JPS62278163A - Non-reductive dielectric ceramic composition - Google Patents

Non-reductive dielectric ceramic composition

Info

Publication number
JPS62278163A
JPS62278163A JP61122849A JP12284986A JPS62278163A JP S62278163 A JPS62278163 A JP S62278163A JP 61122849 A JP61122849 A JP 61122849A JP 12284986 A JP12284986 A JP 12284986A JP S62278163 A JPS62278163 A JP S62278163A
Authority
JP
Japan
Prior art keywords
dielectric
ceramic composition
nickel
dielectric ceramic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61122849A
Other languages
Japanese (ja)
Other versions
JPH0825791B2 (en
Inventor
信儀 藤川
横江 宣雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61122849A priority Critical patent/JPH0825791B2/en
Publication of JPS62278163A publication Critical patent/JPS62278163A/en
Publication of JPH0825791B2 publication Critical patent/JPH0825791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 ゴ産業上の利用分野〕 本発明は磁器コンデンサ、特にニッケルから成る内部電
極を有する積層型磁器コンデンサの非還元性誘電体磁器
組成物に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention Field of Industrial Application] The present invention relates to a non-reducible dielectric ceramic composition for a ceramic capacitor, particularly a laminated ceramic capacitor having an internal electrode made of nickel. It is.

〔従来の技術〕[Conventional technology]

従来、一般に積層型磁器コンデンサは表面に内部電極が
塗布されたシート状のBaTi0:lを主成分とする誘
電体を複数枚積層するとともに各シートの内部電極を交
互に並列に一対の外部接続用電極に接続し、これを焼結
一体化することにより形成されている。このような積層
型磁器コンデンサは近年のエレクトロニクスの進展に伴
い電子部品の小型化が急速に進行し、広範な電子回路に
使用されるようになってきている。
Conventionally, multilayer ceramic capacitors are generally made by laminating multiple sheets of dielectric material mainly composed of BaTi0:l with internal electrodes coated on the surface, and the internal electrodes of each sheet are alternately connected in parallel to a pair of external connections. It is connected to an electrode and is formed by sintering and integrating it. Such laminated ceramic capacitors have come to be used in a wide range of electronic circuits as electronic components have rapidly become smaller with the recent advances in electronics.

しかしながら、この従来のBaTiO3を主成分とする
誘電体材料は1250℃乃至1350℃の高温で焼結す
る必要があり、この材料を積層型磁器コンデンサの誘電
体として使用した場合、内部電極は前記誘電体の焼結温
度にて溶融することなく、かつ酸化することがない高価
な貴金属であるパラジウム(融点1555℃)またはそ
の合金が使用され、特に静電容量が大きいものでは内部
電極数が大となってコスト高となり、前記従来の積層型
磁器コンデンサは容量効率が高く、その他誘電的特性に
優れかつ高信頼性にあるにも拘わらず価格面がその進展
に大きな障害となっていた。
However, this conventional dielectric material mainly composed of BaTiO3 needs to be sintered at a high temperature of 1250°C to 1350°C, and when this material is used as the dielectric of a multilayer ceramic capacitor, the internal electrodes are Palladium (melting point: 1555°C), an expensive precious metal that does not melt or oxidize at the sintering temperature of the body, or its alloys is used, and the number of internal electrodes is particularly large for products with large capacitance. Although the conventional multilayer ceramic capacitors have high capacitance efficiency, other excellent dielectric properties, and high reliability, the price has been a major obstacle to their progress.

そこで、上記従来の積層型磁器コンデンサの高価となる
欠点を解消するために内部電極として安価な卑金属、例
えばニッケルを使用することが試みられている。しかし
ながら、ニッケルなどの卑金属を内部電極として使用す
ると、チタン酸バリウム(BaTiOz)等から成る誘
電体と卑金属内部電極とを同時焼結する際、前記卑金属
が酸化することなく金属膜として焼結する条件はNi/
NiOの平衡酸素分圧が1300℃において約3X10
−’εtnであるから、それ以下の酸素分圧でなければ
ならず、この場合チタン酸バリウムまたはその固溶体か
らなる誘電体は、一般に前記の酸素分圧下では還元され
てしまって絶縁性を失い、その結集積層型磁器コンデン
サとして実用的な誘電体特性が得られなく、なるという
欠点を有していた。
Therefore, attempts have been made to use inexpensive base metals, such as nickel, as the internal electrodes in order to overcome the drawback of the conventional multilayer ceramic capacitors being expensive. However, when a base metal such as nickel is used as an internal electrode, when simultaneously sintering a dielectric material such as barium titanate (BaTiOz) and a base metal internal electrode, the conditions are such that the base metal can be sintered as a metal film without being oxidized. is Ni/
The equilibrium oxygen partial pressure of NiO is approximately 3X10 at 1300℃
-'εtn, the oxygen partial pressure must be lower than that, and in this case, a dielectric made of barium titanate or its solid solution is generally reduced and loses its insulating properties under the above oxygen partial pressure. It has the disadvantage that practical dielectric properties cannot be obtained as a multilayer ceramic capacitor.

また一方、ニッケルなどの内部電極を有する積層型磁器
コンデンサとして使用できる非還元性誘電体磁器組成物
として、チタン酸バリウム固溶体(Ha、Ca、5r)
Tiesにおいて塩基性酸化物である(Ba。
On the other hand, barium titanate solid solution (Ha, Ca, 5R) is used as a non-reducible dielectric ceramic composition that can be used as a multilayer ceramic capacitor having internal electrodes such as nickel.
Ties is a basic oxide (Ba.

Ca、5r)0を酸性酸化物であるTiO□に対して化
学量論比より過剰とし、ニッケルなどの卑金属を内部電
極として使用できる非還元性誘電体磁器組成物が特公昭
57−42588号公報等において提案されている。
Japanese Patent Publication No. 57-42588 discloses a non-reducible dielectric ceramic composition in which Ca, 5r)0 is in excess of the stoichiometric ratio with respect to the acidic oxide TiO□, and base metals such as nickel can be used as internal electrodes. It has been proposed in et al.

これは一般に、ABOi型結晶においては、酸素八面体
(ペロブスカイト)構造の中心に位置するBイオンに対
して、Bイオンより大きい酸素に対して12配位をとる
Aイオンが化学量論比より過剰である場合、結晶格子が
酸素原子を強く引きつけ、還元され難いことが知られて
おり、前記公報に記載された発明はこの化学量論比のず
れに室扉し、誘電体の非還元性を向上させたものである
。しかしながら、前記公報に記載された誘電体磁器組成
物は誘電率の温度変化率が大きく、誘電体特性が低下す
るという欠点を有していた。
In general, in an ABOi type crystal, the A ion, which is larger than the B ion and has 12 coordinations to oxygen, is in excess of the stoichiometric ratio to the B ion located at the center of the oxygen octahedral (perovskite) structure. It is known that in the case of It has been improved. However, the dielectric ceramic composition described in the above-mentioned publication had the disadvantage that the rate of change in dielectric constant with temperature was large and the dielectric properties deteriorated.

また、誘電率の温度変化率が小さい高誘電率系誘電体磁
器組成物としてBaTiO3にスズ酸ビスマス(Bit
(SnOi):+) 、ジルコニウム酸ビスマス(Bi
t(Zr(h)z)などのビスマス系化合物あるいはジ
ルコニウム酸ニッケル(NiZrC3)やジルコニウム
酸マグネシウム(MgZrOz)を添加したものがある
。これはヒスマス系化合1iあるいはジルコニウム酸ニ
ッケルやジルコニウム酸マグネシウムの強いデプレッサ
ー効果によりBaTi0zのキュリ一点近傍での誘電率
の極大値を低下させ、誘電率の温度変化率を小さくさせ
たものである。しかしながら、ニッケルなどの卑金属を
内部電極とし、BaTi0’zにビスマス系化合物ある
いはジルコニウム酸ニッケルやジルコニウム酸マグネシ
ウムを添加した誘電体を前記Ni/NiOの平衡酸素分
圧以下で同時焼成する場合、前記誘電体は還元されてし
まって絶縁性を失い、その結果、満足な誘電体特性が得
られなくなるという欠点を有していた。
In addition, as a high dielectric constant dielectric ceramic composition with a small temperature change rate of dielectric constant, we have added bismuth stannate (Bit) to BaTiO3.
(SnOi):+), bismuth zirconate (Bi
There are those to which bismuth-based compounds such as t(Zr(h)z), nickel zirconate (NiZrC3), and magnesium zirconate (MgZrOz) are added. This is because the maximum value of the dielectric constant near the Curie point of BaTi0z is lowered by the strong depressor effect of the hismuth-based compound 1i or nickel zirconate or magnesium zirconate, and the temperature change rate of the dielectric constant is reduced. However, when a dielectric material in which a base metal such as nickel is used as an internal electrode and a bismuth-based compound, nickel zirconate, or magnesium zirconate is added to BaTi0'z is co-fired at a temperature below the equilibrium oxygen partial pressure of Ni/NiO, the dielectric material This has the disadvantage that the body is reduced and loses its insulating properties, and as a result, satisfactory dielectric properties cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は前記欠点に鑑み種々の実験の結果、BaTi(
hにCaZr0 :l l MnOと同時にY2O:l
を添加することにより誘電率の温度変化率±15%以内
のH,I、A規格を満足し、かつ高比誘電率化を改善で
きることを知見した。
In view of the above-mentioned drawbacks, the present invention has been developed based on the results of various experiments.
CaZr0:l l MnO and Y2O:l at the same time
It has been found that by adding , it is possible to satisfy H, I, and A standards with a temperature change rate of dielectric constant within ±15%, and to improve the increase in relative dielectric constant.

本発明は上記知見に基づきBaTi0.、CaZr0.
、門n。
The present invention is based on the above findings, and the present invention is based on the above findings. , CaZr0.
, gate n.

の組成物系にY2O3を添加した組成物において、12
50℃乃至1350℃における酸素分圧が3×10伺’
atm乃至3 Xl0−”atmの雰囲気で焼成すると
き還元することがなく、また内部電極として使用するニ
ッケルなどの卑金属粉末粒子も酸化することがなく金属
膜として焼結し、高い比誘電率と優れた絶縁性を有し、
かつ誘電率の温度変化率が広い温度範囲にわたって小さ
く、誘電正接が小さい極めて経済性の高い高誘電率系の
非還元性誘電体磁器組成物を提供することをその目的と
するものである。
In the composition in which Y2O3 is added to the composition system, 12
Oxygen partial pressure between 50℃ and 1350℃ is 3×10
It does not reduce when fired in an atmosphere of ATM to 3 Xl0-" ATM, and base metal powder particles such as nickel used as internal electrodes do not oxidize and are sintered as a metal film, resulting in a high dielectric constant and excellent properties. It has good insulation properties,
Another object of the present invention is to provide a highly economical high-permittivity non-reducible dielectric ceramic composition that has a small rate of change in dielectric constant over a wide temperature range and a small dielectric loss tangent.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、組成式が、 (1−x −y ) BaTi0. +xCaTiO,
↓yMn00.010≦x≦0.045 o、oos≦y≦0.02 で示される主成分に対して、添加剤としてY2O,を前
記主成分組成物に対して0.25〜1.0モル2含有さ
せることによって上記目的が達成される。
According to the present invention, the compositional formula is (1-x-y) BaTi0. +xCaTiO,
↓yMn00.010≦x≦0.045 o, oos≦y≦0.02 For the main component expressed as By containing 2, the above object is achieved.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の非還元性誘電体磁器組成物は、主成分としてB
aTiO3,CaTi0.、MnOから成る前述の主成
分に対して、Y2O3を添加することを特徴とするもの
であって、Y2O3はBaTiO3にCaZr0.を同
時に添加することにより、前記ビスマス系化合物あるい
はジルコニウム酸ニッケルやジルコニウム酸マグネシウ
ムと同様のデプレッサー効果が得られ、BaTi0=の
キュリ一点近傍での誘電率の極大値を低くし、誘電率の
温度変化率を小さくするとともに、絶縁抵抗の向上に有
効に作用するものである。
The non-reducible dielectric ceramic composition of the present invention has B as a main component.
aTiO3, CaTi0. , MnO is characterized in that Y2O3 is added to the aforementioned main components consisting of BaTiO3 and CaZr0. By adding at the same time, a depressor effect similar to that of the bismuth-based compound, nickel zirconate, or magnesium zirconate can be obtained, and the maximum value of the dielectric constant near the Curie point of BaTi0= is lowered, and the temperature of the dielectric constant is lowered. This effectively works to reduce the rate of change and improve insulation resistance.

また、MnOはアクセプタ準位を形成するものであり、
これらを添加することにより、3 Xl0−”aLm乃
至3 Xl0−”atmの低い酸素分圧下で焼成する際
に生ずる酸素欠陥によって形成されるドナー準位電子を
MnOを添加することによって形成されるアクセプタ準
位で再結合せしめることにより、誘電体磁器の半導体化
を抑制し、高い絶縁性を保持するものである。
In addition, MnO forms an acceptor level,
By adding these, donor level electrons formed by oxygen defects generated during firing under a low oxygen partial pressure of 3 Xl0-"aLm to 3 Xl0-"atm can be converted to acceptor levels formed by adding MnO. By recombining at levels, dielectric ceramics are prevented from becoming semiconductors and maintain high insulation properties.

なお、Y!0.の添加量は前記主成分に対して、0.2
5〜1.0モルχ、好ましくはyzoaの量が0.25
モルχを下回ると低温側の温度変化率が大きくなり、絶
縁抵抗も小さくなる一方、1.0モルχを越えると高温
側の温度変化率が大きく、比誘電率が小さくなる傾向に
ある。
In addition, Y! 0. The amount of addition is 0.2 to the main component.
5 to 1.0 mol χ, preferably the amount of yzoa is 0.25
If it is less than 1.0 mol χ, the rate of temperature change on the low temperature side will increase and the insulation resistance will decrease, while if it exceeds 1.0 mol χ, the rate of temperature change on the high temperature side will tend to be large and the relative permittivity will decrease.

〔実施例〕〔Example〕

次に本発明を実施例に基づき説明する。 Next, the present invention will be explained based on examples.

田発原料としてBaTiOs、TiOsを1150℃お
よdCaCOz、Zr0zを1220℃にて夫々固相反
応させBaTi0tおよびCaZr0.を合成するとと
もに微粉砕した。次に前記合成微粉末BaTiO3とC
aZr0*およびMnCO3にY2O3を加えてそれぞ
れ第1表の割合になる様に秤量し、分散剤および分散媒
とともにボールミルにて混合して原料スラリーを調整し
た。そして次にこの原料スラリーに可塑性とともに有機
バインダーを加え、充分攪拌、真空脱泡ののち、ドクタ
ーブレード法によりフィルム状に成形した。次いで前記
フィルムを20枚を積み重ね、ホ7)プレスにより熱圧
着し、得られた板状試料(厚さ0.5mm )を縦約1
011II111横約10mmに切断した。この試料を
酸素分圧3 Xl0−”atm乃至3 X 10−”a
tmに制御し、キャリアガスをN2ガスとして1250
℃乃至1350℃にて2時間焼成した。最後に得られた
焼成体の上下両面にインジウム−ガリウム(In−Ga
)合金を塗布した。
BaTiOs and TiOs were subjected to solid-phase reaction at 1150°C and dCaCOz and Zr0z were subjected to solid phase reaction at 1220°C as raw materials, respectively, to form BaTi0t and CaZr0. was synthesized and pulverized. Next, the synthetic fine powder BaTiO3 and C
Y2O3 was added to aZr0* and MnCO3, each was weighed so as to have the proportions shown in Table 1, and mixed together with a dispersant and a dispersion medium in a ball mill to prepare a raw material slurry. Next, an organic binder was added to this raw material slurry along with plasticity, and after thorough stirring and vacuum defoaming, it was formed into a film using a doctor blade method. Next, 20 sheets of the above-mentioned films were stacked and bonded under heat using a press.
011II111 It was cut into a width of about 10 mm. This sample was heated to an oxygen partial pressure of 3 Xl0-"atm to 3 X 10-"a
1250 with N2 gas as the carrier gas.
It was baked at 1350°C for 2 hours. Indium-gallium (In-Ga) is formed on both the upper and lower surfaces of the finally obtained fired body.
) Alloy was applied.

次にこれらの評価試料を室温にて48時間放置した後、
周波数1.0KHz、入力信号レベル1.αVrnsに
て電容量および誘電正接を測定し、静電容量から比誘電
率を算出した。その後、直流50Vを1分間印加し、そ
の時の絶縁抵抗を測定した。また、=55℃乃至+12
5℃の温度範囲においても上記と同様の条件にて静電容
量および誘電正接を測定し、+25℃での静電容量に対
する各温度での静電容量の変化率を算出した。
Next, after leaving these evaluation samples at room temperature for 48 hours,
Frequency: 1.0KHz, input signal level: 1. Capacitance and dielectric loss tangent were measured at αVrns, and relative permittivity was calculated from the capacitance. Thereafter, a DC voltage of 50 V was applied for 1 minute, and the insulation resistance at that time was measured. Also, =55℃ to +12
Capacitance and dielectric loss tangent were also measured in the temperature range of 5° C. under the same conditions as above, and the rate of change in capacitance at each temperature with respect to the capacitance at +25° C. was calculated.

上記の結果を第1表に示す。但し、表中の添加剤添加量
は主成分組成物に対するY2O,のモル分率で表した。
The above results are shown in Table 1. However, the amounts of additives added in the table are expressed as the molar fraction of Y2O to the main component composition.

また、同じ(絶縁抵抗は静電容量(C1μF)と絶縁抵
抗(R,MΩ)との積(C−R。
Also, the same (insulation resistance is the product (C-R) of capacitance (C1μF) and insulation resistance (R, MΩ).

MΩ・μF)で表した。Expressed in MΩ・μF).

第1表から明らかなように、CaZr01が1モルχを
下回る阻1は一55°Cでの温度変化率が大きく、逆に
4.5モルχを越える隘5は+95℃での温度変化率が
大きい。また、MnOが0.5モルχを下回るN116
は絶縁抵抗が低り、2χを越える11h9は比誘電率が
低い。Y2O3の量が0.25モルχを下回る11h1
0゜11はいずれも一55℃での温度変化率が大きく、
1.0モルχを越える患1′4は+95℃での温度変化
率が大きい。これらの比較例に対し、本発明の試料隘2
,3,4,7,8.12.13はいずれも3000以上
の比誘電率を有し誘電正接1.13以下、絶縁抵抗11
00 (MΩ・μF)以上の優れた特性を示した。
As is clear from Table 1, when CaZr01 is less than 1 mol χ, the temperature change rate at -55°C is large, while when it exceeds 4.5 mol χ, the temperature change rate at +95°C is large. is large. In addition, N116 where MnO is less than 0.5 mol χ
has a low insulation resistance, and 11h9, which exceeds 2χ, has a low dielectric constant. 11h1 where the amount of Y2O3 is less than 0.25 mol χ
For both 0°11, the temperature change rate at -55°C is large,
For case 1'4 with a concentration exceeding 1.0 mol χ, the rate of temperature change at +95°C is large. In contrast to these comparative examples, sample size 2 of the present invention
, 3, 4, 7, 8.12.13 all have a relative dielectric constant of 3000 or more, a dielectric loss tangent of 1.13 or less, and an insulation resistance of 11.
00 (MΩ・μF) or more.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように、本発明の誘電体磁器組成物はB
aTiOx、CaZr0=、MnOを特定範囲で配合し
て成る主成分に対し、Y2O,を微量添加することによ
り焼成温度が1250°C乃至1350°Cの範囲で酸
素分圧がNi/NiOの平衡酸素分圧以下の焼成条件に
おいてニッケル金属電極と同時に焼成することができ、
かつ焼結磁器の誘電特性を全て満足し、その上ニッケル
金属微粒子も酸化することなく金属膜として焼結するも
のであることから、ニッケルを内部電極とする積層型磁
器コンデンサの誘電体磁器として充分実用性のあること
が理解される。
As detailed above, the dielectric ceramic composition of the present invention is B
By adding a small amount of Y2O to the main component consisting of aTiOx, CaZr0=, and MnO in a specific range, equilibrium oxygen with an oxygen partial pressure of Ni/NiO can be created at a firing temperature of 1250°C to 1350°C. Can be fired simultaneously with nickel metal electrodes under firing conditions below partial pressure.
Moreover, it satisfies all the dielectric properties of sintered porcelain, and in addition, nickel metal fine particles are sintered into a metal film without oxidizing, so it is sufficient as a dielectric porcelain for laminated porcelain capacitors with nickel as internal electrodes. It is understood that it is practical.

Claims (1)

【特許請求の範囲】 組成式が (1−x−y)BaTiO_3+xCaTiO_3+y
MnO0.010≦x≦0.045 0.005≦y≦0.02 で示される主成分に対して、添加剤としてY_2O_3
を前記主成分組成物に対して0.25〜1.0モル%含
有させたことを特徴とする非還元性誘電体磁器組成物。
[Claims] The compositional formula is (1-x-y)BaTiO_3+xCaTiO_3+y
Y_2O_3 as an additive to the main component MnO0.010≦x≦0.045 0.005≦y≦0.02
A non-reducible dielectric ceramic composition, characterized in that it contains 0.25 to 1.0 mol% of the main component composition.
JP61122849A 1986-05-27 1986-05-27 Non-reducing dielectric ceramic composition Expired - Fee Related JPH0825791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122849A JPH0825791B2 (en) 1986-05-27 1986-05-27 Non-reducing dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122849A JPH0825791B2 (en) 1986-05-27 1986-05-27 Non-reducing dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS62278163A true JPS62278163A (en) 1987-12-03
JPH0825791B2 JPH0825791B2 (en) 1996-03-13

Family

ID=14846156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122849A Expired - Fee Related JPH0825791B2 (en) 1986-05-27 1986-05-27 Non-reducing dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPH0825791B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581251A2 (en) * 1992-07-31 1994-02-02 Taiyo Yuden Co., Ltd. Ceramic materials of improved dielectric constants, and capacitors fabricated therefrom
EP0899756A3 (en) * 1997-08-28 2000-01-12 Philips Patentverwaltung GmbH Multilayer capacitor with silver or rare earth metal doped barium titanate
JP2008179521A (en) * 2007-01-26 2008-08-07 Showa Denko Kk Coating material for forming complex oxide film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581251A2 (en) * 1992-07-31 1994-02-02 Taiyo Yuden Co., Ltd. Ceramic materials of improved dielectric constants, and capacitors fabricated therefrom
EP0581251A3 (en) * 1992-07-31 1995-02-08 Taiyo Yuden Kk Ceramic materials of improved dielectric constants, and capacitors fabricated therefrom.
EP0899756A3 (en) * 1997-08-28 2000-01-12 Philips Patentverwaltung GmbH Multilayer capacitor with silver or rare earth metal doped barium titanate
JP2008179521A (en) * 2007-01-26 2008-08-07 Showa Denko Kk Coating material for forming complex oxide film

Also Published As

Publication number Publication date
JPH0825791B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
JP3503568B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitor using the same
JPH0678189B2 (en) Non-reducing high dielectric constant dielectric ceramic composition
KR0161348B1 (en) Non-reduced dielectric ceramic compositions
JPS61250905A (en) Dielectric ceramic composition and manufacture thereof
US4925817A (en) Dielectric ceramic composition
JP3450903B2 (en) Non-reducing dielectric porcelain composition
JPS63103861A (en) Non-reductive dielectric ceramic composition
JPS62256422A (en) Laminated type porcelain capacitor
JPS62157603A (en) Nonreductive dielectric porcelain compound
US5202814A (en) Nonreducing dielectric ceramic composition
JPS62278163A (en) Non-reductive dielectric ceramic composition
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
EP0200484B1 (en) Ultralow fire ceramic composition
JP2789110B2 (en) High dielectric constant porcelain composition
JP3250932B2 (en) Non-reducing dielectric porcelain composition
JP3350326B2 (en) Multilayer capacitors
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JPS61251563A (en) High permittivity ceramic composition
JPS622408A (en) Non-reducing dielectric ceramic composition
JPS61203506A (en) High dielectric ceramic composition
JPS61248304A (en) Non-reducing dielectric ceramic composition
JPS6226705A (en) High permeability ceramic composition
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPS63156062A (en) High permittivity ceramic composition and manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees