JPH0678189B2 - Non-reducing high dielectric constant dielectric ceramic composition - Google Patents
Non-reducing high dielectric constant dielectric ceramic compositionInfo
- Publication number
- JPH0678189B2 JPH0678189B2 JP59220745A JP22074584A JPH0678189B2 JP H0678189 B2 JPH0678189 B2 JP H0678189B2 JP 59220745 A JP59220745 A JP 59220745A JP 22074584 A JP22074584 A JP 22074584A JP H0678189 B2 JPH0678189 B2 JP H0678189B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- dielectric
- dielectric constant
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケル内部電極を有する積層型磁器コンデ
ンサの誘電体磁器組成物に関するもので、より詳細には
前記ニッケル内部電極に使用されている金属ニッケル微
粒子が酸化せず、優れた誘電体特性を有するようにした
非還元性高誘電率系誘電体磁器組成物に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain composition for a laminated porcelain capacitor having a nickel internal electrode, and more particularly to metallic nickel used for the nickel internal electrode. The present invention relates to a non-reducing high dielectric constant dielectric ceramic composition in which fine particles are not oxidized and have excellent dielectric properties.
従来の技術 一般に、積層型磁器コンデンサは薄層の誘電体の表面に
内部電極を形成したものを複数枚積層し、内部電極を交
互に外部接続用電極に並列に接続するようにして一体的
に同時焼成している。このような積層型磁器コンデンサ
は、近年のエレクトロニクスの進展に伴い、電子部品の
小型化が急速に進行し、積層型磁器コンデンサにおいて
も容量効率が高い高誘電率系磁器コンデンサが広汎な電
子回路に使われるようになってきている。2. Description of the Related Art Generally, a laminated porcelain capacitor is formed by laminating a plurality of thin-layer dielectrics with internal electrodes formed on them, and alternately connecting the internal electrodes in parallel to the external connection electrodes. Simultaneous firing. In such multilayer ceramic capacitors, miniaturization of electronic parts has rapidly progressed with the progress of electronics in recent years, and even in multilayer ceramic capacitors, high dielectric constant type ceramic capacitors with high capacity efficiency have become widely used in electronic circuits. It is being used.
しかしながら、従来の積層型磁器コンデンサは、内部電
極材料として高価な金属であるパラジウムまたはその合
金が使用されていたため、特に静電容量が大きい部品で
はコスト高となる。また容量効率が高く、その他誘電体
特性に優れかつ高信頼性であるにも拘わらず価格面がそ
の進展に大きな障壁となっていた。従って、高価なパラ
ジウム、またはその合金を使用することなく、卑金属た
とえばニッケルで内部電極を構成する積層型磁器コンデ
ンサに適した誘電体磁器組成物が強く望まれている。However, in the conventional multilayer ceramic capacitor, palladium or its alloy, which is an expensive metal, is used as the material of the internal electrodes, so that the cost becomes high especially for the component having a large capacitance. Moreover, despite the high capacity efficiency, excellent dielectric characteristics, and high reliability, the price has been a major obstacle to the progress. Therefore, there is a strong demand for a dielectric porcelain composition suitable for a laminated porcelain capacitor having an internal electrode made of a base metal such as nickel without using expensive palladium or its alloy.
このようなニッケルなどの卑金属を内部電極とするには
次のような問題がある。誘電体とニッケルなどの卑金属
内部電極とを同時焼成するために、前記卑金属が酸化す
ることなく金属膜として焼結する条件はNi/NiOの平衡酸
素分圧が1300℃において約3×10-7atmであるから、そ
れ以下の酸素分圧でなければならない。しかしながら、
チタン酸バリウムまたはその固溶体からなる誘電体は、
一方上記の酸素分圧下では誘電体自体が還元されてしま
い、実用的に価値がある程度の大きさの比誘電率、小さ
い誘電損失および高い絶縁抵抗といつた誘電体特性を維
持できなくなる。The use of such a base metal as nickel as the internal electrode has the following problems. Since the dielectric and the internal electrode of the base metal such as nickel are co-fired, the base metal is sintered as a metal film without being oxidized under the condition that the equilibrium oxygen partial pressure of Ni / NiO is about 3 × 10 -7. Since it is atm, the oxygen partial pressure must be lower than that. However,
Dielectric made of barium titanate or its solid solution is
On the other hand, under the above-mentioned oxygen partial pressure, the dielectric itself is reduced, and it becomes impossible to maintain the dielectric properties such as the relative permittivity of a certain degree of practical value, small dielectric loss and high insulation resistance.
一方、ニッケルなどの内部電極を有する積層型コンデン
サとして使用できる非還元性誘電体磁器組成物として、
チタン酸バリウム固溶体(Ba,Ca,Sr)TiO3において塩基
性酸化物である(Ba,Ca,Sr)Oを酸性酸化物であるTiO2
に対して化学量論比より過剰とすることにより、非還元
性を得る試みが特公昭57-42588等において提案されてい
る。On the other hand, as a non-reducing dielectric ceramic composition that can be used as a multilayer capacitor having internal electrodes such as nickel,
In the barium titanate solid solution (Ba, Ca, Sr) TiO 3 , the basic oxide (Ba, Ca, Sr) O is an acidic oxide TiO 2
On the other hand, an attempt to obtain a non-reducing property by making the amount excessive than the stoichiometric ratio has been proposed in JP-B-57-42588.
一般に、ABO3型結晶においては、酸素八面体(ペロブス
カイト)構造の中心に位置するBイオン(カチオン)に
対して、Bイオンより大きい酸素に対して12配位をとる
Aイオンが化学量論比より過剰である場合、結晶が酸素
原子を束縛し、還元され難いことが知られている。上記
特許公報に記載された発明は、この化学量論比のずれに
立脚し、誘電体の非還元性を向上させようとするもので
ある。しかしながら、チタン酸バリウムまたはその固溶
体においてはバリウム(Ba)とチタン(Ti)の原子数比
において、Ba/Ti>1の場合、化学量論組成に対する結
晶の誘電的性質よりキューリ温度が低温側に移行すると
共に、キューリ温度での比誘電率が低下する。したがつ
て化学量論比に対してバリウム(Ba)が過剰な組成にお
いて、キューリ温度を室温近くに位置すべく固溶体の形
をとった場合、化学量論組成よりも比誘電率が低下して
しまい、上記公報においても比誘電率が比較的小さく約
8000程度である。Generally, in the ABO 3 type crystal, the A ion having 12 coordination with oxygen larger than the B ion has a stoichiometric ratio with respect to the B ion (cation) located at the center of the oxygen octahedral (perovskite) structure. It is known that when the amount is excessive, the crystal binds the oxygen atom and is difficult to be reduced. The invention described in the above patent publication aims to improve the non-reducing property of the dielectric material based on the deviation of the stoichiometric ratio. However, in barium titanate or its solid solution, when the atomic ratio of barium (Ba) to titanium (Ti) is Ba / Ti> 1, the Curie temperature tends to be lower than the stoichiometric composition due to the dielectric properties of the crystal. With the transition, the relative dielectric constant at the Curie temperature decreases. Therefore, when barium (Ba) is in excess of the stoichiometric ratio and the solid solution is formed so that the Curie temperature is near room temperature, the relative dielectric constant is lower than that in the stoichiometric composition. Therefore, even in the above publication, the relative dielectric constant is relatively small.
It is about 8,000.
発明が解決しようとする問題点 本発明者等は、上記現状に鑑み鋭意研究の結果、BaTi
O3、BaZrO3および(Ca,Sr)ZrO3の固溶体において、ABO
3構造をとる結晶格子のA/Bの比を1とし、Y2O3と、MnO
と、Al2O3と、NiOとを適量添加することにより、1300℃
〜1340℃における酸素分圧3〜8×10-9atmの雰囲気で
焼成しても還元することなく高い絶縁性を有し、かつ高
い比誘電率を有することを知見した。DISCLOSURE OF THE INVENTION Problems to be Solved by the Present Invention
ABO in solid solutions of O 3 , BaZrO 3 and (Ca, Sr) ZrO 3
The A / B ratio of the three- structured crystal lattice is 1, Y 2 O 3 and MnO
, Al 2 O 3 and NiO are added in appropriate amounts to obtain 1300 ℃
It was found that even if fired in an atmosphere with an oxygen partial pressure of 3 to 8 × 10 −9 atm at ˜1340 ° C., it has a high insulating property without reduction and a high relative dielectric constant.
したがって、本発明においては、ニッケルなどの卑金属
粉末粒子が酸化することなく金属として焼結可能な酸素
分圧3〜8×10-9atmの雰囲気において焼成しても、高
い比誘電率と優れた絶縁性を有し、極めて経済性の高い
卑金属内部電極を有する高誘電率系積層型磁器コンデン
サの磁器組成物を提供することを目的とする。Accordingly, in the present invention, base metal powder particles such as nickel be fired at sinterable oxygen partial pressure 3 to 8 × 10 -9 atm atmosphere as the metal without oxidizing, and excellent high dielectric constant An object of the present invention is to provide a porcelain composition of a high dielectric constant type multilayer porcelain capacitor having an insulating and extremely economical base metal internal electrode.
課題を解決するための手段 本発明は、組成式が、 (1−x−y)BaTiO3+xBaZrO3+y(Ca(1−α),Sr
α)ZrO3 ただし、0≦x≦0.16 0.01≦y≦0.10 0≦α≦1 で表される組成物100重量部に対して、Y2O3と、MnOと、
Al2O3と、NiOとをそれぞれ以下に示す範囲で添加する非
還元性高誘電率系誘電体磁器組成物である。Means the present invention, there is provided the composition formula, (1-x-y) BaTiO 3 + xBaZrO 3 + y (Ca (1-α), Sr
α ) ZrO 3 However, with respect to 100 parts by weight of the composition represented by 0 ≦ x ≦ 0.16 0.01 ≦ y ≦ 0.10 0 ≦ α ≦ 1, Y 2 O 3 and MnO,
It is a non-reducing high dielectric constant type dielectric ceramic composition in which Al 2 O 3 and NiO are added in the ranges shown below.
0.2重量部<Y2O3<1.0重量部 0.06重量部<MnO<0.6重量部 0.1重量部<Al2O3<1.0重量部 0.1重量部<NiO<1.0重量部 作用 BaTiO3またはその固溶体が還元して絶縁性を失ない半導
体化した場合、n型半導体即ち金属イオン過剰型半導体
となる。即ち、Tiが過剰になりそれ自身がドナーとなる
ものと考えられる。前述のBa/Ti>1なる組成において
還元し難くなるのは結晶が雰囲気から酸素をとられ、Ti
過剰となると、もとから過剰に存在するBaと結合し、そ
の際雰囲気から酸素を奪うことにより、結果として結晶
から酸素が出ていくことを抑制するためであると考えて
よい。0.2 parts by weight <Y 2 O 3 <1.0 parts by weight 0.06 parts by weight <MnO <0.6 parts by weight 0.1 parts by weight <Al 2 O 3 <1.0 parts by weight <NiO <1.0 parts by weight Action BaTiO 3 or its solid solution is reduced When it is made into a semiconductor that does not lose its insulating property, it becomes an n-type semiconductor, that is, a metal ion excess type semiconductor. In other words, it is considered that Ti becomes excessive and becomes a donor itself. In the above-mentioned composition of Ba / Ti> 1, it is difficult to reduce, because the crystal takes oxygen from the atmosphere,
It can be considered that when it becomes excessive, it is combined with Ba which is originally present in excess and deprives the atmosphere of oxygen at that time, and as a result, oxygen is suppressed from coming out of the crystal.
本発明は上述の理論的根拠に依るものでなく、d殻に電
子をもつ遷移金属の酸化物を添加することによって、Ba
TiO3固溶体結晶が還元して出来るドナー電子を遷移金属
酸化物が還元してできる正孔によって中和し、結果とし
て結晶の半導体化を抑制する技術思想に立脚するもので
ある、と推測される。The present invention is not based on the above-mentioned theoretical basis, but by adding an oxide of a transition metal having an electron in the d-shell, Ba
It is presumed that it is based on the technical idea of neutralizing the donor electron formed by the reduction of the TiO 3 solid solution crystal by the hole formed by the reduction of the transition metal oxide, and consequently suppressing the formation of the crystal into a semiconductor. .
またBaTiO3にMnOを添加して還元を抑制することは知ら
れているが、還元雰囲気にて焼結して十分な絶縁性を得
るためには、1モル%以上の添加量が必要である。その
場合キューリ温度での比誘電率は大きく低下してしま
う。本発明の基本とするところはMnOを可能な限り少な
くするために、ジルコン酸塩との固溶体とすること、
NiOとの添加によって正孔濃度を増加させることの2
点である。このとき酸素分圧3〜8×10-9atmではMnOと
異なり、NiOはBaTiO3の比誘電率を低下させないという
ことが重要である。It is known that MnO is added to BaTiO 3 to suppress the reduction, but the amount added is 1 mol% or more in order to obtain sufficient insulation by sintering in a reducing atmosphere. . In that case, the relative dielectric constant at the Curie temperature is greatly reduced. In order to reduce MnO as much as possible, the basis of the present invention is to form a solid solution with zirconate,
Of increasing the hole concentration by addition with NiO 2
It is a point. At this time, it is important that NiO does not lower the relative dielectric constant of BaTiO 3 unlike MnO at an oxygen partial pressure of 3 to 8 × 10 −9 atm.
一方、Al2O3はTi4+に対して低原子価で絶縁抵抗の酸素
分圧依存性を大きくし、非還元性を向上する立場からは
好ましくないが、ジルコン酸塩との固溶体において液相
を形成し、結晶格子の移動を促進し、焼結性を向上して
比誘電率が向上する効果がある。しかしながら、結晶粒
成長が過大になると比誘電率は増大するが誘電損失が大
きくなり、絶縁破壊強度が低下するため、特に積層型磁
器コンデンサの誘電体磁器としては好ましくない。した
がって、Al2O3の添加に併せて、粒子成長を抑制する金
属酸化物の添加が重要である。この金属酸化物として
は、酸素との結合が強いY2O3が選ばれる。On the other hand, Al 2 O 3 is low in valence with respect to Ti 4+ , increases oxygen partial pressure dependence of insulation resistance, and is not preferable from the standpoint of improving non-reducing property, but it is a liquid in a solid solution with zirconate. It has the effects of forming a phase, promoting the movement of the crystal lattice, improving the sinterability, and improving the relative dielectric constant. However, if the crystal grain growth becomes excessive, the relative permittivity increases, but the dielectric loss also increases, and the dielectric breakdown strength decreases. Therefore, it is not preferable as a dielectric ceramic for a laminated ceramic capacitor. Therefore, it is important to add a metal oxide that suppresses particle growth together with the addition of Al 2 O 3 . As this metal oxide, Y 2 O 3 which has a strong bond with oxygen is selected.
次に、前記組成範囲を限定した理由は、0.16<xのと
き、0.10<yのとき、BaTiO3,BaZrO3,CaZrO3および/
またはSrZrO3(以下「主要成分」という)100重量部に
対し、Y2O3≦0.2重量部のとき、MnO≧0.6重量部のと
き、Al2O3≦0.1重量部またはAl2O3≧1.0重量部のとき、
およびNiO≧1.0重量部のときは、比誘電率が小さく実用
的でないからである。Next, the reason for limiting the composition range is that when 0.16 <x, when 0.10 <y, BaTiO 3 , BaZrO 3 , CaZrO 3 and /
Alternatively, with respect to 100 parts by weight of SrZrO 3 (hereinafter referred to as “main component”), when Y 2 O 3 ≦ 0.2 parts by weight, MnO ≧ 0.6 parts by weight, Al 2 O 3 ≦ 0.1 parts by weight or Al 2 O 3 ≧ When 1.0 part by weight,
When NiO ≧ 1.0 parts by weight, the relative dielectric constant is small and not practical.
また、y<0.01のとき、主要成分100重量部に対し、Y2O
3≧1.0重量部のとき、MnO≦0.06重量部のとき、およびN
iO≦0.1重量部のとき、絶縁抵抗が小さくコンデンサ材
料として不適である。尚、組成式において、(Ca
(1−α),Srα)ZrO3は0≦α≦1の範囲で全率固溶
ではなく、実際は(1−α)CaZrO3+αSrZrO3である
が、便宜上、上述のごとく記述した。When y <0.01, Y 2 O is added to 100 parts by weight of the main component.
3 ≥ 1.0 parts by weight, MnO ≤ 0.06 parts by weight, and N
When iO ≦ 0.1 parts by weight, the insulation resistance is small and unsuitable as a capacitor material. In the composition formula, (Ca
(1-α) , Sr α ) ZrO 3 is not (1) αCaZrO 3 + αSrZrO 3 actually in the range of 0 ≦ α ≦ 1, but is (1-α) CaZrO 3 + αSrZrO 3 ; however, it is described as above for convenience.
実施例 BaCO3、CaCO3、SrCO3、TiO2およびZrO2を出発原料とし
て、BaTiO3、BaZrO3および(Ca(1−α),Srα)ZrO3
をそれぞれ1200℃、1220℃および1220℃にて固相反応に
依り合成し、微粉砕した。合成粉末BaTiO3、BaZrO3およ
びCaZrO3をそれぞれ秤量し、その合計重量が1kgで、か
つ第1表の割合になるようにした。さらにこれにY2O3、
MnCO3、Al2O3およびNiOを第1表の割合になるように添
加し、分散剤および分散媒とともにボールミルにて混合
して同時に原料スラリーを調製する。この原料スラリー
に可塑剤とともに有機バインダを加え、充分攪拌、真空
脱泡ののち、ドクターブレード法に依って肉厚33μmの
フイルム状に成形して、縦約130mm、横100mmに切断し、
10枚を積み重ねてホットプレスし、得られた厚さ約0.5m
mの板状試料を約10mm平方の角板状に切断する。この角
板試料を酸素分圧約5×10-9atmに制御し、キャリアガ
スをN2ガスとして、温度1300℃〜1340℃にて2時間焼成
した。このように焼成した角板試料の上下両面にIn-Ga
合金を全面に塗布し、第1表に示す評価試料1〜30とし
た。Example BaCO 3 , CaCO 3 , SrCO 3 , TiO 2 and ZrO 2 as starting materials, BaTiO 3 , BaZrO 3 and (Ca (1-α) , Sr α ) ZrO 3
Was synthesized by solid-phase reaction at 1200 ℃, 1220 ℃ and 1220 ℃, respectively, and pulverized. Each of the synthetic powders BaTiO 3 , BaZrO 3 and CaZrO 3 was weighed so that the total weight thereof was 1 kg and the ratio was as shown in Table 1. In addition to this, Y 2 O 3 ,
MnCO 3 , Al 2 O 3 and NiO are added in the proportions shown in Table 1 and mixed with a dispersant and a dispersion medium in a ball mill to simultaneously prepare a raw material slurry. An organic binder is added to this raw material slurry together with a plasticizer, and after thorough stirring and vacuum defoaming, it is formed into a film with a thickness of 33 μm by the doctor blade method, and cut into a length of about 130 mm and a width of 100 mm,
Stacked 10 sheets and hot pressed, the obtained thickness is about 0.5m
A plate sample of m is cut into a square plate of about 10 mm square. This square plate sample was fired at a temperature of 1300 ° C. to 1340 ° C. for 2 hours while controlling the oxygen partial pressure to about 5 × 10 −9 atm and using N 2 gas as a carrier gas. In-Ga was formed on both upper and lower sides of the square plate sample fired in this way.
The alloy was applied on the entire surface to give evaluation samples 1 to 30 shown in Table 1.
これらの評価試料1〜30を焼成後室温にて放置し、48時
間経過後に周波数1.00KHz、信号レベル1.0Vrmsにて静電
容量および誘電損失を測定し、その後直流50Vを1分間
印加し、そのときの絶縁抵抗値を絶縁抵抗計を用いて測
定した。These evaluation samples 1 to 30 were left at room temperature after firing, and after 48 hours, the capacitance and dielectric loss were measured at a frequency of 1.00 KHz and a signal level of 1.0 Vrms, and then DC 50 V was applied for 1 minute. The insulation resistance value at that time was measured using an insulation resistance meter.
第1表から明らかなように組成式が、 (1−x−y)BaTiO3+xBaZrO3+y(Ca1−αSrα)Z
rO3 但し0≦x≦0.16 0.01≦y≦0.10 0≦α≦1 で表わされる組成物100重量部に対してY2O3、MnO、Al2O
3、NiOをそれぞれ以下に示す範囲で添加して成る誘電体
組成物を、酸素分圧3〜8×10-9atmの雰囲気中で1300
℃〜1340℃で焼成した。このとき焼結した誘電体磁器
は、高い絶縁抵抗を有し、比誘電率が8000以上と高く
(望ましい組成比では比誘電率が12750)、誘電正接がt
anδ<1.03%と小さく、また絶縁抵抗が2.9×104MΩ以
上と大きく、高誘電率系誘電体磁器として優れた特性を
有していることが理解される。 Composition formula As is clear from Table 1 that, (1-x-y) BaTiO 3 + xBaZrO 3 + y (Ca 1-α Sr α) Z
rO 3 with the exception that 0 ≦ x ≦ 0.16 0.01 ≦ y ≦ 0.10 0 ≦ α ≦ 1 relative to 100 parts by weight of Y 2 O 3 , MnO, Al 2 O
3 and a dielectric composition containing NiO added in the ranges shown below, respectively, in an atmosphere with an oxygen partial pressure of 3 to 8 × 10 -9 atm at 1300
Baking was performed at ℃ to 1340 ℃. At this time, the sintered dielectric ceramic has a high insulation resistance, a high relative permittivity of 8000 or more (relative permittivity of 12750 at a desirable composition ratio), and a dielectric loss tangent of t.
It is understood that anδ is as small as 1.03% and the insulation resistance is as large as 2.9 × 10 4 MΩ or more, and that it has excellent characteristics as a high dielectric constant type dielectric ceramic.
0.2重量部<Y2O3<1.0重量部 0.06重量部<MnO<0.6重量部 0.1重量部<Al2O3<1.0重量部 0.1重量部<NiO<1.0重量部 またニツケルを内部電極とする積層型磁器コンデンサの
誘電体磁器は、ニツケル金属電極と同時に焼成するため
に、ニツケルが酸化することなく金属膜として焼結する
雰囲気で焼成することができ、かつ焼結磁器の誘電特性
は磁器コンデンサの誘電体として具備すべき特性を当然
満足していなければならない。したがつてNi/NiOの平衡
酸素圧は1300℃において約3×10-7atmであるからそれ
以下の酸素分圧の雰囲気中で焼結する必要があり、実用
的に価値ある程度の大きさの比誘電率と小さい誘電損失
と高い絶縁抵抗とを有している必要がある。そこで酸素
分圧が3〜8×10-9atmである還元性雰囲気で焼成する
ことにより、たとえば約0.7μmの金属ニツケル微粒子
が酸化することなく、優れた誘電体特性が保たれること
が理解されるに至つた。0.2 parts by weight <Y 2 O 3 <1.0 parts by weight 0.06 parts by weight <MnO <0.6 parts by weight 0.1 parts by weight <Al 2 O 3 <1.0 parts by weight 0.1 parts by weight <NiO <1.0 parts by weight In addition, nickel is used as an internal electrode for lamination. Since the dielectric porcelain of the type porcelain capacitor is fired at the same time as the nickel metal electrode, it can be fired in an atmosphere in which nickel is sintered as a metal film without oxidation, and the dielectric characteristics of the sintered porcelain are Naturally, it must satisfy the characteristics to be provided as a dielectric. Therefore, since the equilibrium oxygen pressure of Ni / NiO is about 3 × 10 -7 atm at 1300 ° C, it is necessary to sinter in an atmosphere with an oxygen partial pressure lower than that, which is practically of a certain size. It must have a relative dielectric constant, a small dielectric loss, and a high insulation resistance. Therefore, it is understood that by firing in a reducing atmosphere with an oxygen partial pressure of 3 to 8 × 10 -9 atm, for example, fine particles of metal nickel of about 0.7 μm are not oxidized and excellent dielectric properties are maintained. It was done.
Claims (1)
α)ZrO3 ただし、0≦x≦0.16 0.01≦y≦0.10 0≦α≦1 で表される組成物100重量部に対して、Y2O3と、MnOと、
Al2O3と、NiOとをそれぞれ以下に示す範囲で添加するこ
とを特徴とする非還元性高誘電率系誘電体磁器組成物。 0.2重量部<Y2O3<1.0重量部 0.06重量部<MnO<0.6重量部 0.1重量部<Al2O3<1.0重量部 0.1重量部<NiO<1.0重量部1. The compositional formula is (1-x-y) BaTiO 3 + xBaZrO 3 + y (Ca (1-α) , Sr
α ) ZrO 3 However, with respect to 100 parts by weight of the composition represented by 0 ≦ x ≦ 0.16 0.01 ≦ y ≦ 0.10 0 ≦ α ≦ 1, Y 2 O 3 and MnO,
A non-reducing high-dielectric-constant dielectric ceramic composition, characterized in that Al 2 O 3 and NiO are added in the ranges shown below. 0.2 parts by weight <Y 2 O 3 <1.0 parts by weight 0.06 parts by weight <MnO <0.6 parts by weight 0.1 parts by weight <Al 2 O 3 <1.0 parts by weight 0.1 parts by weight <NiO <1.0 parts by weight
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59220745A JPH0678189B2 (en) | 1984-10-20 | 1984-10-20 | Non-reducing high dielectric constant dielectric ceramic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59220745A JPH0678189B2 (en) | 1984-10-20 | 1984-10-20 | Non-reducing high dielectric constant dielectric ceramic composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61101459A JPS61101459A (en) | 1986-05-20 |
JPH0678189B2 true JPH0678189B2 (en) | 1994-10-05 |
Family
ID=16755866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59220745A Expired - Fee Related JPH0678189B2 (en) | 1984-10-20 | 1984-10-20 | Non-reducing high dielectric constant dielectric ceramic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0678189B2 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0825795B2 (en) * | 1986-10-21 | 1996-03-13 | 京セラ株式会社 | Non-reducing dielectric ceramic composition |
JPH0766895B2 (en) * | 1989-05-11 | 1995-07-19 | 松下電器産業株式会社 | Method for manufacturing monolithic ceramic capacitor |
JPH0614498B2 (en) * | 1990-05-16 | 1994-02-23 | 太陽誘電株式会社 | Porcelain capacitor and method of manufacturing the same |
JPH0614496B2 (en) * | 1990-05-16 | 1994-02-23 | 太陽誘電株式会社 | Porcelain capacitor and method of manufacturing the same |
JPH0614497B2 (en) * | 1990-05-16 | 1994-02-23 | 太陽誘電株式会社 | Porcelain capacitor and method of manufacturing the same |
JPH0614501B2 (en) * | 1990-06-20 | 1994-02-23 | 太陽誘電株式会社 | Porcelain capacitor and method of manufacturing the same |
JPH0614500B2 (en) * | 1990-06-20 | 1994-02-23 | 太陽誘電株式会社 | Porcelain capacitor and method of manufacturing the same |
JPH0614499B2 (en) * | 1990-06-20 | 1994-02-23 | 太陽誘電株式会社 | Porcelain capacitor and method of manufacturing the same |
SG50701A1 (en) * | 1991-09-25 | 1998-07-20 | Murata Manufacturing Co | Non-reducible dielectric ceramic composition |
US5510305A (en) * | 1993-06-15 | 1996-04-23 | Murata Manufacturing Co., Ltd. | Non-reducible dielectric ceramic composition |
DE69604510T2 (en) * | 1995-01-12 | 2000-03-16 | Murata Mfg. Co., Ltd. | Monolithic ceramic capacitors |
JP2998639B2 (en) * | 1996-06-20 | 2000-01-11 | 株式会社村田製作所 | Multilayer ceramic capacitors |
JP3282520B2 (en) * | 1996-07-05 | 2002-05-13 | 株式会社村田製作所 | Multilayer ceramic capacitors |
SG65086A1 (en) | 1997-07-23 | 1999-05-25 | Murata Manufacturing Co | Dielectric ceramic composition and monolithic ceramic capacitor using same |
JP4253869B2 (en) * | 1997-12-19 | 2009-04-15 | 日本ケミコン株式会社 | Dielectric porcelain composition, multilayer ceramic capacitor, and method for manufacturing the same |
JP2001006966A (en) * | 1999-06-17 | 2001-01-12 | Murata Mfg Co Ltd | Ceramic capacitor and its manufacture |
JP3918372B2 (en) * | 1999-07-26 | 2007-05-23 | 株式会社村田製作所 | Dielectric ceramic composition and multilayer ceramic capacitor |
JP2002164247A (en) | 2000-11-24 | 2002-06-07 | Murata Mfg Co Ltd | Dielectric ceramic composition and layered ceramic capacitor |
JP2005314224A (en) * | 2004-03-30 | 2005-11-10 | Nippon Chemicon Corp | Dielectric ceramic composition and electronic component |
KR101053945B1 (en) | 2006-09-27 | 2011-08-04 | 쿄세라 코포레이션 | Multilayer Ceramic Capacitor and its Manufacturing Method |
JP4893361B2 (en) * | 2007-02-23 | 2012-03-07 | Tdk株式会社 | Dielectric porcelain composition and electronic component |
JP4858248B2 (en) * | 2007-03-14 | 2012-01-18 | Tdk株式会社 | Dielectric porcelain composition and electronic component |
JP4910812B2 (en) * | 2007-03-22 | 2012-04-04 | Tdk株式会社 | Dielectric porcelain composition and electronic component |
JP5664228B2 (en) * | 2010-12-28 | 2015-02-04 | Tdk株式会社 | Dielectric porcelain composition and electronic component |
JP5910317B2 (en) * | 2012-05-28 | 2016-04-27 | Tdk株式会社 | Dielectric porcelain composition and electronic component |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3932313A (en) * | 1973-12-28 | 1976-01-13 | Texas Instruments Incorporated | Process for manufacture of positive temperature coefficient materials |
-
1984
- 1984-10-20 JP JP59220745A patent/JPH0678189B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS61101459A (en) | 1986-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0678189B2 (en) | Non-reducing high dielectric constant dielectric ceramic composition | |
EP1767507B1 (en) | Dielectric ceramic composition and laminated ceramic capacitor | |
KR100414331B1 (en) | Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same | |
JP3503568B2 (en) | Non-reducing dielectric ceramic and multilayer ceramic capacitor using the same | |
JP3389408B2 (en) | Multilayer capacitors | |
JP3450903B2 (en) | Non-reducing dielectric porcelain composition | |
JP7037945B2 (en) | Ceramic capacitors and their manufacturing methods | |
JPH11302072A (en) | Dielectric ceramic, laminated ceramic capacitor and its production | |
JPH0825795B2 (en) | Non-reducing dielectric ceramic composition | |
JPH0785460B2 (en) | Multilayer porcelain capacitor | |
JP2529410B2 (en) | Dielectric ceramic composition, laminated ceramic capacitor using the same, and method for producing the same | |
JPH0680562B2 (en) | Non-reducing dielectric ceramic composition | |
JP2000026160A (en) | Dielectric ceramic composition | |
CN114853472A (en) | Dielectric composition and electronic component | |
JP3814401B2 (en) | Dielectric porcelain and multilayer ceramic capacitor | |
JP4463093B2 (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JP4508858B2 (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JP2002274937A (en) | Dielectric ceramic excellent in temperature characteristics | |
JPH10139538A (en) | Dielectric porcelain composition | |
JP2002226263A (en) | Dielectric ceramic and laminated ceramic capacitor | |
JP3250932B2 (en) | Non-reducing dielectric porcelain composition | |
JP4557708B2 (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JPH0825791B2 (en) | Non-reducing dielectric ceramic composition | |
JP3793548B2 (en) | Dielectric porcelain and multilayer ceramic capacitor | |
KR100268702B1 (en) | compound of dielectric ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |