JP4721576B2 - Multilayer ceramic capacitor and manufacturing method thereof - Google Patents

Multilayer ceramic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP4721576B2
JP4721576B2 JP2001262470A JP2001262470A JP4721576B2 JP 4721576 B2 JP4721576 B2 JP 4721576B2 JP 2001262470 A JP2001262470 A JP 2001262470A JP 2001262470 A JP2001262470 A JP 2001262470A JP 4721576 B2 JP4721576 B2 JP 4721576B2
Authority
JP
Japan
Prior art keywords
powder
ceramic capacitor
barium titanate
multilayer ceramic
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001262470A
Other languages
Japanese (ja)
Other versions
JP2003077754A (en
Inventor
和人 長谷
耕世 神垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001262470A priority Critical patent/JP4721576B2/en
Publication of JP2003077754A publication Critical patent/JP2003077754A/en
Application granted granted Critical
Publication of JP4721576B2 publication Critical patent/JP4721576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層セラミックコンデンサ及びその製法に関するものであり、例えば誘電体層に印加される直流電圧が2V/μm以上であるような高電圧用の積層セラミックコンデンサ及びその製法に関する。
【0002】
【従来技術】
近年、電子機器の小型化、高性能化に伴い、積層セラミックコンデンサの小型化、大容量化の要求が高まってきている。このような要求に応えるために、積層セラミックコンデンサ(MLC)においては、誘電体層を薄層化することにより静電容量を高めると共に、積層数を大きくすることにより、小型・高容量化を図っている。
【0003】
誘電体材料には、小型・高容量化の為に、高い比誘電率が要求されることはもちろんのこと、誘電損失が小さく、温度特性が良好であり、かつ印加される直流電界の増大に対応した直流電圧に対する誘電特性の依存性が小さい特性が要求される。
【0004】
また、薄層化に伴い、積層セラミックコンデンサに印加する電界の増大による信頼性低下を抑制することが要求される。
【0005】
従来の誘電体材料であるチタン酸バリウム(BaTiO3、以下BTということもある)系材料では、比誘電率が粒子径に依存することは公知であり、0.5〜1μmで比誘電率は最大値を示し、さらに粒径を小さくすると、比誘電率は単調に減少する。
【0006】
現在、小型・高容量で温度特性に優れた積層セラミックコンデンサ(MLC)材料としては、大きな比誘電率を示すサブミクロン粒径のBT系焼結体が使用されている。
【0007】
また、温度特性が良好な誘電体磁器としては、ジルコニアなどを微量添加した、コアシェル構造を呈するチタン酸バリウム粒子からなるBT系材料が知られており、添加物による粒成長抑制効果とコアシェル構造により、温度特性のよい誘電体磁器が作製されている。
【0008】
【発明が解決しようとする課題】
しかしながら、サブミクロン粒径のBT系材料においては、比誘電率は大きいものの、直流電圧印加による比誘電率の減少が大きく、積層セラミックコンデンサの小型化の為に誘電体層の薄層化を推し進めると、誘電体層に印加される電界が増大する為、静電容量の減少が大きく、実効的静電容量が小さくなるという問題があった。
【0009】
即ち、コアシェル構造を示すサブミクロン粒径のBT系材料からなる誘電体磁器では、コア部とシェル部の組成が明確に異なり、透過型電子顕微鏡を用いた分析によれば、純粋なBTに近い組成を持つコア部と、添加物が固溶し、立方晶構造を持つ、即ち、常誘電性を示すシェル部の共存構造をとるため、特性は2つの領域の特性の重ね合わせとして現れるが、コア部は純粋なBTに近い特性を示す為、BTの強誘電的特性が強く現れ、比誘電率は大きくなるが、高電圧が印加されると静電容量の低下率が大きく、DCバイアス依存性も大きかった。
【0010】
従って、本発明は、静電容量が大きく、かつ、高電圧が印加されても静電容量の低下率が小さい積層セラミックコンデンサ及びその製法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の積層セラミックコンデンサは、誘電体層と卑金属からなる内部電極とを交互に積層してなる積層セラミックコンデンサであって、前記誘電体層が、Mg、Mn及び希土類元素が固溶した平均粒径0.2〜0.35μmのチタン酸バリウム粒子を含んでなり、該チタン酸バリウム粒子のうち、ドメインウォールが存在するチタン酸バリウム粒子数が10%以下であるとともに、前記希土類元素が、前記チタン酸バリウム粒子の粒子表面か
ら10nm以下の厚さの領域にのみ存在していることを特徴とする。
【0012】
一般に、サブミクロンの粒径のBaTiO3粉末に、Mg、Mn及び希土類元素を添加し、適正な条件で焼成することにより、強誘電性を示すBaTiO3からなるコア部と、添加物の固溶により等方的な立方晶構造を有し常誘電性を示すシェル部からなる複合粒子が形成される。
【0013】
複合粒子の特性は、強誘電的特性を強く反映し、高誘電率だがDCバイアスによる比誘電率の減少の大きいコア部の特性と、低誘電率だが、DCバイアス依存性の小さい常誘電的特性を反映したシェル部の特性の重ね合わせとなる。
【0014】
明確なコアシェル構造を示す従来の場合、コア部には強誘電性の発現の結果として、結晶の異方性に起因したドメイン及びドメインウォールが観測される。この様な粒子においては、特性はコア部とシェル部の体積分率で決まるが、粒子を小さくするか、もしくは、添加元素量を多くすることで、シェル部の体積分率が大きくなり、これに伴い、シェル部の常誘電性自身が大きくなり、BT粒子の常誘電的性質が強くなる。この結果、DCバイアス特性は向上するが、比誘電率が小さくなり、高容量の積層セラミックコンデンサを実現するのが困難となる。
【0015】
本発明では、チタン酸バリウム粒子を0.2〜0.35μmに微粒子化することで、BaTiO3粒子自身の強誘電性を抑制し、希土類元素の添加量を小さな範囲に制限することで、BT粒子における希土類元素の固溶深度を浅くし、周辺部の厚みを小さくして常誘電的特性を小さくし、かつ、希土類元素の粒子周辺部への固溶濃度を小さくすることで周辺部の比誘電率を大きく低下させず、強誘電性を抑制した中心部の特性が強く現れた誘電体磁器を誘電体層としている。
【0016】
これにより、明確なコアシェル構造を持つ従来の誘電体磁器に比べて、比誘電率を大きく低減することなく、DCバイアス依存性の非常に小さい誘電体磁器を実現し、静電容量が大きく、かつ、高電圧が印加されても静電容量の低下率が小さい積層セラミックコンデンサを得ることができる。
【0018】
また、誘電体層のチタン酸バリウム粒子のうち、ドメインウォールが存在するチタン酸バリウム粒子数が10%以下である。
【0019】
ドメインの存在は強誘電性の指標であり、ドメインウォールが観測される粒子は中心部の強誘電性が大きく、DCバイアス依存性が大きい。全チタン酸バリウム粒子中、ドメインウォールの観測される粒子が10%以下と制御することにより、磁器全体として常誘電的特性と強誘電特性の均衡を図ることができ、これにより、静電容量が大きく、かつ、高電圧が印加されても静電容量の低下率が小さい積層セラミックコンデンサを得ることができる。
【0020】
さらに、前記誘電体層における前記チタン酸バリウム粒子の粒界に、Siと、希土類元素を含有する厚さ1.5nm以下の非晶質粒界相が存在することが望ましい。非常に薄い粒界相が、粒径の小さいBT粒子表面を被うことで、粒界で形成されるネットワークが多岐に渡り、電気的信頼性を向上できる。
【0022】
本発明の積層セラミックコンデンサの製は、セラミック粉末を含有する誘電体層成形体と卑金属を含有する内部電極パターンとを交互に積層した積層成形体を焼成する積層セラミックコンデンサの製法であって、前記セラミック粉末として、平均粒径が0.2〜0.35μmであり、比表面積が3.0〜5.0m/gであるBaTiO粉末を準備する工程と、Mg化合物粉末と、希土類元素化合物粉末と、Mn化合物粉末と、ガラス粉末とを混合し、平均粒径が0.7μm以下となるまで粉砕した粉砕混合粉を調製する工程と、前記BaTiO粉末と、平均粒径0.7μm以下の前記粉砕混合とを混合する工程とを具備ることを特徴とする。
【0023】
これにより、本発明の積層セラミックコンデンサにおける誘電体磁器は、添加物元素が均一に粒子表面に存在し、所望の誘電特性を発現する粒子構造を実現する。
【0024】
BaTiO3粉末の粒径が0.2〜0.35μmと小さくなると、単位体積当たりに含まれる粒子数が増大し、単位体積当たりの粒子の表面積が急激に大きくなる。サブミクロン粒径のBaTiO3粉末を用いた場合と同一の添加物量であっても、表面積が大きくなった為に、一粒子当たりに分配される添加物の量は、サブミクロン粒径のBaTiO3粉末を用いた場合に比べ、大きく減少する。
【0025】
添加物を微紛とし、均一にBaTiO3粉末と混合することで、添加物は各粒子に均一に拡散し、本発明の微構造を採るようになる。また、焼結助剤的役割の大きい副成分と、添加物を同時に混合粉砕した後、BaTiO3粉末と混合することにより、より効果的に均一な微構造を形成できる。
【0026】
副成分と添加成分を混合し、微粉砕せずBaTiO3と混合した場合、BaTiO3の粒子サイズが小さい為、均質な添加物拡散が困難になり、部分的に強誘電性の強く現れた粒子が混在して所望の特性が得られなくなる。
【0027】
【発明の実施の形態】
(構造)
本発明の積層セラミックコンデンサについて、図1の概略断面図をもとに詳細に説明する。
【0028】
本発明の積層セラミックコンデンサは、コンデンサ本体1の両端部に外部電極3を形成して構成されている。この外部電極3は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成されている。また外部電極3の表面には、例えば、順にNiメッキ層13、Snメッキ層もしくはSn−Pb合金メッキ層15が形成されている。
【0029】
積層セラミックコンデンサ本体1は、内部電極5と誘電体層7を交互に積層してなる容量部9の積層方向の両面に、誘電体層7と同一材料からなる絶縁層11を形成して構成されている。
【0030】
この誘電体層7は、Mg、Mn及び希土類元素が固溶した平均粒径0.2〜0.35μmのチタン酸バリウム粒子からなり、希土類元素の存在領域が、チタン酸バリウム粒子の粒子表面から10nm以下であり、かつ粒子表面から5nmの深さにおける希土類元素の濃度が、全金属元素に対して6原子%以下とされている。
【0031】
そして、Mg及びMnについては、殆どが主結晶粒子内に固溶するが、一部粒界に存在し、非晶質相を形成する場合がある。
【0032】
即ち、誘電体層7を構成する主結晶粒子であるチタン酸バリウム粒子の平均粒径は、高い比誘電率と高い絶縁抵抗を有し、さらに所望の微構造を形成し、小さいDCバイアス依存性を有するために、0.2〜0.35μmとされている。
【0033】
また、各チタン酸バリウム粒子は、その中心部に向けて希土類元素が不均一に分布した構造を有し、希土類元素は粒子表面から10nm以下の厚さの領域にのみ存在している。比誘電率を減少させる周辺部の厚みは、できるだけ小さいことが望ましいが、平坦な温度依存性と高い絶縁抵抗を実現し、大きな比誘電率を得る為に、特には、5nm以下の厚さの領域に存在することが望ましい。
【0034】
また、表面から5nmの深さにおける希土類元素の濃度は、表面から5nmの深さにおける全金属元素に対して6原子%以下とされている。表面から5nmの深さでの希土類元素の濃度が6原子%を越えると、周辺部の絶縁性が低下し、誘電体磁器の絶縁抵抗が小さくなる。高い絶縁抵抗を実現するために、特には、5原子%以下が望ましい。
【0035】
また、誘電体層7を構成するチタン酸バリウム粒子において、ドメインウォールの存在が確認できる結晶粒の数の比率が10%以下である。
【0036】
ドメインの存在は、強誘電性の指標であり、ドメインウォールが観測される粒子はコア部の強誘電性が大きく、DCバイアス依存性が大きい。全粒子中、ドメインウォールの観測される粒子が10%以下であれば、誘電体磁器の特性に影響を及ぼさず、静電容量が大きく、かつ、高電圧が印加されても静電容量の低下率が小さい積層セラミックコンデンサを得ることができる。一方、10%を越える数の粒子が存在すると、静電容量は大きくなるが、DCバイアス依存性は悪化する傾向にある。
【0037】
また、誘電体層7において、各チタン酸バリウム粒子の粒界に、Siと、希土類元素を含有する厚さ1.5nm以下の非晶質粒界相が存在することが望ましい。Si酸化物と、希土類元素酸化物により構成された非晶質酸化物は比較的電気的絶縁性が高く、また、厚さ1.5nm以下の薄い粒界相とすることで、誘電体磁器の電気的信頼性を確保できる。一方、1.5nmより大きくなると、高温負荷寿命が短くなるとともに、比誘電率も減少する傾向がある。高い高温負荷寿命を実現する為に、粒界相の厚さは1nm以下が望ましい。
【0038】
一方、内部電極5は導電性ペーストの膜を焼結させた金属膜からなり、導電性ペーストとしては、例えば、Ni、Co、Cu等の卑金属が使用されている。特に安価であるという点からNiを用いることが望ましい。
【0039】
また、内部電極5は卑金属を主成分とし、概略矩形状の導体膜であり、上から第1層目、第3層目、第5層目・・・の奇数層の内部電極5は、その一端がコンデンサ本体1の一方端面に露出しており、上から第2層目、第4層目、第6層目・・・の内部電極5は、その一端がコンデンサ本体1の他方端面に露出している。尚、外部電極3と内部電極5は必ずしも同一材料から構成される必要はない。
【0040】
また、内部電極5の厚みは2μm以下が望ましく、この内部電極5に含まれる金属量の低減が図れるとともに、充分な有効面積を確保するという理由から、特に0.5〜1.5μmであることが望ましい。
【0041】
また、本発明の積層セラミックコンデンサの積層数は、その積層セラミックコンデンサを構成する誘電体層7が薄層多層化され、例えば、積層セラミックコンデンサの小型高容量化に対してその積層数は100層以上が望ましい。
(製法)
本発明の積層セラミックコンデンサは、先ず、誘電体層7となるグリーンシートを作製する。このグリーンシートは、例えば、主成分としてBaTiO3粉末を用いて形成することができ、主原料のBaTiO3粉末の合成法は、固相法、液相法(シュウ酸塩を経過する方法等)、水熱合成法等があるが、そのうち粒度分布が狭く、結晶性が高いという理由から水熱合成法が望ましい。
【0042】
BaTiO3粉末としては、平均粒径が0.2〜0.35μmであり、比表面積が3.0〜5.0m2/gであるBaTiO3粉末を用いる。平均粒径が0.2μmより小さい場合は、粒成長が起こりやすく所望の微構造とコンデンサ特性が得られない。0.35μmより大きいBT粉末を用いた場合は、磁器中にドメインが形成されたチタン酸バリウム粒子が多数存在し、DCバイアス特性が悪化する傾向がある。
【0043】
また、比表面積が3.0m2/gより小さい原料を用いた場合は、BaTiO3粉末と混合する添加物が効率よく拡散しない。また、比表面積が5.0m2/gより大きい原料を用いた場合、粒径の細かい粒子の存在により固溶が進み易く、比誘電率の温度特性と、DCバイアス特性が、悪化する傾向がある。固溶を抑制し、所望のDCバイアス特性を実現する為に、特に、0.25〜0.3μmの平均粒径と、3.5〜4.5m2/gの比表面積が望ましい。
【0044】
次に、副成分として、BaO粉末、CaO粉末、SiO2粉末を秤量して混合した後、900〜1100℃の温度にて仮焼し、その後、この仮焼粉体の粒度分布のD50値が1.1μmになるように粉砕して副成分となる添加物(ガラスを形成する)を作製する。この副成分は、BaTiO3粉末100モル部に対して、BaO+CaO、SiO2の添加量がそれぞれ2モル部以下とされている。
【0045】
そして、本発明の誘電体磁器を作製するには、BaTiO3粉末100モル部に対して、MgOを0.1〜3モル部、MnCO3を0.1〜0.5モル部、Y23等の希土類元素酸化物を1.5モル部以下、特には1モル部以下添加し、さらに上記した微粉砕した副成分を添加し、公知の分散剤、分散媒とともに直径が10mmのZrO2ボールを用いたボールミルにて粒度分布におけるD50値が、0.7μm以下になるまで湿式にて粉砕混合する。
【0046】
この後、この粉砕混合粉と、BaTiO3粉末を混合してセラミック粉末を作製する。次に、このセラミック粉末と有機バインダを混合し、スラリーを得た後、ドクターブレード法により、厚さ2〜6μmのグリーンシートを成形した。
【0047】
この後、上記グリーンシートに内部電極ペーストを塗布して内部電極パターンを形成し、これを乾燥させ、この内部電極パターンが形成されたグリーンシートを複数枚積層し、熱圧着させる。その後、この積層物を格子状に切断して、コンデンサ本体1の成形体を得る。このコンデンサ本体1の成形体の両端面には、内部電極パターンの端部が交互に露出している。
【0048】
次に、このコンデンサ本体1の成形体を大気中で5〜40℃/hの昇温速度で200〜500℃にて脱バインダ処理を行い、その後、還元雰囲気中で500℃からの昇温速度を200〜400℃/hとし、1200〜1300℃の温度で1〜5時間焼成し、続いて200〜400℃/hの降温速度で冷却し、窒素雰囲気中900〜1100℃で熱処理を行う。
【0049】
特に、500℃からの昇温速度を200〜400℃/hとし、1220〜1270℃の温度で焼成することにより、混合されたMg、Mnが、BaTiO3中に固溶するとともに、Ba、Ca、希土類元素とSiO2とを含有する複合酸化物を、このMg、Y、Mnの一部が固溶したチタン酸バリウム粒子の表面や粒界相に存在させることができる。
【0050】
この後、焼成したコンデンサ本体1の両端面に、外部電極ペーストを塗布して窒素中で焼き付けることによって外部電極3を形成する。さらに外部電極3の表面を脱脂、酸洗浄、純水を用いた水洗を行った後、バレル方式により、メッキを行う。
【0051】
以上のように構成された積層セラミックコンデンサでは、誘電体磁器の粒子は、平均粒径が0.20〜0.35μmと小さいため、強誘電性が減少し、DCバイアス特性に優れている上に、希土類元素のチタン酸バリウム粒子への拡散領域が小さく、かつ希土類元素の拡散量も小さい為、チタン酸バリウム粒子は大きな比誘電率を有し、バイアス特性にも優れている。これにより、層厚が、定格電圧との比で表した時、4.5〜5.5V/μmを満足する薄層で高定格電圧のコンデンサを作製できる。
【0052】
また、粒子サイズが小さいため、電極間に存在する粒子数が多く、また、薄い粒界相が均一に存在するため、高い電界強度に大しても十分な高温負荷寿命を示す。また、誘電体層7中におけるBaO、CaO、SiO2で表される複合酸化物からなる副成分量が少ないため、チタン酸バリウム粒子間に存在する低抵抗相が少なくなり、誘電体層の厚みを3μm以下としても高い絶縁抵抗を維持することができ、高温負荷試験における絶縁抵抗の低下を抑制できる。
【0053】
【実施例】
まず、副成分として、BaO粉末、CaO粉末、SiO2粉末を、BaTiO3粉末100モル部に対して、BaO+CaO、SiO2が表1に示すモル部となるように秤量して混合した後、1000℃の温度にて仮焼し、その後、この仮焼粉体の粒度分布のD50値が1.1μmになるように微粉砕して副成分となる添加物を作製した。
【0054】
次に、BaTiO3粉末100モル部に対して、表1に示すモル比率で、MgO粉末、MnCO3粉末、希土類元素酸化物粉末を秤量し、さらに、上記微粉砕した副成分を混合し、公知の分散剤、分散媒とともに直径が5mmのZrO2ボールを用いたボールミルにて平均粒径D50値が表1に示す大きさになるまで湿式にて粉砕混合した。
【0055】
次に、比表面積が表1に示す値のBaTiO3原料粉末と、上記Mg、Mn、希土類及び副成分の微粉砕混合紛と混合し、これに、有機バインダを混合し、スラリーを得た後、ドクターブレード法により、厚さ4μmのグリーンシートを成形した。
【0056】
次に、このグリーンシート上に、ニッケル粉末と、エチルセルロース、テルピネオールとからなる内部電極ペーストを用いてスクリーン印刷した。その際、電極の有効面積は1.08mm2とした。該内部電極ペーストを印刷したグリーンシートを170枚積層し、その上下面に、内部電極ペーストを印刷していないグリーンシートをそれぞれ20枚積層し、ホットプレスして一体化し、所定寸法に切断してコンデンサ本体1の成形体を作製した。
【0057】
そして、この成形体を大気中で400℃にて脱バインダ処理を行い、その後、表1に示す温度(酸素分圧10-11atm)で2時間焼成し、続いて大気雰囲気中1000℃で熱処理をして焼成体を作製した。
【0058】
次に外部電極3を形成するために、まず焼成したコンデンサ本体1をバレル研磨した後、コンデンサ本体1の両端部にCu粉末を含んだ外部電極ペーストを塗布し、900℃、窒素中で焼き付けて外部電極3とし、その後、外部電極3上に順にNiメッキ層13、Snメッキ層15を施した。
【0059】
次に、これらの積層セラミックコンデンサ各100個の静電容量(C)をLCRメーターを用いて測定した。測定は、基準温度20℃で行い、静電容量は、周波数1.0kHz、入力信号レベル1Vrmsの条件で測定した。そして静電容量とそれぞれの積層セラミックコンデンサの電極面積及び誘電体層7厚み、積層数より、誘電体の比誘電率を算出した。
【0060】
また、静電容量の温度特性TCCは温度−25℃〜85℃で測定し、20℃の静電容量を基準として、その温度に対する温度変化率を、TCC={C(T)−C(20℃)}/C(20℃)から求めた。
【0061】
また、DCバイアス特性は、20℃において、電界に換算して2.5V/μmとなる電圧を印加して、60秒後の静電容量を測定し、ΔC/C={C(V)−C(V=0)}/C(V=0)から求めた。これらの結果を表2に記載した。
【0062】
さらに、誘電体層におけるチタン酸バリウム粒子の微構造を、作製した積層コンデンサの積層断面を研磨し、透過型電子顕微鏡(TEM)を用いて調べた。誘電体層におけるチタン酸バリウム粒子の平均粒径を、TEM観察像を用いてインターセプト法により求めた。また、TEM像の観察により、ドメインウオールの観測される粒子の割合を求めた。さらに、TEMにおけるマイクロビームを用いたEPMA分析により、希土類元素の粒子表面からの深度を求め、粒子表面からの深度が5nmにおける希土類元素の濃度を定量した。
【0063】
また、TEMによる格子像観察により、粒界層を同定し、粒界相の厚みを求めた。粒界相は、全試料ともSiと、希土類元素を含有する非晶質粒界相であった。これらの結果も表2に記載した。
【0064】
比較の為に、Ba、Ca、Si、Oからなる副成分の仮焼紛体を、比表面積が6m2/gとなる様に粉砕し、添加成分であるMgO、MnCO3、Y23と混合し、粉砕時間を変える事により、D50値が0.7μmより大きな値を示す添加物を用意し、No.13と14の試料を作製した。
【0065】
【表1】

Figure 0004721576
【0066】
【表2】
Figure 0004721576
【0067】
表2から、0.4μm粒径のBaTiO3粉末を用いたNo.1と2は、ドメインウオールの観測される粒子の割合が大きく、強誘電性が強く現れた特性、即ち、比誘電率は約4000前後と大きいが、DCバイアス依存性が40%程度と大きい。
【0068】
一方、0.2〜0.35μmのBaTiO3粉末を用いた試料No.3からNo.21においては、粉砕粒径がD50値で0.7μmを越える添加物を用いたNo.13とNo.14を除いて、比誘電率は2500以上、DCバイアス特性は27%以下の優れた特性を示している。
【0069】
一方、粉砕粒径がD50値で0.7μmを越える添加物を用いたNo.13とNo.14については、添加物の分布・拡散が不十分の為、希土類元素の固溶深度が深く、強誘電性の強く現れた粒子が多数存在し、DCバイアス特性が悪化した。
【0070】
また、0.1μmのBaTiO3粉末を用いたNo.22においては、平均粒径が0.2μmよりも小さく、十分な焼結性が得られないことと、比誘電率が2000に満たない為、小型で高容量かつ高信頼性な積層コンデンサを得るのが困難であることがわかる。
【0071】
本発明の試料について、強誘電性の大きさを反映する分極特性を、バーチャルグランド方式の分極―電界履歴特性測定装置により調べたところ、5V/μmの電界印加時の最大分極値に対する残留分極値の比率が1/10未満であり、抗電界が0.3V/μm以下であった。残留分極の大きさが、電界−分極履歴曲線において5V/μmの電界印加時の最大分極値に対して1/10未満であれば強誘電性は十分小さく、また、BaTiO3においては、内部電界の発生などにより抗電界が大きい場合、分極軸が揃い難い為、小さなDCバイアス電界下での比誘電率の減少率は小さいが、高電界では、比誘電率の減少率は大きくなる。抗電界が0.3V/μm以下であれば、高電界での比誘電率の減少率は小さくなる。
【0072】
【発明の効果】
本発明の積層セラミックコンデンサでは、BaTiO3粒子を0.2〜0.35μmに微粒子化することで、BaTiO3粒子自身の強誘電性を抑制し、希土類元素の添加量を小さな範囲に制限し、BT粒子における希土類元素の固溶深度を浅くし、周辺部の厚みを小さくして常誘電的特性を小さくし、かつ、希土類元素の粒子周辺部への固溶濃度を小さくすることで周辺部の比誘電率を大きく低下させず、強誘電性を抑制した中心部の特性が強く現れた誘電体磁器を誘電体層としている。これにより、明確なコアシェル構造を持つ従来の誘電体磁器に比べて、比誘電率を大きく低減することなく、DCバイアス依存性の非常に小さい誘電体磁器を実現でき、静電容量が大きく、かつ、高電圧が印加されても静電容量の低下率が小さい積層セラミックコンデンサを得ることができる。
【図面の簡単な説明】
【図1】本発明の積層セラミックコンデンサを示す断面図である。
【符号の説明】
1・・・コンデンサ本体
3・・・外部電極
7・・・誘電体層
5・・・内部電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer ceramic capacitor and a method for manufacturing the same, for example, a high voltage multilayer ceramic capacitor in which a DC voltage applied to a dielectric layer is 2 V / μm or more, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, with the miniaturization and high performance of electronic devices, there has been an increasing demand for miniaturization and large capacity of multilayer ceramic capacitors. In order to meet these requirements, in multilayer ceramic capacitors (MLC), the dielectric layer is thinned to increase the capacitance, and the number of layers is increased to reduce the size and increase the capacity. ing.
[0003]
Dielectric materials are required to have a high relative dielectric constant for miniaturization and high capacity, as well as low dielectric loss, good temperature characteristics, and an increase in the applied DC electric field. The characteristic that the dependence of the dielectric characteristic on the corresponding DC voltage is small is required.
[0004]
Further, as the thickness is reduced, it is required to suppress a decrease in reliability due to an increase in electric field applied to the multilayer ceramic capacitor.
[0005]
In a conventional dielectric material barium titanate (BaTiO 3 , hereinafter also referred to as BT) -based material, it is known that the relative permittivity depends on the particle diameter, and the relative permittivity is 0.5 to 1 μm. When the maximum value is shown and the particle size is further reduced, the relative permittivity decreases monotonously.
[0006]
At present, as a multilayer ceramic capacitor (MLC) material having a small size, a high capacity, and excellent temperature characteristics, a BT-based sintered body having a submicron particle diameter and showing a large relative dielectric constant is used.
[0007]
In addition, as dielectric ceramics having good temperature characteristics, BT-based materials made of barium titanate particles having a core-shell structure to which a small amount of zirconia is added are known. A dielectric ceramic having good temperature characteristics has been produced.
[0008]
[Problems to be solved by the invention]
However, although the relative permittivity of a BT-based material having a submicron particle size is large, the relative permittivity is greatly reduced by applying a DC voltage, and the dielectric layer is made thinner in order to reduce the size of the multilayer ceramic capacitor. In addition, since the electric field applied to the dielectric layer increases, there is a problem that the capacitance decreases greatly and the effective capacitance decreases.
[0009]
That is, in a dielectric ceramic made of a BT-based material having a submicron particle diameter showing a core-shell structure, the composition of the core part and the shell part is clearly different, and it is close to pure BT according to the analysis using a transmission electron microscope. Since the core part having the composition and the additive are in solid solution and have a cubic structure, that is, a shell part having a paraelectric property, the characteristic appears as a superposition of the characteristics of the two regions. Since the core portion exhibits characteristics close to that of pure BT, the ferroelectric characteristics of BT appear strongly and the relative dielectric constant increases. However, when a high voltage is applied, the rate of decrease in capacitance is large and depends on the DC bias. The nature was also great.
[0010]
Accordingly, an object of the present invention is to provide a multilayer ceramic capacitor having a large capacitance and a small decrease rate of the capacitance even when a high voltage is applied, and a method for manufacturing the same.
[0011]
[Means for Solving the Problems]
The multilayer ceramic capacitor of the present invention is a multilayer ceramic capacitor formed by alternately laminating dielectric layers and internal electrodes made of a base metal, wherein the dielectric layer has an average grain in which Mg, Mn, and a rare earth element are dissolved. comprises barium titanate particles size 0.2~0.35Myuemu, of the barium titanate particles, with the number of barium titanate particles which domain walls are present is 10% or less, the rare-earth element is, It exists only in the area | region of thickness 10nm or less from the particle | grain surface of the said barium titanate particle.
[0012]
In general, by adding Mg, Mn and rare earth elements to BaTiO 3 powder having a particle size of submicron and firing under appropriate conditions, a core portion made of BaTiO 3 exhibiting ferroelectricity and a solid solution of the additive Thus, composite particles composed of a shell portion having an isotropic cubic structure and exhibiting a paraelectric property are formed.
[0013]
The characteristics of the composite particles strongly reflect the ferroelectric characteristics, and the characteristics of the core with a high dielectric constant but a large decrease in the relative dielectric constant due to DC bias, and the paraelectric characteristics with low dielectric constant but small DC bias dependence. This is a superposition of the characteristics of the shell part reflecting the above.
[0014]
In the conventional case showing a clear core-shell structure, domains and domain walls due to crystal anisotropy are observed in the core as a result of the development of ferroelectricity. In such particles, the characteristics are determined by the volume fraction of the core and shell parts, but the volume fraction of the shell part increases by decreasing the particle or increasing the amount of added elements. Along with this, the paraelectric property of the shell part increases, and the paraelectric property of the BT particles becomes stronger. As a result, the DC bias characteristics are improved, but the relative dielectric constant is reduced, making it difficult to realize a high-capacity multilayer ceramic capacitor.
[0015]
In the present invention, by reducing the barium titanate particles to 0.2 to 0.35 μm, the ferroelectricity of the BaTiO 3 particles themselves is suppressed, and the addition amount of rare earth elements is limited to a small range. By reducing the solid solution depth of the rare earth element in the particle, reducing the thickness of the peripheral part to reduce the paraelectric characteristics, and reducing the solid solution concentration of the rare earth element to the peripheral part of the particle, the ratio of the peripheral part is reduced. The dielectric layer is a dielectric porcelain in which the characteristic of the central portion that suppresses the ferroelectricity and does not significantly decrease the dielectric constant and appears strongly.
[0016]
As a result, compared to conventional dielectric ceramics having a clear core-shell structure, a dielectric ceramic having a very low DC bias dependency is realized without greatly reducing the relative permittivity, and the capacitance is large. Even when a high voltage is applied, it is possible to obtain a multilayer ceramic capacitor having a small capacitance reduction rate.
[0018]
Also, of the barium titanate particles in the dielectric layer, the number of barium titanate particles which domain walls exist Ru der 10% or less.
[0019]
The presence of a domain is an index of ferroelectricity, and particles in which domain walls are observed have a large ferroelectricity at the center and a large DC bias dependency. By controlling the observed particles of the domain wall to be 10% or less in all the barium titanate particles, it is possible to balance the paraelectric characteristics and the ferroelectric characteristics as a whole of the porcelain. It is possible to obtain a multilayer ceramic capacitor that is large and has a small capacitance reduction rate even when a high voltage is applied.
[0020]
Furthermore, the in grain boundaries of the barium titanate particles in the dielectric layer, Si and it is desirable that the amorphous grain boundary phase follows thickness 1.5nm containing a rare earth element is present. Since the very thin grain boundary phase covers the surface of the BT particle having a small particle diameter, a wide variety of networks are formed at the grain boundary, and electrical reliability can be improved.
[0022]
Manufacturing method of the multilayer ceramic capacitor of the present invention is a method of a multilayer ceramic capacitor for firing the molded laminate obtained by alternately laminating an internal electrode pattern containing dielectric layer formed body and the base metal containing ceramic powder, Preparing a BaTiO 3 powder having an average particle size of 0.2 to 0.35 μm and a specific surface area of 3.0 to 5.0 m 2 / g as the ceramic powder, an Mg compound powder, and a rare earth element Compound powder, Mn compound powder, and glass powder are mixed, and a step of preparing a pulverized mixed powder that is pulverized until the average particle size becomes 0.7 μm or less, the BaTiO 3 powder, and an average particle size of 0.7 μm characterized that you and a step of mixing the following the pulverized mixed powder.
[0023]
Thereby, the dielectric ceramic in the multilayer ceramic capacitor of the present invention realizes a particle structure in which additive elements are uniformly present on the particle surface and express desired dielectric properties.
[0024]
When the particle size of the BaTiO 3 powder is reduced to 0.2 to 0.35 μm, the number of particles contained per unit volume increases, and the surface area of the particles per unit volume increases rapidly. Even when the amount of additive is the same as that when using BaTiO 3 powder having a submicron particle size, the surface area is increased, so that the amount of additive distributed per particle is the amount of BaTiO 3 having a submicron particle size. Compared to the case of using powder, it is greatly reduced.
[0025]
By making the additive into a fine powder and uniformly mixing with the BaTiO 3 powder, the additive is uniformly diffused into each particle and adopts the microstructure of the present invention. Further, a sub-component having a large role as a sintering aid and an additive are simultaneously mixed and pulverized, and then mixed with the BaTiO 3 powder, whereby a uniform microstructure can be formed more effectively.
[0026]
When subcomponents and additive components are mixed and mixed with BaTiO 3 without being finely pulverized, the particle size of BaTiO 3 is small, so that uniform additive diffusion becomes difficult, and particles with strong ferroelectricity appear partially. The desired characteristics cannot be obtained due to the mixture.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
(Construction)
The multilayer ceramic capacitor of the present invention will be described in detail based on the schematic sectional view of FIG.
[0028]
The multilayer ceramic capacitor of the present invention is configured by forming external electrodes 3 at both ends of a capacitor body 1. The external electrode 3 is formed, for example, by baking Cu or an alloy paste of Cu and Ni. Further, on the surface of the external electrode 3, for example, a Ni plating layer 13, a Sn plating layer or a Sn—Pb alloy plating layer 15 is formed in this order.
[0029]
The multilayer ceramic capacitor body 1 is configured by forming insulating layers 11 made of the same material as the dielectric layer 7 on both surfaces in the stacking direction of the capacitor portion 9 formed by alternately stacking the internal electrodes 5 and the dielectric layers 7. ing.
[0030]
The dielectric layer 7 is composed of barium titanate particles having an average particle diameter of 0.2 to 0.35 μm in which Mg, Mn, and rare earth elements are solid-dissolved, and the region where the rare earth elements exist is from the particle surface of the barium titanate particles. The concentration of the rare earth element at 10 nm or less and at a depth of 5 nm from the particle surface is 6 atomic% or less with respect to the total metal elements.
[0031]
Most of Mg and Mn are dissolved in the main crystal grains, but some of them are present at the grain boundaries and an amorphous phase may be formed.
[0032]
That is, the average particle diameter of the barium titanate particles as the main crystal particles constituting the dielectric layer 7 has a high relative dielectric constant and a high insulation resistance, further forms a desired microstructure, and has a small DC bias dependency. Therefore, the thickness is set to 0.2 to 0.35 μm.
[0033]
Each barium titanate particle has a structure in which rare earth elements are distributed unevenly toward the center thereof, and the rare earth elements are present only in a region having a thickness of 10 nm or less from the particle surface. The thickness of the peripheral part for reducing the relative permittivity is desirably as small as possible. However, in order to achieve flat temperature dependence and high insulation resistance and to obtain a large relative permittivity, in particular, the thickness is 5 nm or less. It is desirable to exist in the area.
[0034]
Further, the concentration of the rare earth element at a depth of 5 nm from the surface is set to 6 atomic% or less with respect to all the metal elements at a depth of 5 nm from the surface. If the concentration of the rare earth element at a depth of 5 nm from the surface exceeds 6 atomic%, the insulation of the peripheral portion is lowered and the insulation resistance of the dielectric ceramic is reduced. In order to realize a high insulation resistance, 5 atomic% or less is particularly desirable.
[0035]
Further, the barium titanate particles forming the dielectric layer 7, the ratio of the number of crystal grains present in the domain walls could be confirmed Ru der 10% or less.
[0036]
The presence of a domain is an index of ferroelectricity, and particles in which domain walls are observed have a large ferroelectricity in the core portion and a large DC bias dependency. If the particles observed in the domain wall are 10% or less of all particles, the capacitance of the dielectric ceramic is not affected, the capacitance is large, and the capacitance decreases even when a high voltage is applied. A multilayer ceramic capacitor with a low rate can be obtained. On the other hand, when the number of particles exceeding 10% exists, the capacitance increases, but the DC bias dependency tends to deteriorate.
[0037]
In the dielectric layer 7, it is desirable that an amorphous grain boundary phase containing Si and a rare earth element having a thickness of 1.5 nm or less exists at the grain boundary of each barium titanate particle. Amorphous oxide composed of Si oxide and rare earth element oxide has relatively high electrical insulation, and by using a thin grain boundary phase with a thickness of 1.5 nm or less, Electrical reliability can be ensured. On the other hand, when it exceeds 1.5 nm, the high temperature load life is shortened and the relative permittivity tends to decrease. In order to realize a high high temperature load life, the thickness of the grain boundary phase is desirably 1 nm or less.
[0038]
On the other hand, the internal electrode 5 is made of a metal film obtained by sintering a conductive paste film. As the conductive paste, for example, a base metal such as Ni, Co, or Cu is used. In particular, it is desirable to use Ni because it is inexpensive.
[0039]
The internal electrode 5 is mainly composed of a base metal and is a substantially rectangular conductive film. The odd-numbered internal electrodes 5 of the first layer, the third layer, the fifth layer,. One end is exposed on one end face of the capacitor body 1, and the internal electrode 5 of the second layer, the fourth layer, the sixth layer,... From the top is exposed on the other end face of the capacitor body 1. is doing. The external electrode 3 and the internal electrode 5 do not necessarily need to be made of the same material.
[0040]
Further, the thickness of the internal electrode 5 is desirably 2 μm or less, and it is particularly 0.5 to 1.5 μm for the purpose of reducing the amount of metal contained in the internal electrode 5 and ensuring a sufficient effective area. Is desirable.
[0041]
Further, the multilayer ceramic capacitor of the present invention has a multilayer structure in which the dielectric layer 7 constituting the multilayer ceramic capacitor is thinned and multilayered. The above is desirable.
(Manufacturing method)
In the multilayer ceramic capacitor of the present invention, first, a green sheet to be the dielectric layer 7 is produced. This green sheet can be formed using, for example, BaTiO 3 powder as a main component, and the synthesis method of the main raw material BaTiO 3 powder is a solid phase method, a liquid phase method (method of passing oxalate, etc.) There are hydrothermal synthesis methods, among which hydrothermal synthesis method is desirable because of its narrow particle size distribution and high crystallinity.
[0042]
The BaTiO 3 powder, the average particle size of 0.2~0.35Myuemu, specific surface area used BaTiO 3 powder is 3.0~5.0m 2 / g. When the average particle diameter is smaller than 0.2 μm, grain growth is likely to occur, and desired microstructure and capacitor characteristics cannot be obtained. When BT powder larger than 0.35 μm is used, there are many barium titanate particles having domains formed in the porcelain, and the DC bias characteristics tend to deteriorate.
[0043]
Further, when a raw material having a specific surface area smaller than 3.0 m 2 / g is used, the additive mixed with the BaTiO 3 powder does not diffuse efficiently. In addition, when a raw material having a specific surface area larger than 5.0 m 2 / g is used, solid solution is likely to proceed due to the presence of fine particles, and the temperature characteristics of the dielectric constant and the DC bias characteristics tend to deteriorate. is there. In order to suppress solid solution and realize desired DC bias characteristics, an average particle diameter of 0.25 to 0.3 μm and a specific surface area of 3.5 to 4.5 m 2 / g are particularly desirable.
[0044]
Next, BaO powder, CaO powder, and SiO 2 powder are weighed and mixed as subcomponents, and then calcined at a temperature of 900 to 1100 ° C. Then, the D50 value of the particle size distribution of this calcined powder is An additive (glass is formed) which is pulverized to 1.1 μm and becomes a subsidiary component is prepared. In this subcomponent, the addition amount of BaO + CaO and SiO 2 is 2 mol parts or less with respect to 100 mol parts of BaTiO 3 powder.
[0045]
Then, to prepare a dielectric ceramic of the present invention, with respect to BaTiO 3 powder 100 molar parts, 0.1 to 3 parts by mole of MgO, MnCO 3 0.1-0.5 molar parts, Y 2 O A rare earth element oxide such as 3 is added in an amount of 1.5 mol part or less, particularly 1 mol part or less, and the above-mentioned finely pulverized subcomponent is added, and a ZrO 2 having a diameter of 10 mm together with a known dispersant and dispersion medium. The mixture is pulverized and mixed in a wet manner until the D 50 value in the particle size distribution is 0.7 μm or less in a ball mill using balls.
[0046]
Thereafter, this pulverized mixed powder and BaTiO 3 powder are mixed to produce a ceramic powder. Next, this ceramic powder and an organic binder were mixed to obtain a slurry, and then a green sheet having a thickness of 2 to 6 μm was formed by a doctor blade method.
[0047]
Thereafter, an internal electrode paste is applied to the green sheet to form an internal electrode pattern, which is dried, and a plurality of green sheets on which the internal electrode pattern is formed are laminated and thermocompression bonded. Thereafter, the laminate is cut into a lattice shape to obtain a molded body of the capacitor body 1. The ends of the internal electrode pattern are alternately exposed on both end faces of the molded body of the capacitor body 1.
[0048]
Next, the molded body of the capacitor body 1 is subjected to a binder removal treatment at 200 to 500 ° C. at a temperature rising rate of 5 to 40 ° C./h in the atmosphere, and then the temperature rising rate from 500 ° C. in a reducing atmosphere. Is 200 to 400 ° C./h, fired at a temperature of 1200 to 1300 ° C. for 1 to 5 hours, subsequently cooled at a temperature lowering rate of 200 to 400 ° C./h, and heat-treated at 900 to 1100 ° C. in a nitrogen atmosphere.
[0049]
In particular, the heating rate from 500 ° C. is set to 200 to 400 ° C./h and the mixture is fired at a temperature of 1220 to 1270 ° C., so that the mixed Mg and Mn are dissolved in BaTiO 3 and Ba, Ca The composite oxide containing rare earth elements and SiO 2 can be present on the surface and grain boundary phase of the barium titanate particles in which a part of Mg, Y, and Mn is dissolved.
[0050]
Thereafter, the external electrode 3 is formed by applying an external electrode paste to both end faces of the fired capacitor body 1 and baking it in nitrogen. Further, the surface of the external electrode 3 is degreased, acid washed, and washed with pure water, and then plated by a barrel method.
[0051]
In the multilayer ceramic capacitor configured as described above, since the dielectric ceramic particles have a small average particle size of 0.20 to 0.35 μm, the ferroelectricity is reduced and the DC bias characteristics are excellent. Since the diffusion region of rare earth elements into barium titanate particles is small and the amount of rare earth elements diffused is small, barium titanate particles have a large relative dielectric constant and excellent bias characteristics. As a result, when the layer thickness is expressed as a ratio to the rated voltage, a capacitor with a high rated voltage can be produced with a thin layer that satisfies 4.5 to 5.5 V / μm.
[0052]
In addition, since the particle size is small, the number of particles existing between the electrodes is large, and since the thin grain boundary phase exists uniformly, a sufficient high-temperature load life is exhibited even when the electric field strength is high. Further, since the amount of subcomponents composed of the complex oxide represented by BaO, CaO, and SiO 2 in the dielectric layer 7 is small, the low resistance phase existing between the barium titanate particles is reduced, and the thickness of the dielectric layer is reduced. Even when the thickness is 3 μm or less, a high insulation resistance can be maintained, and a decrease in insulation resistance in a high-temperature load test can be suppressed.
[0053]
【Example】
First, as subcomponents, BaO powder, CaO powder, and SiO 2 powder were weighed and mixed so that BaO + CaO and SiO 2 were in the molar parts shown in Table 1 with respect to 100 molar parts of BaTiO 3 powder, then 1000 Calcination was performed at a temperature of 0 ° C., and then the powder was pulverized so that the D 50 value of the particle size distribution of the calcined powder was 1.1 μm to prepare an additive as an accessory component.
[0054]
Next, with respect to 100 mol parts of BaTiO 3 powder, MgO powder, MnCO 3 powder, and rare earth element oxide powder are weighed in the molar ratio shown in Table 1, and further mixed with the finely pulverized subcomponents. The mixture was pulverized and mixed in a wet manner using a ball mill using ZrO 2 balls having a diameter of 5 mm together with the dispersant and dispersion medium until the average particle diameter D 50 value was as shown in Table 1.
[0055]
Next, after mixing the BaTiO 3 raw material powder whose specific surface area is the value shown in Table 1 and the above-mentioned finely pulverized mixed powder of Mg, Mn, rare earth and subcomponents, and mixing an organic binder to obtain a slurry A green sheet having a thickness of 4 μm was formed by the doctor blade method.
[0056]
Next, screen printing was performed on the green sheet using an internal electrode paste composed of nickel powder, ethyl cellulose, and terpineol. At that time, the effective area of the electrode was set to 1.08 mm 2 . 170 green sheets printed with the internal electrode paste were laminated, and 20 green sheets without the internal electrode paste were laminated on the upper and lower surfaces thereof, integrated by hot pressing, and cut into predetermined dimensions. A molded body of the capacitor body 1 was produced.
[0057]
The molded body is then subjected to a binder removal treatment at 400 ° C. in the atmosphere, and then fired at the temperature shown in Table 1 (oxygen partial pressure 10 −11 atm) for 2 hours, followed by heat treatment at 1000 ° C. in the air atmosphere. A fired body was produced.
[0058]
Next, in order to form the external electrode 3, the fired capacitor body 1 is first barrel-polished, and then an external electrode paste containing Cu powder is applied to both ends of the capacitor body 1 and baked in nitrogen at 900 ° C. After forming the external electrode 3, the Ni plating layer 13 and the Sn plating layer 15 were applied on the external electrode 3 in order.
[0059]
Next, the electrostatic capacity (C) of each of these multilayer ceramic capacitors was measured using an LCR meter. The measurement was performed at a reference temperature of 20 ° C., and the capacitance was measured under the conditions of a frequency of 1.0 kHz and an input signal level of 1 Vrms. Then, the relative dielectric constant of the dielectric was calculated from the capacitance, the electrode area of each multilayer ceramic capacitor, the thickness of the dielectric layer 7 and the number of laminated layers.
[0060]
Further, the temperature characteristic TCC of the capacitance is measured at a temperature of −25 ° C. to 85 ° C., and the rate of temperature change with respect to the temperature is expressed as TCC = {C (T) −C (20 ° C)} / C (20 ° C).
[0061]
The DC bias characteristics are as follows. At 20 ° C., a voltage of 2.5 V / μm in terms of an electric field is applied, the capacitance after 60 seconds is measured, and ΔC / C = {C (V) − C (V = 0)} / C (V = 0). These results are shown in Table 2.
[0062]
Furthermore, the microstructure of the barium titanate particles in the dielectric layer was examined by polishing the laminated section of the produced multilayer capacitor and using a transmission electron microscope (TEM). The average particle diameter of the barium titanate particles in the dielectric layer was determined by the intercept method using a TEM observation image. Moreover, the ratio of the particle | grains by which domain wall is observed was calculated | required by observation of the TEM image. Furthermore, the depth of the rare earth element from the particle surface was determined by EPMA analysis using a microbeam in TEM, and the concentration of the rare earth element at a depth of 5 nm from the particle surface was quantified.
[0063]
Moreover, the grain boundary layer was identified by observing the lattice image with TEM, and the thickness of the grain boundary phase was obtained. The grain boundary phase was an amorphous grain boundary phase containing Si and rare earth elements in all samples. These results are also shown in Table 2.
[0064]
For comparison, an auxiliary component calcined powder composed of Ba, Ca, Si, and O was pulverized so as to have a specific surface area of 6 m 2 / g, and added components MgO, MnCO 3 , Y 2 O 3 and By mixing and changing the grinding time, an additive having a D 50 value greater than 0.7 μm was prepared. Samples 13 and 14 were prepared.
[0065]
[Table 1]
Figure 0004721576
[0066]
[Table 2]
Figure 0004721576
[0067]
From Table 2, No. 1 using 0.4 μm particle diameter BaTiO 3 powder was obtained. The characteristics 1 and 2 have a large proportion of particles observed in the domain wall and the strong ferroelectricity, that is, the relative dielectric constant is as large as about 4000, but the DC bias dependency is as large as about 40%.
[0068]
On the other hand, Sample No. using BaTiO 3 powder of 0.2 to 0.35 μm. 3 to No. No. 21 using an additive having a pulverized particle diameter exceeding 0.7 μm in D 50 value. 13 and no. Excluding 14, the dielectric constant is 2500 or more, and the DC bias characteristic is 27% or less.
[0069]
On the other hand, No. 1 using an additive having a pulverized particle size exceeding 0.7 μm in D 50 value. 13 and no. For No. 14, the distribution and diffusion of the additive was insufficient, so that the solid solution depth of the rare earth element was deep and there were many particles with strong ferroelectricity, and the DC bias characteristics deteriorated.
[0070]
No. 1 using 0.1 μm BaTiO 3 powder. In No. 22, the average particle size is smaller than 0.2 μm, sufficient sinterability cannot be obtained, and the relative dielectric constant is less than 2000, so that a small, high-capacity and highly reliable multilayer capacitor is obtained. It turns out that it is difficult.
[0071]
With respect to the sample of the present invention, the polarization characteristics reflecting the magnitude of the ferroelectricity were examined by a virtual ground type polarization-electric field history characteristic measuring apparatus, and the remanent polarization value with respect to the maximum polarization value when an electric field of 5 V / μm was applied. The ratio was less than 1/10, and the coercive electric field was 0.3 V / μm or less. If the magnitude of the remanent polarization is less than 1/10 of the maximum polarization value when an electric field of 5 V / μm is applied in the electric field-polarization history curve, the ferroelectricity is sufficiently small. In BaTiO 3 , the internal electric field When the coercive electric field is large due to the occurrence of the above, etc., since the polarization axes are difficult to align, the decrease rate of the relative dielectric constant under a small DC bias electric field is small, but the decrease rate of the relative dielectric constant becomes large at a high electric field. If the coercive electric field is 0.3 V / μm or less, the reduction rate of the relative dielectric constant at a high electric field becomes small.
[0072]
【The invention's effect】
In the multilayer ceramic capacitor of the present invention, BaTiO 3 particles are atomized to 0.2 to 0.35 μm to suppress the ferroelectricity of the BaTiO 3 particles themselves, and the addition amount of rare earth elements is limited to a small range. By reducing the solid solution depth of the rare earth element in the BT particles, reducing the thickness of the peripheral portion to reduce the paraelectric characteristics, and reducing the solid solution concentration of the rare earth element in the peripheral portion of the particle, The dielectric layer is a dielectric porcelain in which the characteristic of the central portion that suppresses the ferroelectricity appears strongly without significantly reducing the relative permittivity. As a result, it is possible to realize a dielectric ceramic having a very small DC bias dependency without greatly reducing the relative dielectric constant compared to a conventional dielectric ceramic having a clear core-shell structure, a large capacitance, and Even when a high voltage is applied, it is possible to obtain a multilayer ceramic capacitor having a small capacitance reduction rate.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a multilayer ceramic capacitor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Capacitor body 3 ... External electrode 7 ... Dielectric layer 5 ... Internal electrode

Claims (3)

誘電体層と卑金属からなる内部電極とを交互に積層してなる積層セラミックコンデンサであって、前記誘電体層が、Mg、Mn及び希土類元素が固溶した平均粒径0.2〜0.35μmのチタン酸バリウム粒子を含んでなり、該チタン酸バリウム粒子のうち、ドメインウォールが存在するチタン酸バリウム粒子数が10%以下であるとともに、前記希土類元素が、前記チタン酸バリウム粒子の粒子表面から10nm以下の厚さの領域にのみ存在していることを特徴とする積層セラミックコンデンサ。A multilayer ceramic capacitor in which dielectric layers and internal electrodes made of a base metal are alternately laminated, wherein the dielectric layer has an average particle size of 0.2 to 0.35 μm in which Mg, Mn, and a rare earth element are dissolved. of comprise barium titanate particles, of the barium titanate particles, with the number of barium titanate particles which domain walls are present is 10% or less, the rare-earth element is, the particle surfaces of the barium titanate particles The multilayer ceramic capacitor is present only in a region having a thickness of 10 nm to 10 nm. 前記誘電体層における前記チタン酸バリウム粒子の粒界に、Siと、希土類元素を含有する厚さ1.5nm以下の非晶質粒界相が存在することを特徴とする請求項1に記載の積層セラミックコンデンサ。The grain boundaries of the barium titanate particles in the dielectric layer, Si and, laminated according to claim 1, characterized in that the amorphous grain boundary phase thickness 1.5nm following containing a rare earth element is present Ceramic capacitor. セラミック粉末を含有する誘電体層成形体と卑金属を含有する内部電極パターンとを交互に積層した積層成形体を焼成する積層セラミックコンデンサの製法であって、
前記セラミック粉末として、平均粒径が0.2〜0.35μmであり、比表面積が3.0〜5.0m/gであるBaTiO粉末を準備する工程と、
Mg化合物粉末と、希土類元素化合物粉末と、Mn化合物粉末と、ガラス粉末とを混合し、平均粒径が0.7μm以下となるまで粉砕した粉砕混合粉を調製する工程と、
前記BaTiO粉末と、平均粒径0.7μm以下の前記粉砕混合とを混合する工程とを具備ることを特徴とする積層セラミックコンデンサの製法。
A method for producing a multilayer ceramic capacitor for firing a multilayer molded body in which dielectric layer molded bodies containing ceramic powder and internal electrode patterns containing base metal are alternately laminated,
Preparing a BaTiO 3 powder having an average particle size of 0.2 to 0.35 μm and a specific surface area of 3.0 to 5.0 m 2 / g as the ceramic powder;
Mixing Mg compound powder, rare earth element compound powder, Mn compound powder, and glass powder, and preparing a pulverized mixed powder that is pulverized until the average particle size is 0.7 μm or less;
The BaTiO 3 powder and, to and a step of mixing the mean particle size 0.7μm or less of the pulverized mixed powder preparation of multilayer ceramic capacitor according to claim Rukoto.
JP2001262470A 2001-08-30 2001-08-30 Multilayer ceramic capacitor and manufacturing method thereof Expired - Lifetime JP4721576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001262470A JP4721576B2 (en) 2001-08-30 2001-08-30 Multilayer ceramic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001262470A JP4721576B2 (en) 2001-08-30 2001-08-30 Multilayer ceramic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003077754A JP2003077754A (en) 2003-03-14
JP4721576B2 true JP4721576B2 (en) 2011-07-13

Family

ID=19089364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001262470A Expired - Lifetime JP4721576B2 (en) 2001-08-30 2001-08-30 Multilayer ceramic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4721576B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829136B2 (en) 2002-11-29 2004-12-07 Murata Manufacturing Co., Ltd. Dielectric ceramic, method for making the same, and monolithic ceramic capacitor
JP4547945B2 (en) * 2004-03-11 2010-09-22 Tdk株式会社 Electronic component, dielectric ceramic composition and method for producing the same
JP2006165259A (en) * 2004-12-07 2006-06-22 Kyocera Corp Dielectric porcelain and laminated electronic part
JP4661203B2 (en) * 2004-12-15 2011-03-30 Tdk株式会社 Ceramic electronic component and manufacturing method thereof
JP4418969B2 (en) 2005-06-03 2010-02-24 株式会社村田製作所 Multilayer ceramic capacitor
JP3861927B1 (en) 2005-07-07 2006-12-27 株式会社村田製作所 Electronic component, electronic component mounting structure, and electronic component manufacturing method
JP4771838B2 (en) * 2006-03-08 2011-09-14 京セラ株式会社 Multilayer ceramic capacitor
JP5578881B2 (en) * 2010-02-25 2014-08-27 京セラ株式会社 Multilayer ceramic capacitor
JP5811103B2 (en) * 2011-02-14 2015-11-11 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP5205544B1 (en) * 2012-03-30 2013-06-05 太陽誘電株式会社 Multilayer ceramic capacitor
KR102145313B1 (en) * 2018-08-03 2020-08-18 삼성전기주식회사 Multi-layered ceramic capacitor
KR20200137820A (en) * 2019-05-31 2020-12-09 삼성전기주식회사 Dielectric ceramic composition and multi-layer ceramic electronic component using the same
JP7406952B2 (en) * 2019-10-17 2023-12-28 太陽誘電株式会社 Piezoelectric ceramics and their manufacturing method, and piezoelectric elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256422A (en) * 1986-04-29 1987-11-09 京セラ株式会社 Laminated type porcelain capacitor
JPH08124784A (en) * 1994-10-19 1996-05-17 Tdk Corp Multilayered ceramic chip capacitor
JPH09270366A (en) * 1996-03-29 1997-10-14 Kyocera Corp Multilayer capacitor
JP2001230148A (en) * 2000-02-16 2001-08-24 Taiyo Yuden Co Ltd Laminated ceramic capacitor and method of manufacturing it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992214B2 (en) * 1999-01-28 2007-10-17 信越化学工業株式会社 Rare earth element-containing barium titanate powder and method for producing the same
JP2001031469A (en) * 1999-07-19 2001-02-06 Murata Mfg Co Ltd Ceramic of dielectric substance and electronic part of laminated ceramic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256422A (en) * 1986-04-29 1987-11-09 京セラ株式会社 Laminated type porcelain capacitor
JPH08124784A (en) * 1994-10-19 1996-05-17 Tdk Corp Multilayered ceramic chip capacitor
JPH09270366A (en) * 1996-03-29 1997-10-14 Kyocera Corp Multilayer capacitor
JP2001230148A (en) * 2000-02-16 2001-08-24 Taiyo Yuden Co Ltd Laminated ceramic capacitor and method of manufacturing it

Also Published As

Publication number Publication date
JP2003077754A (en) 2003-03-14

Similar Documents

Publication Publication Date Title
TWI402872B (en) Electrolyte procelain, laminated ceramic capacitor and methods for manufacturing electrolyte porcelain and laminated ceramic capacitor
JP3705141B2 (en) Dielectric ceramic, manufacturing method and evaluation method thereof, and multilayer ceramic electronic component
US6303529B1 (en) Dielectric ceramic, method for producing the same, laminated ceramic electronic element, and method for producing the same
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
US7057876B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH11273986A (en) Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture
JP4587924B2 (en) Multilayer ceramic capacitor
WO2006103954A1 (en) Laminated ceramic capacitor and process for producing the same
CN106747419B (en) Dielectric material for medium-high voltage X7R characteristic multilayer ceramic capacitor
WO2007074731A1 (en) Multilayer ceramic capacitor
JP2006206362A (en) Dielectric ceramic and multilayer ceramic capacitor
JP4100173B2 (en) Dielectric ceramic and multilayer ceramic capacitors
WO2008013236A1 (en) Dielectric porcelain and capacitor
JP4721576B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5685931B2 (en) Multilayer ceramic capacitor
JP2003048774A (en) Dielectric porcelain, method of producing the same, and multilayer-type electronic parts
JP4557472B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4663141B2 (en) Dielectric porcelain and multilayer electronic components
JP4549203B2 (en) Multilayer ceramic capacitor
JP2004182582A (en) Low temperature-fired dielectric ceramic composition and multilayer ceramic capacitor using the same
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPWO2009098918A1 (en) Dielectric ceramic and multilayer ceramic capacitor
JP5046432B2 (en) Dielectric porcelain and multilayer electronic components
JP4627876B2 (en) Dielectric porcelain and multilayer electronic components
JP5159682B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150