dielectric constant type ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59222924A JPS61101460A (en) 1984-10-25 1984-10-25 High permittivity ceramic composition

Publications (2)

Publication Number Publication Date
JPS61101460A JPS61101460A (en) 1986-05-20
JPH0360787B2 true JPH0360787B2 (en) 1991-09-17

Family

ID=16789994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59222924A Granted JPS61101460A (en) 1984-10-25 1984-10-25 High permittivity ceramic composition

Country Status (2)

Country Link
JP (1) JPS61101460A (en)
KR (1) KR890004286B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265822A (en) * 1987-04-23 1988-11-02 Ube Ind Ltd Manufacture of composite perovskite feedstock powder for low temperature sintering
JP6032701B2 (en) * 2012-08-07 2016-11-30 国立大学法人 名古屋工業大学 Tunable capacitor

Also Published As

Publication number Publication date
JPS61101460A (en) 1986-05-20
KR890004286B1 (en) 1989-10-30
KR860003634A (en) 1986-05-28

Similar Documents

Publication Publication Date Title
JP3046436B2 (en) Ceramic capacitors
KR100201201B1 (en) Monolithic ceramic capacitor
JP7036022B2 (en) Dielectric Porcelain Compositions for Ceramic Electronic Components and Ceramic Electronic Components
JP2000143341A (en) Dielectric ceramic composition and multilayer ceramic part
JP2566995B2 (en) High dielectric constant porcelain composition and ceramic capacitor
JPH0785460B2 (en) Multilayer porcelain capacitor
TW201945315A (en) Dielectric ceramic composition and ceramic electronic part
JP2915217B2 (en) Dielectric porcelain and porcelain capacitor
JP2001278659A (en) Dielectric ceramics composition and manufacturing method for ceramic capacitor using it
JP2660010B2 (en) High dielectric constant porcelain composition and ceramic capacitor
JP2001114559A (en) Dielectric composition
JPH0360787B2 (en)
JPS61251563A (en) High permittivity ceramic composition
JPH0478577B2 (en)
JP2779740B2 (en) Dielectric porcelain and porcelain capacitor
JP2789110B2 (en) High dielectric constant porcelain composition
KR890002696B1 (en) High dielectric constant ceramic material and method of manufacturing the same
JP2821768B2 (en) Multilayer ceramic capacitors
JPH0544763B2 (en)
JPH04363012A (en) Ceramic capacitor
JP2850355B2 (en) Ceramic capacitor and method of manufacturing the same
JPS6117087B2 (en)
JPH0460943B2 (en)
JPH0588486B2 (en)
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term