JPS62256422A - Laminated type porcelain capacitor - Google Patents

Laminated type porcelain capacitor

Info

Publication number
JPS62256422A
JPS62256422A JP61098761A JP9876186A JPS62256422A JP S62256422 A JPS62256422 A JP S62256422A JP 61098761 A JP61098761 A JP 61098761A JP 9876186 A JP9876186 A JP 9876186A JP S62256422 A JPS62256422 A JP S62256422A
Authority
JP
Japan
Prior art keywords
dielectric
nickel
mol
mgo
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61098761A
Other languages
Japanese (ja)
Other versions
JPH0785460B2 (en
Inventor
信儀 藤川
光俊 川本
卯滝 秀樹
新留 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61098761A priority Critical patent/JPH0785460B2/en
Publication of JPS62256422A publication Critical patent/JPS62256422A/en
Publication of JPH0785460B2 publication Critical patent/JPH0785460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はニッケル内部電極を有する積層型磁器コンデン
サに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multilayer ceramic capacitor with nickel internal electrodes.

〔従来の技術〕[Conventional technology]

従来、一般に積層型磁器コンデンサは表面に内部電極が
塗付されたシート状のtlaTiozを主成分とする誘
電体を複数枚積層するとともに各シートの内部電極を交
互に並列に一対の外部接続用電極に接続し、これを焼結
一体化することにより形成されている。このような積層
型磁器コンデンサは近年のエレクトロニクスの進展に伴
い電子部品の小型化が急速に進行し、広範な電子回路に
使用されるようになってきている。
Conventionally, a multilayer ceramic capacitor generally consists of laminating multiple sheets of dielectric material mainly composed of tlaTioz with internal electrodes coated on the surface, and the internal electrodes of each sheet are alternately connected in parallel to a pair of external connection electrodes. It is formed by connecting the two to one another and sintering them into one piece. Such laminated ceramic capacitors have come to be used in a wide range of electronic circuits as electronic components have rapidly become smaller with the recent advances in electronics.

しかしながら、この従来のBaTi0iを主成分とする
誘電体材料は1250℃〜1350℃の高温で焼成する
必要があり、この材料を積層型磁器コンデンサの誘電体
として使用した場合、内部電極は前記誘電体の焼成温度
にて溶融することなく、かつ酸化することがない高価な
貴金属であるパラジウム(融点1555℃)またはその
合金が使用され、特に静電容量が大きいものでは内部電
極数が大となってコスト高となり、前記、従来の積層型
磁器コンデンサは容量効率が高く、その他誘電的特性に
優れ且つ高信頼性にあるにも拘わらず価格面がその進展
に大きな傷害となっていた。
However, this conventional dielectric material mainly composed of BaTi0i needs to be fired at a high temperature of 1250°C to 1350°C, and when this material is used as the dielectric of a multilayer ceramic capacitor, the internal electrodes are Palladium (melting point: 1555°C), an expensive precious metal that does not melt or oxidize at firing temperatures of Although the conventional multilayer ceramic capacitors have high capacitance efficiency, other excellent dielectric properties, and high reliability, the cost has been a major impediment to its progress.

そこで、上記従来の積層型磁器コンデンサの高価となる
欠点を解消するために内部電極として安価な卑金属、例
えばニッケルを使用することが試みられている。しかし
ながら、ニッケルなどの卑金属を内部電極として使用す
ると、チタン酸バリウム(BaTi0z)等から成る誘
電体と卑金属内部電極とを同時焼結する際、前記卑金属
が酸化することなく金属膜として焼結する条件はNi/
NiOの平衡酸素分圧が1300℃において約3χ10
−’atmであるから、それ以下の酸素分圧でなければ
ならず、この場合チタン酸バリウムまたはその固溶体か
らなる誘電体は、一般に前記の酸素分圧下では還元され
てしまって絶縁性を失い、その結集積層型磁器コンデン
サとしての実用的な誘電体特性が得られなくなるという
欠点を存していた。
Therefore, attempts have been made to use inexpensive base metals, such as nickel, as the internal electrodes in order to overcome the drawback of the conventional multilayer ceramic capacitors being expensive. However, when a base metal such as nickel is used as an internal electrode, when simultaneously sintering a dielectric made of barium titanate (BaTi0z) or the like and a base metal internal electrode, the conditions under which the base metal can be sintered as a metal film without oxidation are required. is Ni/
The equilibrium oxygen partial pressure of NiO is approximately 3χ10 at 1300℃
-'atm, the oxygen partial pressure must be lower than that, and in this case, the dielectric material made of barium titanate or its solid solution is generally reduced and loses its insulating properties under the above oxygen partial pressure. The drawback is that practical dielectric properties for a multilayer ceramic capacitor cannot be obtained.

また一方、ニッケルなどの内部電極を有する積層型磁器
コンデンサとして使用できる非還元性誘電体磁器組成物
として、チタン酸バリウム固溶体(Ba、Ca、5r)
Tie、において塩基性酸化物である(Ba。
On the other hand, barium titanate solid solution (Ba, Ca, 5R) is used as a non-reducible dielectric ceramic composition that can be used as a multilayer ceramic capacitor having internal electrodes such as nickel.
Tie, which is a basic oxide (Ba.

Ca、5r)Oを酸性酸化物であるTie、に対して化
学量論比より過剰とし、ニッケルなどの卑金属を内部電
極として使用できる非還元性誘電体磁器組成物が例えば
特公昭57−42588号公報等において提案されてい
る。
For example, Japanese Patent Publication No. 57-42588 discloses a non-reducible dielectric ceramic composition in which Ca, 5r)O is in excess of the stoichiometric ratio with respect to Tie, which is an acidic oxide, and base metals such as nickel can be used as internal electrodes. It has been proposed in publications, etc.

これは一般に、ABCh型結晶においては、酸素八面体
(ペロブスカイト)構造の中心に位置するBイオンに対
して、Bイオンより大きい酸素に対して12配位をとる
^イオンが化学量論比より過剰である場合、結晶格子が
酸素原子を強く引きっけ、還元され難いことが知られて
おり、前記公報に記載された発明は、この化学量論比の
ずれに立脚し、誘電体の非還元性を向上させたものであ
る。しかしながら、前記公報に記載された誘電体磁器組
成物は誘電率の温度変化率が大きく、誘電体特性が低下
するという欠点を有していた。
Generally, in an ABCh type crystal, the B ion located at the center of the oxygen octahedral (perovskite) structure has 12 coordinations with respect to oxygen, which is larger than the B ion. It is known that in the case of It has improved characteristics. However, the dielectric ceramic composition described in the above-mentioned publication had the disadvantage that the rate of change in dielectric constant with temperature was large and the dielectric properties deteriorated.

また誘電率の温度変化率が小さい高誘電率系誘電体磁器
組成物としてBaTiOsにスズ酸ビスマス〔B12(
SnOz)v) 、ジルコニウム酸ビスマス(Bi2(
Zr03)3)などのビスマス系化合物あるいはジルコ
ニウム酸ニッケル(NiZrOz)やジルコニウム酸マ
グネシウム(MgZr(h)を添加したものがある。こ
れはビスマス系化合物あるいはジルコニウム酸ニッケル
やジルコニウム酸マグネシウムの強いデプレッサー効果
によりBaTi0:+のキュリ一点近傍での誘電率の極
大値を低下させ、誘電率の温度変化率を小さくさせたも
のである。しかしながら、ニッケルなどの卑金属を内部
電極とし、BaTi0zにビスマス系化合物あるいはジ
ルコニウム酸ニッケルやジルコニウム酸マグネシウムを
添加した誘電体を前記Ni/NiOの平衡酸素分圧以下
で同時焼成する場合、前記誘電体は還元されてしまって
絶縁性を失い、その結果、満足な誘電体特性が得られな
くなるという欠点を有していた。
In addition, BaTiOs and bismuth stannate [B12 (
SnOz)v), bismuth zirconate (Bi2(
There are products to which bismuth-based compounds such as Zr03) 3), nickel zirconate (NiZrOz), and magnesium zirconate (MgZr(h)) are added. This reduces the maximum value of the dielectric constant near the Curie point of BaTi0:+ and reduces the temperature change rate of the dielectric constant.However, a base metal such as nickel is used as the internal electrode, and a bismuth-based compound or a bismuth-based compound or When a dielectric material to which nickel zirconate or magnesium zirconate is added is co-fired below the Ni/NiO equilibrium oxygen partial pressure, the dielectric material is reduced and loses its insulating properties, resulting in a satisfactory dielectric material. This had the disadvantage that the characteristics could no longer be obtained.

更に、前記Ni/NiOの平衡酸素分圧付近で焼成して
も誘電体自身は還元されず誘電率の温度変化率が小さい
非還元性高誘電率系誘電体磁器組成物としてBaTiO
3−Mn0−MgO系組成物が特開昭57−71866
号公報において提案されている。
Furthermore, the dielectric material itself is not reduced even when fired near the equilibrium oxygen partial pressure of Ni/NiO, and BaTiO is used as a non-reducible high dielectric constant dielectric ceramic composition with a small temperature change rate of dielectric constant.
3-Mn0-MgO based composition is disclosed in JP-A-57-71866.
It is proposed in the publication No.

これはMnO及びMgOがBaTi0zの還元を抑制す
る作用をなし、前記平衡酸素分圧付近で焼成しても誘電
体は還元されず、充分な絶縁性を有し、更にMgOは前
記ビスマス系化合物と同様のデブレッサー効果を有して
いることから誘電率の温度変化率を小さくしたものであ
る。しかしながら、前記公報に記載された誘電体磁器組
成物は誘電率それ自体が低く、MgO添加量を増してE
、1.A、規格(Elect−ronic Indus
tries As5ociation 5tandar
d)の誘電率の温度変化率(但し、−55℃〜+125
℃の範囲で+25℃を基準とする)を±15%以内にす
ると誘電率が2200以下と更に低くなり、実用的な誘
電体特性が得られなくなるという欠点を有していた。
This is because MnO and MgO have the effect of suppressing the reduction of BaTi0z, and the dielectric is not reduced even when fired near the equilibrium oxygen partial pressure, and has sufficient insulation properties. Since it has a similar depressor effect, the rate of change in dielectric constant with temperature is reduced. However, the dielectric ceramic composition described in the above-mentioned publication has a low dielectric constant, and when the amount of MgO added is increased,
, 1. A. Standards (Electronic Indus
tries As5ocation 5tandar
d) Temperature change rate of dielectric constant (however, -55°C to +125°C
If the temperature range (based on +25°C) is within ±15%, the dielectric constant becomes even lower to 2200 or less, which has the disadvantage that practical dielectric properties cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決することを主たる目的とする
ものであって、詳しくはニッケルを内部電極とし、誘電
率が高く、電気絶縁性に優れ、誘電正接が小さく、且つ
広い温度範囲にわたって誘電率の温度変化率が小さい極
めて経済性に優れた積層型磁器コンデンサを提供するこ
とを目的とする。
The main purpose of the present invention is to solve the above-mentioned problems. Specifically, the present invention uses nickel as an internal electrode, has a high dielectric constant, excellent electrical insulation, has a small dielectric loss tangent, and has a dielectric constant over a wide temperature range. An object of the present invention is to provide a multilayer ceramic capacitor that has a small rate of change with temperature and is extremely economical.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、誘電体としてその組成式が(1−x 
−y −z)BaTiO3+xCaZrO++yMnO
+zMgO但し 0.003≦x:S 0.0230.
005≦y:!aO,030 0,010≦2≦0.080 で示される主成分に対し、添加剤としてYzOsを上記
MgOに対する割合として第1図の下記^、B、C,0
,EMgO(モルχ”)    Y2O3(モルχ)A
   8.00       2.00B   5.0
0       0.25C1,000,25 [)   1.QO1,00 E   6.00       2.50の各点で囲ま
れる範囲内で添加したものを用いて、該誘電体中に内部
電極としてニッケルを用いることによって、上記目的を
達成することができる。
According to the present invention, the composition formula of the dielectric is (1-x
-y -z)BaTiO3+xCaZrO++yMnO
+zMgO However, 0.003≦x:S 0.0230.
005≦y:! For the main component represented by aO,030 0,010≦2≦0.080, YzOs is added as an additive in the proportion to the above MgO as shown in Figure 1 below ^, B, C,0
, EMgO (mol χ”) Y2O3 (mol χ) A
8.00 2.00B 5.0
0 0.25C1,000,25 [) 1. The above object can be achieved by using nickel as an internal electrode in the dielectric by adding nickel within the range surrounded by QO 1,00 E 6.00 2.50.

なお、第1図は、本発明において用いられる誘電体中の
MgOとYzOsの組成範囲を示す二元系図であってM
gO(モルχ)は主成分全体に対するモル分率、Y2O
2(モルχ)は主成分と添加剤との合量に対するモル分
率で示したものである。
Note that FIG. 1 is a binary system diagram showing the composition range of MgO and YzOs in the dielectric used in the present invention.
gO (mol χ) is the mole fraction to the entire main component, Y2O
2 (mol χ) is expressed as a mole fraction relative to the total amount of the main component and additives.

1才 第2図V本発明の積層型磁器コンデンサの断面図である
1 year old Figure 2 V is a sectional view of the multilayer ceramic capacitor of the present invention.

本発明は積層型磁器コンデンサは第2図に示す如く、誘
電体1中にニッケルから成る複数の内部電極2が形成さ
れている。内部電極2は両端に形成された外部電極3に
交互に接続される。
In the multilayer ceramic capacitor of the present invention, as shown in FIG. 2, a plurality of internal electrodes 2 made of nickel are formed in a dielectric 1. The internal electrodes 2 are alternately connected to external electrodes 3 formed at both ends.

本発明によれば、誘電体として、非還元性に優れた誘電
体を用い特に前述した通りB a T i O:l l
 Ca Z r 03 +MnO,MgOを特定比で配
合してなる主成分に添加剤としてY2O,を特定比で配
合したものを用いる。
According to the present invention, a dielectric having excellent non-reducing property is used as the dielectric, and in particular, as described above, B a T i O:l l
A main component containing Ca Z r 03 +MnO and MgO in a specific ratio and Y2O as an additive in a specific ratio is used.

この誘電体は希土類元素酸化物であるY2O2をBaT
i0*。
This dielectric material is made of rare earth element oxide Y2O2 with BaT
i0*.

CaZr0z+ MgO,MnOに対し、同時添加する
ことによって、前記ビスマス系化合物あるいはジルコニ
ウム酸ニッケルやジルコニウム酸マグネシウムと同様の
デプレソサ効果が得られ、BaTi0=のキュリ一点近
傍での誘電率の極大値を低くし、誘電率の温度変化を小
さくするとともに、絶縁抵抗の向上に有効に作用するも
のである。
By simultaneously adding CaZr0z+ MgO and MnO, a depressor effect similar to that of the bismuth-based compounds, nickel zirconate, or magnesium zirconate can be obtained, and the maximum value of the dielectric constant near the Curie point of BaTi0= can be lowered. This is effective in reducing temperature changes in dielectric constant and improving insulation resistance.

また、内部電極としてニッケルを用いた場合のNi/N
iOの1250℃乃至1350℃における平衡酸素分圧
である3×lO〜10乃至3 xto−” atmの雰
囲気で焼成する際に生ずる酸素欠陥によって誘電体内に
形成されるドナー準位電子をMnOおよびMgOを添加
することによってアクセプタ準位で再結合せしめること
ができ、それによって誘電体磁器の半導体化が抑制され
、高い絶縁性を保持することができる。
In addition, when nickel is used as the internal electrode, Ni/N
Donor level electrons formed in the dielectric by oxygen defects generated during firing in an atmosphere of 3×lO to 10 to 3×to-” ATM, which is the equilibrium oxygen partial pressure of iO at 1250°C to 1350°C, are transferred to MnO and MgO. By adding , recombination can occur at the acceptor level, thereby suppressing the dielectric ceramic from becoming a semiconductor and maintaining high insulation properties.

よって磁器コンデンサとしては比誘電率、絶縁抵抗が高
く、誘電正接(tanδ)が小さく、誘電率や静電容量
の温度変化に対し変動が小さいコンデンサが得られる。
Therefore, as a ceramic capacitor, a capacitor having a high relative dielectric constant and insulation resistance, a small dielectric loss tangent (tan δ), and a small fluctuation in dielectric constant and capacitance with respect to temperature changes can be obtained.

本発明の磁器コンデンサの製造について説明する。誘電
体の製造に際しては、まず出発原料としてBaCO5*
CaCO3*Ti01+Zr0tの粉末を用いて、Ba
Ti0z及びCaZr0.を合成する。BaTi01は
BaC0*、Ti0zから1150℃の温度にて、また
CaZr0iはCa伽s、、zr□、から1220℃の
温度にていずれも固相反応によって合成される0合成し
たBaTiO3,CaZrO3を粉砕した後、MnCO
5,MgCO5及びY:0.を添加し、スラリーを調製
する。得られたスラリーから、公知の成形手段、例えば
ドクターブレード法、カレンダーロール法等によってフ
ィルム(シート)状に成形する。
Manufacturing of the ceramic capacitor of the present invention will be explained. When manufacturing dielectrics, first, BaCO5* is used as a starting material.
Using powder of CaCO3*Ti01+Zr0t, Ba
Ti0z and CaZr0. Synthesize. BaTi01 is synthesized from BaC0* and Ti0z at a temperature of 1150°C, and CaZr0i is synthesized from Cacas, zr□ at a temperature of 1220°C by solid phase reaction. The synthesized BaTiO3 and CaZrO3 were ground. After, MnCO
5, MgCO5 and Y: 0. to prepare a slurry. The obtained slurry is formed into a film (sheet) by a known forming method, such as a doctor blade method or a calendar roll method.

このシート上に平均粒径1.5μm以下のニッケル微粉
末を含むニッケルペーストを印刷手段、例えばスクリー
ン印刷法によってニッケル内部電極を印刷する。その後
、印刷されたシートを複数枚積層し、還元性雰囲気で焼
成を行う。焼成条件は1250℃乃至1350℃の焼成
温度で且つ雰囲気中の酸素分圧が3 Xl0−”乃至3
 Xl0−”atmであることが望ましい。
On this sheet, a nickel paste containing fine nickel powder having an average particle diameter of 1.5 μm or less is printed with a nickel internal electrode by a printing method, for example, a screen printing method. Thereafter, a plurality of printed sheets are stacked and fired in a reducing atmosphere. The firing conditions were a firing temperature of 1250°C to 1350°C, and an oxygen partial pressure in the atmosphere of 3X10-” to 3
It is desirable that it is Xl0-"atm.

最終的な製品は、上記のようにして得られた焼結体の両
端部に外部電極形成用ペーストを塗布し、700乃至8
50℃の還元雰囲気、特に酸素分圧IQ−16乃至10
””atmの雰囲気で焼成することによって得られる。
The final product is made by applying external electrode forming paste to both ends of the sintered body obtained as described above.
Reducing atmosphere at 50℃, especially oxygen partial pressure IQ-16 to 10
It is obtained by firing in an ATM atmosphere.

外部電極の材質としては、銀、銀−パラジウム、ニッケ
ル、銅、銅−ニッケル等が挙げられるが本発明では内部
電極との接着性の点からニッケル、銅あるいは銅−ニッ
ケルが望ましい。
Examples of the material for the external electrode include silver, silver-palladium, nickel, copper, and copper-nickel. In the present invention, nickel, copper, or copper-nickel is preferable from the viewpoint of adhesiveness with the internal electrode.

なお、本製造方法によれば、シート積層後焼成する前に
有機バインダーを除去することを目的として250乃至
500℃の低い温度で大気中で熱処理を行うことが望ま
しい。
In addition, according to the present manufacturing method, it is desirable to perform heat treatment in the air at a low temperature of 250 to 500° C. for the purpose of removing the organic binder after sheet lamination and before firing.

本発明を次の例で説明する。The invention is illustrated by the following example.

〔実施例〕〔Example〕

(試料の作成) 出発原料としてBaC0++CaC0:++TiO,,
Zr0zを用いBaTi0*及びCaZr0iを115
0℃および1220℃にて固相反応により合成するとと
もに微粉砕した。次に合成したBaTiOs、 CaZ
r0zに対し、MnCO3,MgCO3およびY2O,
をそれぞれ誘電体として第1表の割合となる様に秤量し
、ボールミルにて分散剤、分散媒とともに混合して原料
スラリーを別製した。
(Preparation of sample) BaC0++CaC0:++TiO,, as starting material
Using Zr0z and BaTi0* and CaZr0i at 115
It was synthesized by solid-phase reaction at 0°C and 1220°C and pulverized. Next, synthesized BaTiOs, CaZ
For r0z, MnCO3, MgCO3 and Y2O,
The dielectric materials were weighed so as to have the proportions shown in Table 1, and mixed together with a dispersant and a dispersion medium in a ball mill to separately prepare a raw material slurry.

得られたスラリーに可塑剤、有機バインダーを加え充分
に攪拌、真空脱泡した後、ドクターブレード法にてフィ
ルム状に成形した。このシート上に平均粒径0.7μm
のニッケル微粉末と有機結合剤と溶剤から成るニッケル
ペーストを所定の製版を用いてスクリーン印刷法により
電極を印刷した。
A plasticizer and an organic binder were added to the resulting slurry, thoroughly stirred and defoamed under vacuum, and then formed into a film using a doctor blade method. On this sheet, the average particle size is 0.7 μm.
Electrodes were printed using a screen printing method using a nickel paste consisting of fine nickel powder, an organic binder, and a solvent using a predetermined plate making method.

同様にして電極を印刷した21枚のシートを重ね、その
上下に電極を印刷しないシートを重ねた後、その上にブ
リット状にカーボンペーストを印刷した切断用ガイドシ
ートを重ね、熱圧着後、縮約3゜6tata 、横約1
.811I11に切断し、20層からなるチップ型の試
料を得た。
In the same way, 21 sheets with electrodes printed on them were stacked, sheets with no electrodes printed on top and bottom were stacked, and then a cutting guide sheet with carbon paste printed in a bullet shape was stacked on top of that, and after thermocompression bonding, shrinkage was achieved. Approximately 3゜6tata, width approximately 1
.. A chip-shaped sample consisting of 20 layers was obtained by cutting into 811I11.

この試料を300℃にて2時間熱処理したのち、キャリ
アガスをNtとして酸素分圧3 Xl0−”乃至3 X
10−’atmに制御し、1250℃乃至1350℃に
て2時間焼成した。得られた焼結体の両端に、ニッケル
銅ペーストを塗布し、乾燥後、キャリアガスをN2とし
て酸素分圧約I Xl0−”at+aに制御し、800
℃にて10時間焼成して外部接続用電極を焼付けた。
After heat treating this sample at 300°C for 2 hours, the oxygen partial pressure was increased from 3Xl0-'' to 3X using Nt as a carrier gas.
The temperature was controlled at 10-'atm, and firing was performed at 1250°C to 1350°C for 2 hours. A nickel-copper paste was applied to both ends of the obtained sintered body, and after drying, the carrier gas was N2 and the oxygen partial pressure was controlled to about I
The electrode for external connection was baked at ℃ for 10 hours.

(試料の測定方法) 得られた試料を室温にて48時間放置した後、周波数1
.0にllz、入力信号レベル1.OVrmsにて静電
容量および誘電正接を測定した。その後、直流電圧50
Vを1分間印加し、その時の絶縁抵抗を測定した。また
−55℃から125℃の温度範囲において上記の方法と
同様にして静電容量を測定し、+25℃の静電容量に対
する一55℃、−10℃、+95℃、+125℃におけ
る変化率を算出した。
(Sample measurement method) After leaving the obtained sample at room temperature for 48 hours,
.. llz to 0, input signal level 1. Capacitance and dielectric loss tangent were measured at OVrms. After that, DC voltage 50
V was applied for 1 minute, and the insulation resistance at that time was measured. In addition, capacitance was measured in the same manner as above in the temperature range from -55°C to 125°C, and the rate of change at -55°C, -10°C, +95°C, and +125°C with respect to the capacitance at +25°C was calculated. did.

測定結果を第1表に示す。なお、第1表中の絶縁抵抗は
静電容IC(μF)と絶縁抵抗R(MΩ)との積CXR
(MΩ・μF)で表した。
The measurement results are shown in Table 1. The insulation resistance in Table 1 is the product CXR of capacitance IC (μF) and insulation resistance R (MΩ).
It was expressed in (MΩ・μF).

第1表から明らかなようにMgOが1モルχより小さい
!1kLlはCRが低く 、h(hが0である磁2,9
.21はCRが低く、−55℃での温度変化が大きい、
また、Mg06モルχでY2O2が0.75モルχであ
る患26も同様である。
As is clear from Table 1, MgO is less than 1 mole χ! 1kLl has low CR and h (magnetic 2,9 where h is 0)
.. 21 has low CR and large temperature change at -55℃,
The same is true for case 26 in which Mg06 mol χ and Y2O2 is 0.75 mol χ.

一方、YzOiが1.25−T−ルX 5Mg01.0
−T−7L4 )rheでは+95℃での温度変化が大
きい、またMgOが3モルχ、YzOs 2.0モルχ
の11kL13およびMg05モルχ、Y*0* 2.
5モルχでは焼結困難であった。さらにMnOが0.5
モルχ未満であるN116.31ではCRが低(、Mn
Oが3.0モルχを越えるNa2O,35ではCRが低
く、阻35では静電容量も低い。
On the other hand, YzOi is 1.25-T-ruX 5Mg01.0
-T-7L4) rhe has a large temperature change at +95°C, and MgO is 3 mol χ, YzOs 2.0 mol χ
11kL13 and Mg05mol χ, Y*0*2.
Sintering was difficult at 5 mol χ. Furthermore, MnO is 0.5
CR is low (, Mn
Na2O,35, in which O exceeds 3.0 mol χ, has a low CR, and Na35 has a low capacitance.

Y2O,が3モルχである磁30は静電容量が低く、M
gOが8.5モルχである1lh38でも静電容量が低
く、−55℃の温度変化が大きい。
Magnet 30, in which Y2O, is 3 mol χ, has a low capacitance, and M
Even in 1lh38 where gO is 8.5 mol χ, the capacitance is low and the temperature change at -55°C is large.

また、CaZrO3が0である患7はCRが低く、−5
5℃の温度特性も悪<、2.5モルχである嵐15では
+95℃での温度特性が悪い。
In addition, patient 7 with CaZrO3 of 0 had a low CR and -5
The temperature characteristics at 5°C are also poor.Arashi 15, which has 2.5 mol χ, has poor temperature characteristics at +95°C.

これらの比較例に対し、その他の本発明の試料はいずれ
も優れた特性を示し、静電容量40μF以上(誘電率2
200以上に相当)、誘電正接2.5%以下、絶縁抵抗
1000MΩ以上であり、且つ、温度変化(−55℃乃
至+125℃)±15%以内が達成された。
In contrast to these comparative examples, all of the other samples of the present invention showed excellent characteristics, with a capacitance of 40 μF or more (dielectric constant of 2
200 or more), a dielectric loss tangent of 2.5% or less, an insulation resistance of 1000 MΩ or more, and a temperature change (-55°C to +125°C) within ±15%.

(発明の効果〕 以上、詳述した通り、本発明によれば、ニッケルを内部
電極とし、誘電体としてBaT io 31 CaZr
0 、 。
(Effects of the Invention) As detailed above, according to the present invention, nickel is used as the internal electrode, and BaT io 31 CaZr is used as the dielectric.
0, .

MnOおよびMgOを特定比で配合して成る主成分に対
しY2O,を特定比で添加することによって、静電容量
40μF以上、絶縁抵抗1000MΩ以上、誘電正接2
.5%以下および温度変化(−55℃乃至+125℃)
±15%以内という優れた特性を有し、しかも経済性に
優れた積層型磁器コンデンサを得ることができる。
By adding Y2O in a specific ratio to the main component consisting of MnO and MgO in a specific ratio, the capacitance is 40μF or more, the insulation resistance is 1000MΩ or more, and the dielectric loss tangent is 2.
.. 5% or less and temperature change (-55℃ to +125℃)
It is possible to obtain a multilayer ceramic capacitor that has excellent characteristics of within ±15% and is also highly economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明において用いられる誘電体中のMgOと
YtOsの組成範囲を示す二元系図であり、第2図は本
発明の積層型磁器コンデンサの断面図である。 1・・・誘電体 2・・・内部電極 3・・・外部電極 第1図 0   0.5  1.0  1,5 2,0 2,5
  3.0泰加希1(毛ル%) (もCh)
FIG. 1 is a binary diagram showing the composition range of MgO and YtOs in the dielectric used in the present invention, and FIG. 2 is a sectional view of the multilayer ceramic capacitor of the present invention. 1... Dielectric 2... Internal electrode 3... External electrode Fig. 1 0 0.5 1.0 1,5 2,0 2,5
3.0 Yasukaki 1 (moru%) (MoCh)

Claims (1)

【特許請求の範囲】 組成式が (1−x−y−z)BaTiO_3+xCaZrO_3
+yMnO+zMgO 但し 0.003≦x≦0.023 0.005≦y≦0.030 0.010≦z≦0.080 で示される主成分に、上記MgOに対して、添加剤とし
てY_2O_3を第1図において、下記A、B、C、D
、Eの各点で囲まれた範囲内の組成を満足するように含
有して成る誘電体中に、ニッケルから成る内部電極を有
することを特徴とする積層型磁器コンデンサ。   MgO Y_2O_3   (モル%)(モル%) A 8.00  2.00 B 5.00  0.25 C 1.00  0.25 D 1.00  1.00 E 6.00  2.50
[Claims] The compositional formula is (1-x-y-z)BaTiO_3+xCaZrO_3
+yMnO+zMgO However, 0.003≦x≦0.023 0.005≦y≦0.030 0.010≦z≦0.080 In addition to the above MgO, Y_2O_3 was added as an additive to the main components shown in Figure 1. In, the following A, B, C, D
, E. A multilayer ceramic capacitor characterized by having an internal electrode made of nickel in a dielectric material having a composition that satisfies the range surrounded by points , E. MgO Y_2O_3 (mol%) (mol%) A 8.00 2.00 B 5.00 0.25 C 1.00 0.25 D 1.00 1.00 E 6.00 2.50
JP61098761A 1986-04-29 1986-04-29 Multilayer porcelain capacitor Expired - Lifetime JPH0785460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098761A JPH0785460B2 (en) 1986-04-29 1986-04-29 Multilayer porcelain capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098761A JPH0785460B2 (en) 1986-04-29 1986-04-29 Multilayer porcelain capacitor

Publications (2)

Publication Number Publication Date
JPS62256422A true JPS62256422A (en) 1987-11-09
JPH0785460B2 JPH0785460B2 (en) 1995-09-13

Family

ID=14228401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098761A Expired - Lifetime JPH0785460B2 (en) 1986-04-29 1986-04-29 Multilayer porcelain capacitor

Country Status (1)

Country Link
JP (1) JPH0785460B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659456A (en) * 1995-01-12 1997-08-19 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitors
CN1085636C (en) * 1996-06-20 2002-05-29 株式会社村田制作所 Dielectric ceramic composition and monolithic ceramic capacitor using same
CN1085635C (en) * 1996-07-05 2002-05-29 株式会社村田制作所 Dielectric ceramic composition and monolithic ceramic capacitor using same
JP2003077754A (en) * 2001-08-30 2003-03-14 Kyocera Corp Laminated ceramic capacitor and method of manufacturing the same
US6645897B2 (en) 2000-11-24 2003-11-11 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and laminated ceramic capacitor
DE10035612B4 (en) * 1999-07-26 2006-05-04 Murata Manufacturing Co. Ltd. Dielectric ceramic composition and monolithic ceramic capacitor
DE10024236B4 (en) * 1999-06-17 2007-02-15 Murata Mfg. Co., Ltd., Nagaokakyo Ceramic dielectric and process for its preparation
WO2008093684A1 (en) * 2007-01-29 2008-08-07 Kyocera Corporation Dielectric ceramic and capacitor
US9236185B1 (en) 2014-11-03 2016-01-12 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
JP2017199859A (en) * 2016-04-28 2017-11-02 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102483896B1 (en) 2017-12-19 2022-12-30 삼성전자주식회사 Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143515A (en) * 1982-02-19 1983-08-26 ニチコン株式会社 Laminated ceramic condenser
JPS6119005A (en) * 1984-07-05 1986-01-27 株式会社村田製作所 Nonreduced dielectric porcelain composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143515A (en) * 1982-02-19 1983-08-26 ニチコン株式会社 Laminated ceramic condenser
JPS6119005A (en) * 1984-07-05 1986-01-27 株式会社村田製作所 Nonreduced dielectric porcelain composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659456A (en) * 1995-01-12 1997-08-19 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitors
CN1085636C (en) * 1996-06-20 2002-05-29 株式会社村田制作所 Dielectric ceramic composition and monolithic ceramic capacitor using same
CN1085635C (en) * 1996-07-05 2002-05-29 株式会社村田制作所 Dielectric ceramic composition and monolithic ceramic capacitor using same
DE10024236B4 (en) * 1999-06-17 2007-02-15 Murata Mfg. Co., Ltd., Nagaokakyo Ceramic dielectric and process for its preparation
DE10035612B4 (en) * 1999-07-26 2006-05-04 Murata Manufacturing Co. Ltd. Dielectric ceramic composition and monolithic ceramic capacitor
US6645897B2 (en) 2000-11-24 2003-11-11 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and laminated ceramic capacitor
JP2003077754A (en) * 2001-08-30 2003-03-14 Kyocera Corp Laminated ceramic capacitor and method of manufacturing the same
JP4721576B2 (en) * 2001-08-30 2011-07-13 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
WO2008093684A1 (en) * 2007-01-29 2008-08-07 Kyocera Corporation Dielectric ceramic and capacitor
US7968486B2 (en) 2007-01-29 2011-06-28 Kyocera Corporation Dielectric ceramics and capacitor
JP5069695B2 (en) * 2007-01-29 2012-11-07 京セラ株式会社 Dielectric porcelain and capacitor
US9236185B1 (en) 2014-11-03 2016-01-12 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
JP2017199859A (en) * 2016-04-28 2017-11-02 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0785460B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
JP3760364B2 (en) Dielectric porcelain composition and electronic component
KR100278416B1 (en) Dielectric Ceramic, Method for Producing the Same, Laminated Ceramic Electronic Element, and Method for Producing the Same
EP1043739B1 (en) Multilayer ceramic chip capacitor wiht high reliability compatible with nickel electrodes
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3326513B2 (en) Multilayer ceramic chip capacitors
EP2045221A2 (en) A dielectric ceramic composition and an electric device
KR980011542A (en) Dielectric ceramic composition and multilayer ceramic capacitor using same
US20120075768A1 (en) Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device
JP5146475B2 (en) Dielectric ceramic composition and ceramic electronic component
KR980009197A (en) Multilayer Ceramic Capacitors
JP5194370B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JPS62256422A (en) Laminated type porcelain capacitor
JP7037945B2 (en) Ceramic capacitors and their manufacturing methods
JP5541318B2 (en) Dielectric ceramic composition and ceramic electronic component
JP7262640B2 (en) ceramic capacitor
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
JP3130214B2 (en) Multilayer ceramic chip capacitors
JP2529410B2 (en) Dielectric ceramic composition, laminated ceramic capacitor using the same, and method for producing the same
JPS62157603A (en) Nonreductive dielectric porcelain compound
JP2004210613A (en) Dielectric ceramic, its producing method and laminated ceramic capacitor
JP2952062B2 (en) Non-reducing dielectric porcelain composition
JP2004292186A (en) Dielectric ceramic and multilayer ceramic capacitor
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JP2003063867A (en) Ceramic capacitor and its dielectric composition and method for producing the same
KR100276272B1 (en) A dielectric ceramic composition with low reducibility and a method for manufacturing multi layer ceramic capacitor using it

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term