JPH0785460B2 - Multilayer porcelain capacitor - Google Patents

Multilayer porcelain capacitor

Info

Publication number
JPH0785460B2
JPH0785460B2 JP61098761A JP9876186A JPH0785460B2 JP H0785460 B2 JPH0785460 B2 JP H0785460B2 JP 61098761 A JP61098761 A JP 61098761A JP 9876186 A JP9876186 A JP 9876186A JP H0785460 B2 JPH0785460 B2 JP H0785460B2
Authority
JP
Japan
Prior art keywords
dielectric
nickel
mgo
mol
batio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61098761A
Other languages
Japanese (ja)
Other versions
JPS62256422A (en
Inventor
信儀 藤川
光俊 川本
秀樹 卯滝
隆司 新留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61098761A priority Critical patent/JPH0785460B2/en
Publication of JPS62256422A publication Critical patent/JPS62256422A/en
Publication of JPH0785460B2 publication Critical patent/JPH0785460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はニッケル内部電極を有する積層型磁器コンデン
サに関する。
The present invention relates to a laminated porcelain capacitor having nickel internal electrodes.

〔従来の技術〕[Conventional technology]

従来、一般に積層型磁器コンデンサは表面に内部電極が
塗付されたシート状のBaTiO3を主成分とする誘電体を複
数枚積層するとともに各シートの内部電極を交互に並列
に一対の外部接続用電極に接続し、これを焼結一体化す
ることにより形成されている。このような積層型磁器コ
ンデンサは近年のエレクトロニクスの進展に伴い電子部
品の小型化が急速に進行し、広範な電子回路に使用され
るようになってきている。
Conventionally, generally, a laminated porcelain capacitor is formed by laminating a plurality of sheet-like dielectrics containing BaTiO 3 as a main component with internal electrodes coated on the surface and alternately connecting the internal electrodes of each sheet in parallel for a pair of external connections. It is formed by connecting to an electrode and integrally sintering it. Such multilayer ceramic capacitors have been rapidly used in a wide variety of electronic circuits due to rapid miniaturization of electronic parts with the recent progress of electronics.

しかしながら、この従来のBaTiO3を主成分とする誘電体
材料は1250℃〜1350℃の高温で焼成する必要があり、こ
の材料を積層型磁器コンデンサの誘導体として使用した
場合、内部電極は前記誘電体の焼成温度にて溶融するこ
となく、かつ酸化することがない高価な貴金属であるパ
ラジウム(融点1555℃)またはその合金が使用され、特
に静電容量が大きいものでは内部電極数が大となってコ
スト高となり、前記、従来の積層型磁器コンデンサは容
量効率が高く、その他誘電的特性に優れ且つ高信頼性に
あるにも拘わらず価格面がその進展に大きな傷害となっ
ていた。
However, this conventional BaTiO 3 -based dielectric material needs to be fired at a high temperature of 1250 ° C to 1350 ° C. When this material is used as a derivative of a laminated porcelain capacitor, the internal electrodes are Palladium (melting point 1555 ° C), which is an expensive noble metal that does not melt and does not oxidize at the firing temperature of, or its alloy is used, and the number of internal electrodes becomes large especially for those with large capacitance. The cost is high, and the conventional multilayer ceramic capacitor has high capacity efficiency, excellent dielectric properties, and high reliability, but its price is a serious obstacle to its progress.

そこで、上記従来の積層型磁器コンデンサの高価となる
欠点を解消するために内部電極として安価な卑金属、例
えばニッケルを使用することが試みられている。しかし
ながら、ニッケルなどの卑金属を内部電極として使用す
ると、チタン酸バリウム(BaTiO3)等から成る誘導体と
卑金属内部電極とを同時焼結する際、前記卑金属が酸化
することなく金属膜として焼結する条件はNi/NiOの平衡
酸素分圧が1300℃において約3×10-7atmであるから、
それ以下の酸素分圧でなければならずこの場合チタン酸
バリウムまたはその固溶体からなる誘電体は、一般に前
記の酸素分圧下では還元されてしまって絶縁性を失い、
その結果積層型磁器コンデンサとしての実用的な誘電体
特性が得られなくなるという欠点を有していた。
Therefore, it has been attempted to use an inexpensive base metal, such as nickel, as the internal electrodes in order to solve the disadvantage that the conventional multilayer ceramic capacitor is expensive. However, when a base metal such as nickel is used as an internal electrode, when a derivative composed of barium titanate (BaTiO 3 ) and the base metal internal electrode are co-sintered, the base metal is not oxidized and is sintered as a metal film. Since the equilibrium oxygen partial pressure of Ni / NiO is about 3 × 10 -7 atm at 1300 ° C,
The oxygen partial pressure should be lower than that, and in this case, the dielectric composed of barium titanate or a solid solution thereof is generally reduced under the oxygen partial pressure and loses its insulating property.
As a result, there is a drawback that practical dielectric characteristics as a laminated ceramic capacitor cannot be obtained.

また一方、ニッケルなどの内部電極を有する積層型磁器
コンデンサとして使用できる非還元性誘電体磁器組成物
として、チタン酸バリウム固溶体(Ba,Ca,Sr)TiO3にお
いて塩基性酸化物である(Ba,Ca,Sr)Oを酸性酸化物で
あるTiO2に対して化学量論比より過剰とし、ニッケルな
どの卑金属を内部電極として使用できる非還元性誘電体
磁器組成物が例えば特公昭57−42588号公報等において
提案されている。
On the other hand, as a non-reducing dielectric ceramic composition that can be used as a laminated ceramic capacitor having internal electrodes such as nickel, barium titanate solid solution (Ba, Ca, Sr) TiO 3 is a basic oxide (Ba, A non-reducing dielectric porcelain composition in which Ca, Sr) O is used in excess of the stoichiometric ratio with respect to TiO 2 which is an acidic oxide and a base metal such as nickel can be used as an internal electrode is disclosed in, for example, Japanese Patent Publication No. 57-42588. It is proposed in the gazette and the like.

これは一般に、ABO3型結晶においては、酸素八面体(ペ
ロブスカイト)構造の中心に位置するBイオンに対し
て、Bイオンより大きい酸素に対して12配位をとるAイ
オンが化学量論比より過剰である場合、結晶格子が酸素
原子を強く引きつけ、還元され難いことが知られてお
り、前記公報に記載された発明は、この化学量論比のず
れに立脚し、誘電体の非還元性を向上させたものであ
る。しかしながら、前記公報に記載された誘電体磁器組
成物は誘電率の温度変化率が大きく、誘電体特性が低下
するという欠点を有していた。
This is generally because, in the ABO 3 type crystal, the A ion having 12 coordination with oxygen larger than the B ion is more stoichiometric than the B ion located at the center of the oxygen octahedral (perovskite) structure. It is known that when the amount is excessive, the crystal lattice strongly attracts oxygen atoms and is difficult to be reduced, and the invention described in the above publication is based on the deviation of the stoichiometric ratio, and the non-reducing property of the dielectric material. Is improved. However, the dielectric ceramic composition described in the above publication has a drawback that the rate of change of the dielectric constant with temperature is large and the dielectric properties are deteriorated.

また誘電率の温度変化率が小さい高誘電率系誘電体磁器
組成物としてBaTiO3にスズ酸ビスマス〔Bi2(Sn
O3〕、ジルコニウム酸ビスマス〔Bi2(ZrO3
などのビスマス系化合物あるいはジルコニウム酸ニッケ
ル(NiZrO3)やジルコニウム酸マグネシウム(MgZrO3
を添加したものがある。これはビスマス系化合物あるい
はジルコニウム酸ニッケルやジルコニウム酸マグネシウ
ムの強いデプレッサー効果によりBaTiO3のキュリー点近
傍での誘電率の極大値を低下させ、誘電率の温度変化率
を小さくさせたものである。しかしながら、ニッケルな
どの卑金属を内部電極とし、BaTiO3にビスマス系化合物
あるいはジルコニウム酸ニッケルやジルコニウム酸マグ
ネシウムを添加した誘電体を前記Ni/NiOの平衡酸素分圧
以下で同時焼成する場合、前記誘電体は還元されてしま
って絶縁性を失い、その結果、満足な誘電体特性が得ら
れなくなるという欠点を有していた。
In addition, as a high-dielectric-constant dielectric ceramic composition with a small rate of change in permittivity with temperature, BaTiO 3 was added to bismuth stannate [Bi 2
O 3) 3], zirconium bismuth [Bi 2 (ZrO 3) 3]
Bismuth compounds such as nickel zirconate (NiZrO 3 ) and magnesium zirconate (MgZrO 3 )
Is added. This is because the maximum value of the dielectric constant near the Curie point of BaTiO 3 is lowered by the strong depressor effect of the bismuth compound or nickel zirconate or magnesium zirconate, and the temperature change rate of the dielectric constant is reduced. However, when a base metal such as nickel is used as an internal electrode and a bismuth-based compound or a dielectric material containing nickel zirconate or magnesium zirconate added to BaTiO 3 is co-fired below the equilibrium oxygen partial pressure of Ni / NiO, the dielectric Has a drawback that it is reduced and loses its insulating property, and as a result, satisfactory dielectric properties cannot be obtained.

更に、前記Ni/NiOの平衡酸素分圧付近で焼成しても誘電
体自身は還元されず誘電率の温度変化率が小さい非還元
性高誘電率系誘電体磁器組成物としてBaTiO3−MnO−MgO
系組成物が特開昭57−71866号公報において提案されて
いる。
Furthermore, BaTiO 3 as the Ni / dielectric be calcined near the equilibrium oxygen partial pressure of NiO own non-reducing temperature change rate is small in dielectric constant without being reduced high dielectric constant type dielectric ceramic composition -MnO- MgO
A system composition has been proposed in JP-A-57-71866.

これはMnO及びMgOがBaTiO3の還元を抑制する作用をな
し、前記平衡酸素分圧付近で焼成しても誘導体は還元さ
れず、充分な絶縁性を有し、更にMgOは前記ビスマス系
化合物と同様のデプレッサー効果を有していることから
誘電率の温度変化率を小さくしたものである。しかしな
がら、前記公報に記載された誘電体磁器組成物は誘電率
それ自体が低く、MgO添加量を増してE.I.A.規格(Elect
−ronic Industries Association Standard)の誘電率
の温度変化率(但し、−55℃〜+125℃の範囲で+25℃
を基準とする)を±15%以内にすると誘電率が2200以下
と更に低くなり、実用的な誘電体特性が得られなくなる
という欠点を有していた。
This has the effect that MnO and MgO suppress the reduction of BaTiO 3 , the derivative is not reduced even when fired near the equilibrium oxygen partial pressure, and has sufficient insulating properties, and MgO is the bismuth compound. Since it has the same depressor effect, the temperature change rate of the dielectric constant is reduced. However, the dielectric porcelain composition described in the above publication has a low dielectric constant itself, and the amount of MgO added is increased to increase the EIA standard (Electrification).
-Ronic Industries Association Standard) Dielectric constant temperature change rate (However, + 25 ° C in the range of -55 ° C to + 125 ° C)
(With reference to) is within ± 15%, the dielectric constant is further reduced to 2200 or less, and practical dielectric properties cannot be obtained.

〔発明の目的〕[Object of the Invention]

本発明は上記問題点を解決することを主たる目的とする
ものであって、詳しくはニッケルを内部電極とし、誘電
率が高く、電気絶縁性に優れ、誘電正接が小さく、且つ
広い温度範囲にわたって誘電率の温度変化率が小さい極
めて経済性に優れた積層型磁器コンデンサを提供するこ
とを目的とする。
The present invention is mainly aimed at solving the above-mentioned problems. Specifically, nickel is used as an internal electrode, and the dielectric constant is high, the electric insulation is excellent, the dielectric loss tangent is small, and the dielectric is spread over a wide temperature range. It is an object of the present invention to provide a laminated porcelain capacitor which has a small rate of temperature change and is extremely economical.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、誘電体としてその組成式が (1−x−y−z)BaTiO3+xCaZrO3+yMnO+zMgO 但し 0.003≦x≦0.023 0.005≦y≦0.030 0.010≦z≦0.080 で示される主成分に対し、添加剤としてY2O3を上記MgO
に対する割合として第1図の下記A,B,C,D,E MgO(モル%) Y2O3(モル%) A 8.00 2.00 B 5.00 0.25 C 1.00 0.25 D 1.00 1.00 E 6.00 2.50 の各点で囲まれる範囲内で添加したものを用いて、該誘
電体中に内部電極としてニッケルを用いることによっ
て、上記目的を達成することができる。
According to the present invention, with respect to the main component whose composition formula is represented by (1-x-y-z ) BaTiO 3 + xCaZrO 3 + yMnO + zMgO where 0.003 ≦ x ≦ 0.023 0.005 ≦ y ≦ 0.030 0.010 ≦ z ≦ 0.080 as dielectric , Y 2 O 3 as an additive above MgO
As shown in Fig. 1, enclosed by points A, B, C, D, E MgO (mol%) Y 2 O 3 (mol%) A 8.00 2.00 B 5.00 0.25 C 1.00 0.25 D 1.00 1.00 E 6.00 2.50 The above object can be achieved by using nickel added as an internal electrode within the range and using nickel as an internal electrode in the dielectric.

なお、第1図は、本発明において用いられる誘電体中の
MgOとY2O3の組成範囲を示す二元系図であってMgO(モル
%)は主成分全体に対するモル分率、Y2O3(モル%)は
主成分と添加剤との合量に対するモル分率で示したもの
である。
It should be noted that FIG. 1 shows the dielectric used in the present invention.
FIG. 2 is a binary system diagram showing the composition range of MgO and Y 2 O 3 , where MgO (mol%) is the mole fraction of the whole main component, and Y 2 O 3 (mol%) is the total amount of the main component and the additive. It is shown in terms of mole fraction.

第2図は本発明の積層型磁器コンデンサの断面図であ
る。
FIG. 2 is a sectional view of the laminated ceramic capacitor of the present invention.

本発明は積層型磁器コンデンサは第2図に示す如く、誘
電体1中にニッケルから成る複数の内部電極2が形成さ
れている。内部電極2は両端に形成された外部電極3に
交互に接続される。
As shown in FIG. 2, the multilayer ceramic capacitor according to the present invention has a plurality of internal electrodes 2 made of nickel formed in a dielectric 1. The internal electrodes 2 are alternately connected to the external electrodes 3 formed on both ends.

本発明によれば、誘電体として、非還元性に優れた誘電
体を用い特に前述した通りBaTiO3,CaZrO3,MnO,MgOを特
定比で配合してなる主成分に添加剤としてY2O3を特定比
で配合したものを用いる。この誘電体は希土類元素酸化
物であるY2O3をBaTiO3,CaZrO3,MgO,MnOに対し、同時添
加することによって、前記ビスマス系化合物あるいはジ
ルコニウム酸ニッケルやジルコニウム酸マグネシウムと
同様のデプレッサ効果が得られ、BaTiO3のキュリー点近
傍での誘電率の極大値を低くし、誘電率の温度変化を小
さくするとともに、絶縁抵抗の向上に有効に作用するも
のである。
According to the present invention, as the dielectric, using a dielectric excellent in non-reducing property, particularly as described above, BaTiO 3 , CaZrO 3 , MnO, and MgO are added to the main component composed of Y 2 O as an additive in a specific ratio. A mixture of 3 in a specific ratio is used. The dielectric is a rare earth element oxide Y 2 O 3 and BaTiO 3, CaZrO 3, MgO, relative to MnO, by simultaneous addition, the bismuth compound or a zirconium nickel and similar depressor effects as zirconium magnesium It is possible to lower the maximum value of the dielectric constant near the Curie point of BaTiO 3 , reduce the temperature change of the dielectric constant, and effectively improve the insulation resistance.

また、内部電極としてニッケルを用いた場合のNi/NiOの
1250℃乃至1350℃における平衡酸素分圧である3×10
-10乃至3×10-8atmの雰囲気で焼成する際に生ずる酸素
欠陥によって誘電体内に形成されるドナー準位電子をMn
OおよびMgOを添加することによってアクセプタ準位で再
結合せしめることができ、それによって誘電体磁器の半
導体化が抑制され、高い絶縁性を保持することができ
る。
In addition, when nickel is used as the internal electrode, Ni / NiO
Equilibrium oxygen partial pressure at 1250 ℃ to 1350 ℃ 3 × 10
-10 to 3 × 10 -8 atm The donor level electrons formed in the dielectric due to oxygen defects generated when firing in an atmosphere of Mn
By adding O and MgO, they can be recombined at the acceptor level, whereby the dielectric porcelain is prevented from becoming a semiconductor, and high insulation can be maintained.

よって磁器コンデンサとしては比誘電率、絶縁抵抗が高
く、誘電正接(tanδ)が小さく、誘電率や静電容量の
温度変化に対し変動が小さいコンデンサが得られる。
Therefore, as a porcelain capacitor, a capacitor having a high relative permittivity and insulation resistance, a small dielectric loss tangent (tan δ), and a small variation with respect to temperature changes in the dielectric constant and the capacitance can be obtained.

本発明の磁器コンデンサの製造について説明する。誘電
体の製造に際しては、まず出発原料としてはBaCO3,CaCO
3,TiO2,ZrO2の粉末を用いて、BaTiO3及びCaZrO3を合成
する。BaTiO3はBaCO3,TiO2から1150℃の温度にて、また
CaZrO3はCaCO3,ZrO2から1220℃の温度にていずれも固相
反応によって合成される。合成したBaTiO3,CaZrO3を粉
砕した後、MnCO3,MgCO3及びY2O3を添加し、スラリーを
調製する。得られたスラリーから、公知の成形手段、例
えばドクターブレード法、カレンダーロール法等によっ
てフィルム(シート)状に成形する。
The manufacture of the porcelain capacitor of the present invention will be described. When manufacturing dielectrics, the starting materials are BaCO 3 and CaCO.
BaTiO 3 and CaZrO 3 are synthesized using powders of 3 , TiO 2 and ZrO 2 . BaTiO 3 is at a temperature of 1150 ℃ from BaCO 3 and TiO 2 ,
CaZrO 3 is synthesized from CaCO 3 and ZrO 2 at a temperature of 1220 ° C. by solid-state reaction. After crushing the synthesized BaTiO 3 and CaZrO 3 , MnCO 3 , MgCO 3 and Y 2 O 3 are added to prepare a slurry. The obtained slurry is formed into a film (sheet) by a known forming means such as a doctor blade method or a calendar roll method.

このシート上に平均粒径1.5μm以下のニッケル微粉末
を含むニッケルペーストを印刷手段、例えばスクリーン
印刷法によってニッケル内部電極を印刷する。その後、
印刷されたシートを複数枚積層し、還元性雰囲気で焼成
を行う。焼成条件は1250℃乃至1350℃の焼成温度で且つ
雰囲気中の酸素分圧が3×10-10乃至3×10-8atmである
ことが望ましい。
On this sheet, a nickel paste containing fine nickel powder having an average particle diameter of 1.5 μm or less is printed by printing means, for example, a nickel internal electrode by a screen printing method. afterwards,
A plurality of printed sheets are laminated and fired in a reducing atmosphere. The firing conditions are preferably a firing temperature of 1250 ° C. to 1350 ° C. and an oxygen partial pressure in the atmosphere of 3 × 10 −10 to 3 × 10 −8 atm.

最終的な製品は、上記のようにして得られた焼結体の両
端部に外部電極形成用ペーストを塗布し、700乃至850℃
の還元雰囲気、特に酸素分圧10-16乃至10-10atmの雰囲
気で焼成することによって得られる。外部電極の材質と
しては、銀、銀−パラジウム、ニッケル、銅、銅−ニッ
ケル等が挙げられるが本発明では内部電極との接着性の
点からニッケル、銅あるいは銅−ニッケルが望ましい。
For the final product, apply external electrode forming paste to both ends of the sintered body obtained as described above, and then 700 to 850 ℃
Is obtained by firing in a reducing atmosphere, particularly in an atmosphere with an oxygen partial pressure of 10 −16 to 10 −10 atm. Examples of the material of the external electrode include silver, silver-palladium, nickel, copper, copper-nickel and the like. In the present invention, nickel, copper or copper-nickel is preferable from the viewpoint of adhesiveness to the internal electrode.

なお、本製造方法によれば、シート積層後焼成する前に
有機バインダーを除去することを目的として250乃至500
℃の低い温度で大気中で熱処理を行うことが望ましい。
Incidentally, according to the present manufacturing method, 250 to 500 for the purpose of removing the organic binder before firing after stacking the sheets.
It is desirable to perform the heat treatment in the air at a low temperature of ℃.

本発明を次の例で説明する。The invention is illustrated by the following example.

〔実施例〕〔Example〕

(試料の作成) 出発原料としてBaCO3,CaCO3,TiO2,ZrO2を用いBaTiO3
びCaZrO3を1150℃および1220℃にて固相反応により合成
するとともに微粉砕した。次に合成したBaTiO3,CaZrO3
に対し、MnCO3,MgCO3およびY2O3をそれぞれ誘電体とし
て第1表の割合となる様に秤量し、ボールミルにて分散
剤、分散媒とともに混合して原料スラリーを調製した。
(Preparation of sample) Using BaCO 3 , CaCO 3 , TiO 2 , and ZrO 2 as starting materials, BaTiO 3 and CaZrO 3 were synthesized by solid-state reaction at 1150 ° C and 1220 ° C and pulverized. Next, synthesized BaTiO 3 and CaZrO 3
On the other hand, MnCO 3 , MgCO 3 and Y 2 O 3 were respectively weighed as dielectrics so that the proportions shown in Table 1 were obtained, and mixed with a dispersant and a dispersion medium in a ball mill to prepare a raw material slurry.

得られたスラリーに可塑剤、有機バインダーを加え充分
に撹拌、真空脱泡した後、ドクターブレード法にてフィ
ルム状に成形した。このシート上に平均粒径0.7μmの
ニッケル微粉末と有機結合剤と溶剤から成るニッケルペ
ーストを所定の製版を用いてスクリーン印刷法により電
極を印刷した。
A plasticizer and an organic binder were added to the obtained slurry, and the mixture was sufficiently stirred and degassed in vacuum, and then formed into a film by the doctor blade method. Electrodes were printed on this sheet by a screen printing method using a predetermined plate, a nickel paste containing nickel fine powder having an average particle size of 0.7 μm, an organic binder and a solvent.

同様にして電極を印刷した21枚のシートを重ね、その上
下に電極を印刷しないシートを重ねた後、その上にグリ
ット状にカーボンペーストを印刷した切断用ガイドシー
トを重ね、熱圧着後、縦約3.6mm、横約1.8mmに切断し、
20層からなるチップ型の試料を得た。
In the same manner, stack 21 sheets with electrodes printed, stack the sheets without electrodes printed on the top and bottom, and stack the cutting guide sheet with carbon paste printed on the grid on top of it, and after thermocompression bonding, vertically Cut to about 3.6 mm, about 1.8 mm wide,
A chip type sample consisting of 20 layers was obtained.

この試料を300℃にて2時間熱処理したのち、キャリア
ガスをN2として酸素分圧3×10-10乃至3×10-8atmに制
御し、1250℃乃至1350℃にて2時間焼成した。得られた
焼結体の両端に、ニッケル銅ペーストを塗布し、乾燥
後、キャリアガスをN2として酸素分圧約1×10-15atmに
制御し、800℃にて10時間焼成して外部接続用電極を焼
付けた。
After heat-treating this sample at 300 ° C. for 2 hours, the oxygen partial pressure was controlled to 3 × 10 −10 to 3 × 10 −8 atm with N 2 as a carrier gas, and the sample was fired at 1250 ° C. to 1350 ° C. for 2 hours. Nickel copper paste is applied to both ends of the obtained sintered body, dried, and then the carrier gas is set to N 2 and the oxygen partial pressure is controlled to about 1 × 10 −15 atm, followed by firing at 800 ° C. for 10 hours and external connection. The electrode for baking was baked.

(試料の測定方法) 得られた試料を室温にて48時間放置した後、周波数1.0K
Hz、入力信号レベル1.0Vrmsにて静電容量および誘電正
接を測定した。その後、直流電圧50Vを1分間印加し、
その時の絶縁抵抗を測定した。また−55℃から125℃の
温度範囲において上記の方法と同様にして静電容量を測
定し、+25℃の静電容量に対する−55℃,−10℃,+95
℃,+125℃における変化率を算出した。
(Sample measurement method) After leaving the obtained sample at room temperature for 48 hours, the frequency of 1.0K
Capacitance and dielectric loss tangent were measured at Hz and input signal level of 1.0 Vrms. Then, apply DC voltage 50V for 1 minute,
The insulation resistance at that time was measured. Also, in the temperature range of -55 ° C to 125 ° C, the capacitance is measured in the same manner as the above method, and the capacitance is -55 ° C, -10 ° C, + 95 ° C for the capacitance of + 25 ° C.
The change rate at ℃ and + 125 ℃ was calculated.

測定結果を第1表に示す。なお、第1表中の絶縁抵抗は
静電容量C(μF)と絶縁抵抗R(MΩ)との積C×R
(MΩ・μF)で表した。
The measurement results are shown in Table 1. The insulation resistance in Table 1 is the product of the capacitance C (μF) and the insulation resistance R (MΩ) C × R
It is expressed by (MΩ · μF).

第1表から明らかなようにMgOが1モル%より小さいNo.
1はCRが低く、Y2O3が0であるNo.2,9,21はCRが低く、−
55℃での温度変化が大きい。また、MgO6モル%でY2O3
0.75モル%であるNo.26も同様である。
As is clear from Table 1, MgO having a MgO content of less than 1 mol%
1 has low CR, Y 2 O 3 is 0, No. 2 , 9, 21 has low CR, −
Large temperature change at 55 ℃. In addition, Y 2 O 3 at 6 mol% MgO
The same applies to No. 26, which is 0.75 mol%.

一方、Y2O3が1.25モル%、MgO1.0モル%のNo.6では+95
℃での温度変化が大きい。またMgOが3モル%、Y2O32.0
モル%のNo.13およびMgO5モル%,Y2O32.5モル%では焼
結困難であった。さらにMnOが0.5モル%未満であるNo.1
6,31ではCRが低く、MnOが3.0モル%を越えるNo.20,35で
はCRが低く、No.35では静電容量も低い。
On the other hand, No. 6 containing Y 2 O 3 at 1.25 mol% and MgO at 1.0 mol% is +95
Large temperature change in ° C. In addition, MgO is 3 mol%, Y 2 O 3 2.0
Sintering was difficult with mol% No. 13 and MgO 5 mol% and Y 2 O 3 2.5 mol%. No.1 with less than 0.5 mol% MnO
CR is low in 6,31, CR is low in Nos. 20 and 35 with MnO exceeding 3.0 mol%, and capacitance is also low in No. 35.

Y2O3が3モル%であるNo.30は静電容量が低く、MgOが8.
5モル%であるNo.38でも静電容量が低く、−55℃の温度
変化が大きい。
No. 30 with 3 mol% Y 2 O 3 has a low capacitance, and MgO is 8.
Even with 5 mol% of No. 38, the capacitance is low and the temperature change at -55 ° C is large.

また、CaZrO3が0であるNo.7はCRが低く、−55℃の温度
特性も悪く、−2.5モル%であるNo.15では+95℃での温
度特性が悪い。
Further, No. 7 in which CaZrO 3 is 0 has a low CR and the temperature characteristics at -55 ° C are also poor, and No. 15 in which the content is -2.5 mol% has poor temperature characteristics at + 95 ° C.

これらの比較例に対し、その他の本発明の試料はいずれ
も優れた特性を示し、静電容量40μF以上(誘電率2200
以上に相当)、誘電正接2.5%以下、絶縁抵抗1000MΩ以
上であり、且つ、温度変化(−55℃乃至+125℃)±15
%以内が達成された。
In contrast to these comparative examples, all the other samples of the present invention showed excellent characteristics and had a capacitance of 40 μF or more (dielectric constant of 2200).
Equivalent), dielectric loss tangent 2.5% or less, insulation resistance 1000 MΩ or more, and temperature change (-55 ℃ to + 125 ℃) ± 15
% Was achieved.

〔発明の効果〕〔The invention's effect〕

以上、詳述した通り、本発明によれば、ニッケルを内部
電極とし、誘電体としてBaTiO3,CaZrO3,MnOおよびMgOを
特定比で配合して成る主成分に対しY2O3を特定比で添加
することによって、静電容量40μF以上、絶縁抵抗1000
MΩ以上、静電正接2.5%以下および温度変化(−55℃乃
至+125℃)±15%以内という優れた特性を有し、しか
も経済性に優れた積層型磁器コンデンサを得ることがで
きる。
Above, as detailed, according to the present invention, nickel as an internal electrode, BaTiO 3, CaZrO 3, MnO and certain ratio Y 2 O 3 with respect to the main component formed by compounding a specific ratio of MgO as a dielectric By adding in, capacitance 40μF or more, insulation resistance 1000
It is possible to obtain a laminated porcelain capacitor having excellent characteristics such as MΩ or more, electrostatic tangent of 2.5% or less, and temperature change (-55 ° C to + 125 ° C) of ± 15% or less, and excellent cost efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明において用いられる誘電体中のMgOとY2O
3の組成範囲を示す二元系図であり、第2図は本発明の
積層型磁器コンデンサの断面図である。 1……誘電体 2……内部電極 3……外部電極
FIG. 1 shows MgO and Y 2 O in the dielectric used in the present invention.
FIG. 2 is a binary system diagram showing the composition range of 3 , and FIG. 2 is a sectional view of the multilayer ceramic capacitor of the present invention. 1 ... Dielectric 2 ... Internal electrode 3 ... External electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組成式が (1−x−y−z)BaTiO3+xCaZrO3+yMnO+zMgO 但し 0.003≦x≦0.023 0.005≦y≦0.030 0.010≦z≦0.080 で示される主成分に、上記MgOに対して、添加剤としてY
2O3を第1図において、下記A,B,C,D,Eの各点で囲まれた
範囲内の組成を満足するように含有して成る誘導体中
に、ニッケルから成る内部電極を有することを特徴とす
る積層型磁器コンデンサ。 MgO(モル%) Y2O3(モル%) A 8.00 2.00 B 5.00 0.25 C 1.00 0.25 D 1.00 1.00 E 6.00 2.50
To 1. A main component composition formula represented by (1-x-y-z ) BaTiO 3 + xCaZrO 3 + yMnO + zMgO where 0.003 ≦ x ≦ 0.023 0.005 ≦ y ≦ 0.030 0.010 ≦ z ≦ 0.080, with respect to the MgO , Y as an additive
In FIG. 1, a derivative containing 2 O 3 so as to satisfy the composition within the range surrounded by the points A, B, C, D and E below has an internal electrode made of nickel. A laminated porcelain capacitor characterized by the above. MgO (mol%) Y 2 O 3 (mol%) A 8.00 2.00 B B 5.00 0.25 C 1.00 0.25 D 1.00 1.00 E 6.00 2.50
JP61098761A 1986-04-29 1986-04-29 Multilayer porcelain capacitor Expired - Lifetime JPH0785460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098761A JPH0785460B2 (en) 1986-04-29 1986-04-29 Multilayer porcelain capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098761A JPH0785460B2 (en) 1986-04-29 1986-04-29 Multilayer porcelain capacitor

Publications (2)

Publication Number Publication Date
JPS62256422A JPS62256422A (en) 1987-11-09
JPH0785460B2 true JPH0785460B2 (en) 1995-09-13

Family

ID=14228401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098761A Expired - Lifetime JPH0785460B2 (en) 1986-04-29 1986-04-29 Multilayer porcelain capacitor

Country Status (1)

Country Link
JP (1) JPH0785460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10872725B2 (en) 2017-12-19 2020-12-22 Samsung Electronics Co., Ltd. Ceramic dielectric, method of manufacturing the same, ceramic electronic component, and electronic device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100192563B1 (en) * 1995-01-12 1999-06-15 무라따 야스따까 Monolithic ceramic capacitors
JP2998639B2 (en) * 1996-06-20 2000-01-11 株式会社村田製作所 Multilayer ceramic capacitors
JP3282520B2 (en) * 1996-07-05 2002-05-13 株式会社村田製作所 Multilayer ceramic capacitors
JP2001006966A (en) * 1999-06-17 2001-01-12 Murata Mfg Co Ltd Ceramic capacitor and its manufacture
JP3918372B2 (en) * 1999-07-26 2007-05-23 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor
JP2002164247A (en) 2000-11-24 2002-06-07 Murata Mfg Co Ltd Dielectric ceramic composition and layered ceramic capacitor
JP4721576B2 (en) * 2001-08-30 2011-07-13 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
CN101595074B (en) * 2007-01-29 2012-11-21 京瓷株式会社 Dielectric ceramic and capacitor
US9236185B1 (en) 2014-11-03 2016-01-12 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
JP6686676B2 (en) * 2016-04-28 2020-04-22 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143515A (en) * 1982-02-19 1983-08-26 ニチコン株式会社 Laminated ceramic condenser
JPS6119005A (en) * 1984-07-05 1986-01-27 株式会社村田製作所 Nonreduced dielectric porcelain composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143515A (en) * 1982-02-19 1983-08-26 ニチコン株式会社 Laminated ceramic condenser
JPS6119005A (en) * 1984-07-05 1986-01-27 株式会社村田製作所 Nonreduced dielectric porcelain composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10872725B2 (en) 2017-12-19 2020-12-22 Samsung Electronics Co., Ltd. Ceramic dielectric, method of manufacturing the same, ceramic electronic component, and electronic device

Also Published As

Publication number Publication date
JPS62256422A (en) 1987-11-09

Similar Documents

Publication Publication Date Title
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
KR100278416B1 (en) Dielectric Ceramic, Method for Producing the Same, Laminated Ceramic Electronic Element, and Method for Producing the Same
JP3326513B2 (en) Multilayer ceramic chip capacitors
KR980011542A (en) Dielectric ceramic composition and multilayer ceramic capacitor using same
JP2001143955A (en) Dielectric ceramic composition and laminated ceramic capacitor
JPH0678189B2 (en) Non-reducing high dielectric constant dielectric ceramic composition
KR20190121143A (en) Multi-layered ceramic capacitor
JP3603607B2 (en) Dielectric ceramic, multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
JPH0785460B2 (en) Multilayer porcelain capacitor
JP7037945B2 (en) Ceramic capacitors and their manufacturing methods
KR20190116112A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
JP3945033B2 (en) Manufacturing method of multilayer ceramic capacitor
JP7262640B2 (en) ceramic capacitor
JPH0680562B2 (en) Non-reducing dielectric ceramic composition
JP2952062B2 (en) Non-reducing dielectric porcelain composition
JP2004292186A (en) Dielectric ceramic and multilayer ceramic capacitor
JPH0825791B2 (en) Non-reducing dielectric ceramic composition
JPH11219844A (en) Dielectric ceramic and laminated ceramic capacitor
JP2002231560A (en) Dielectric ceramic and laminated ceramic capacitor
KR100276272B1 (en) A dielectric ceramic composition with low reducibility and a method for manufacturing multi layer ceramic capacitor using it
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JP2952061B2 (en) Non-reducing dielectric porcelain composition
JPH0782775B2 (en) Non-reducing dielectric ceramic composition
JP2958826B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term