JP2007119275A - Dielectric ceramic - Google Patents

Dielectric ceramic Download PDF

Info

Publication number
JP2007119275A
JP2007119275A JP2005310956A JP2005310956A JP2007119275A JP 2007119275 A JP2007119275 A JP 2007119275A JP 2005310956 A JP2005310956 A JP 2005310956A JP 2005310956 A JP2005310956 A JP 2005310956A JP 2007119275 A JP2007119275 A JP 2007119275A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
temperature
powder
dielectric
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005310956A
Other languages
Japanese (ja)
Other versions
JP5153069B2 (en
Inventor
Yasuyo Kamigaki
耕世 神垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005310956A priority Critical patent/JP5153069B2/en
Publication of JP2007119275A publication Critical patent/JP2007119275A/en
Application granted granted Critical
Publication of JP5153069B2 publication Critical patent/JP5153069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic having a high dielectric constant usable for a temperature compensating capacitor. <P>SOLUTION: The dielectric ceramic is composed of main crystal particles containing Ba, Sr, Ca, Ti, and Zr as respective oxides. Their molar ratios are Ba=0.45-1.01, Sr=0-0.5, Ca=0-0.05, Ti=0.4-0.6, and Zr=0.4-0.6. When the total mol of Ti and Zr is 1, the total mol (m) of Ba, Sr and Ca is 0.995-1.01 and the molar ratio of Zr/Ti is 0.6-1.5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、誘電体磁器に関し、特に、温度補償用の積層セラミックコンデンサに用いる誘電体磁器に関するものである。   The present invention relates to a dielectric ceramic, and more particularly to a dielectric ceramic used for a temperature compensation multilayer ceramic capacitor.

近年、高容量タイプの積層セラミックコンデンサは内部電極に卑金属を採用し、誘電体磁器は耐還元性を持たせたものが開発されているが、このような高容量タイプの積層セラミックコンデンサと同様、温度補償用のコンデンサにおいても、それに用いる誘電体磁器もまた高積層および低コスト化のために誘電体磁器の高誘電率化が図られている(例えば、特許文献1)。
特開2005−179110号公報
In recent years, high-capacity type multilayer ceramic capacitors have been developed using base metals as internal electrodes, and dielectric porcelains with reduction resistance, but like these high-capacity type multilayer ceramic capacitors, In the temperature compensation capacitor, the dielectric ceramic used for the capacitor is also designed to have a high dielectric constant in order to increase the number of layers and reduce the cost (for example, Patent Document 1).
JP 2005-179110 A

しかしながら、上記特許文献1に開示された誘電体磁器では、比誘電率が高々260程度であり、依然として比誘電率は低いものであった。   However, the dielectric ceramic disclosed in Patent Document 1 has a relative dielectric constant of about 260 at most, and the relative dielectric constant is still low.

従って本発明は、温度補償用のコンデンサに採用可能な高誘電率の誘電体磁器を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a dielectric ceramic having a high dielectric constant that can be used in a capacitor for temperature compensation.

本発明の誘電体磁器は、(1)Ba、Sr、Ca、TiおよびZrをそれぞれ酸化物として含有する主結晶粒子により形成された誘電体磁器であって、
前記Ba、Sr、Ca、TiおよびZrが、
Ba=0.45〜1.01、
Sr=0〜0.5、
Ca=0〜0.05、
Ti=0.4〜0.6、
Zr=0.4〜0.6
のモル比であるとともに、
TiおよびZrの合量モル数を1としたときに、Ba、SrおよびCaの合量のモル数mが0.995〜1.01の範囲であり、かつ、
Zr/Ti比がモル比で0.6〜1.5の範囲であることを特徴とする。
The dielectric ceramic according to the present invention is (1) a dielectric ceramic formed of main crystal particles each containing Ba, Sr, Ca, Ti and Zr as oxides,
Ba, Sr, Ca, Ti and Zr are
Ba = 0.45 to 1.01,
Sr = 0-0.5,
Ca = 0-0.05,
Ti = 0.4-0.6,
Zr = 0.4-0.6
As well as the molar ratio of
When the total molar number of Ti and Zr is 1, the total molar number m of Ba, Sr and Ca is in the range of 0.995 to 1.01, and
The Zr / Ti ratio is in the range of 0.6 to 1.5 in terms of molar ratio.

また上記誘電体磁器では、(2)前記主結晶粒子の平均粒径が0.5μm以下であること、(3)前記主結晶粒子の表面から5nmの領域での平均カルシウム濃度をCとし、粒子中心部におけるカルシウムの濃度をCとした時、C/C≦0.7を満足することが望ましい。 In the dielectric ceramic, (2) the average particle size of the main crystal particles is 0.5 μm or less, and (3) the average calcium concentration in a region 5 nm from the surface of the main crystal particles is C 5 , When the calcium concentration at the center of the particle is C C , it is desirable to satisfy C C / C 5 ≦ 0.7.

本発明によれば、Ba、Sr、Ca、TiおよびZrをそれぞれ酸化物として含有する主結晶粒子により形成された誘電体磁器について、その組成を上記の範囲とすることにより、温度補償用のコンデンサに採用可能であり、しかも高い比誘電率を示す誘電体磁器を得ることができる。   According to the present invention, with respect to a dielectric ceramic formed of main crystal grains each containing Ba, Sr, Ca, Ti and Zr as oxides, by setting the composition within the above range, a capacitor for temperature compensation In addition, it is possible to obtain a dielectric ceramic exhibiting a high relative dielectric constant.

特に本発明では、誘電体磁器に含まれるZr/Ti比をモル比で0.6〜1.5の範囲とすることで、強誘電体の常誘電相−強誘電相の相転移温度を使用温度領域より低温度にシフトさせることができ、これにより室温を含む使用温度域において高い誘電率となり低損失かつ比誘電率の温度係数が低い常誘電的性質を利用した誘電体磁器を提供することができる。   In particular, in the present invention, the phase transition temperature of the paraelectric phase to the ferroelectric phase of the ferroelectric is used by setting the molar ratio of Zr / Ti contained in the dielectric ceramic to be in the range of 0.6 to 1.5. To provide a dielectric ceramic using a paraelectric property that can be shifted to a lower temperature than the temperature range, thereby having a high dielectric constant in a use temperature range including room temperature, a low loss, and a low temperature coefficient of relative dielectric constant. Can do.

本発明の誘電体磁器は、Ba、Sr、Ca、TiおよびZrをそれぞれ酸化物として含有する主結晶粒子により形成されたことを特徴とする。   The dielectric ceramic according to the present invention is characterized in that it is formed of main crystal grains each containing Ba, Sr, Ca, Ti and Zr as oxides.

ここで、Ba量が0.45〜1.01モルの範囲である。Baが0.45モル以上であると比誘電率が高くなるという利点がある。一方、Baが1.01モル以下であると比誘電率の温度係数を小さくできるという利点がある。   Here, the amount of Ba is in the range of 0.45 to 1.01 mol. When Ba is 0.45 mol or more, there is an advantage that the relative dielectric constant is increased. On the other hand, when Ba is 1.01 mol or less, there is an advantage that the temperature coefficient of relative permittivity can be reduced.

Sr量は0〜0.5モルの範囲である。Srが0.5モル以下であると比誘電率が高くなるという利点がある。   The amount of Sr is in the range of 0 to 0.5 mol. When Sr is 0.5 mol or less, there is an advantage that the relative dielectric constant is increased.

Ca量は0〜0.1モルである。Caが0.1モル以下であると比誘電率の温度係数を小さくできるという利点がある。   The amount of Ca is 0 to 0.1 mol. There exists an advantage that the temperature coefficient of a dielectric constant can be made small as Ca is 0.1 mol or less.

Ti量およびZr量はともに0.4〜0.6モルであることが重要である。つまり、TiおよびZr量が上記のモル量であり、Zr/Ti比がモル比で0.6〜1.5の範囲であれば、Ba、Sr、Ca、TiおよびZrの複合酸化物から形成されるペロブスカイト構造を有する誘電体について、強誘電体の常誘電相−強誘電相の相転移温度を使用温度領域より低温度にシフトさせることができ、これにより常誘電相−強誘電相の相転移温度が室温を中心とした使用温度から離れて、相転移に伴う比誘電率の温度変化の影響が小さくなり、誘電体の比誘電率の温度変化率を小さいものにできる。   It is important that both the Ti amount and the Zr amount are 0.4 to 0.6 mol. That is, when the Ti and Zr amounts are the above molar amounts and the Zr / Ti ratio is in the range of 0.6 to 1.5 in terms of molar ratio, it is formed from a composite oxide of Ba, Sr, Ca, Ti and Zr. As for the dielectric having a perovskite structure, the phase transition temperature of the ferroelectric paraelectric phase to the ferroelectric phase can be shifted to a temperature lower than the operating temperature range, whereby the phase of the paraelectric phase to the ferroelectric phase can be changed. Since the transition temperature is far from the use temperature centering on room temperature, the influence of the temperature change of the relative dielectric constant accompanying the phase transition is reduced, and the temperature change rate of the dielectric constant of the dielectric can be reduced.

また、上記Ba、Sr、Ca、TiおよびZrを含む組成系において、TiおよびZrの合量モル数を1としたときに、Ba、SrおよびCaの合量のモル数mが0.995〜1.01の範囲であることが重要である。Ba、Sr、Ca、TiおよびZrを含む組成を上記mの関係とすることで、これらの元素の酸化物から形成される主結晶粒子をより純粋なペロブスカイト構造を有する誘電体が形成され、これにより高い比誘電率を得ることができる。   In the composition system containing Ba, Sr, Ca, Ti and Zr, when the total molar number of Ti and Zr is 1, the total molar number m of Ba, Sr and Ca is 0.995 to It is important that it is in the range of 1.01. By setting the composition containing Ba, Sr, Ca, Ti and Zr to the relationship of m above, a dielectric having a purer perovskite structure is formed from the main crystal particles formed from oxides of these elements. A higher relative dielectric constant can be obtained.

Ba量が0.45モルよりも少ないと焼結性が低下し誘電体磁器の比誘電率が低いものとなる。またBa量が1.01モルよりも多いと比誘電率は高くなるものの比誘電率の温度変化率が大きくなる。 If the amount of Ba is less than 0.45 mol, the sinterability is lowered and the dielectric constant of the dielectric ceramic is low. On the other hand, if the amount of Ba is more than 1.01 mol, the relative dielectric constant increases, but the temperature change rate of the relative dielectric constant increases.

Sr量が0.5モルよりも多くなる場合、またはCa量が0.1よりも多い場合には比誘電率が低下する。また、Ca量が0.1モルよりも多い場合には、主結晶粒子の合成が困難となり、特にTiサイトをイオン半径の大きなZrで置換した本発明のような材料においては、イオン半径の小さいCaでBaを置換すると結晶格子が不安定になるため固溶が困難となる。   When the Sr amount is more than 0.5 mol, or when the Ca amount is more than 0.1, the relative dielectric constant is lowered. In addition, when the amount of Ca is more than 0.1 mol, it becomes difficult to synthesize main crystal particles. In particular, in a material such as the present invention in which Ti sites are substituted with Zr having a large ionic radius, the ionic radius is small. When Ba is substituted with Ca, the crystal lattice becomes unstable, so that solid solution becomes difficult.

Ti量が0.4モルよりも少なく、Zr量が0.6モルよりも多い場合には焼結性が低下し緻密な磁器を得ることが困難となり、一方、Ti量が0.6モルよりも多く、Zr量が0.4モルよりも少ない場合には比誘電率の温度変化率が大きくなる。   When the Ti amount is less than 0.4 mol and the Zr amount is more than 0.6 mol, the sinterability is lowered and it becomes difficult to obtain a dense porcelain, while the Ti amount is less than 0.6 mol. When the amount of Zr is less than 0.4 mol, the temperature change rate of the relative permittivity increases.

結果的に、Zr/Ti比がモル比で0.6〜1.5の範囲を逸脱する場合には、強誘電体の常誘電相−強誘電相の相転移温度を使用温度領域より低温度にシフトさせることが困難となり、常誘電相−強誘電相の相転移温度が室温を中心とした使用温度に近い場合は、相転移に伴う比誘電率の温度変化により比誘電率の温度変化率が大きくなる。   As a result, when the Zr / Ti ratio is out of the range of 0.6 to 1.5 in terms of molar ratio, the phase transition temperature of the ferroelectric paraelectric phase to the ferroelectric phase is lower than the operating temperature range. When the phase transition temperature between the paraelectric phase and the ferroelectric phase is close to the operating temperature centered on room temperature, the temperature change rate of the relative permittivity due to the temperature change of the relative permittivity accompanying the phase transition Becomes larger.

即ち、本発明の誘電体磁器は以下の組成式で示されるものである。つまり、主結晶粒子の組成を(Ba1−x−ySrCa(Ti1−zZr)Oと表した時、各構成元素の組成範囲が、0≦x≦0.5、0<y<0.10、0.4≦z≦0.6、0.995≦m≦1.010である。ここで、mの値を0.995〜1.010とすると、異相なしに安定的に所望の磁器構造を実現することができ、比誘電率を高めかつ誘電損失を低くできるという利点がある。 That is, the dielectric ceramic of the present invention is represented by the following composition formula. That is, when the composition of the main crystal particles is expressed as (Ba 1-xy Sr x Ca y ) m (Ti 1-z Zr z ) O 3 , the composition range of each constituent element is 0 ≦ x ≦ 0. 5, 0 <y <0.10, 0.4 ≦ z ≦ 0.6, 0.995 ≦ m ≦ 1.010. Here, if the value of m is 0.995 to 1.010, there is an advantage that a desired porcelain structure can be stably realized without different phases, and the relative permittivity can be increased and the dielectric loss can be reduced.

本発明の誘電体磁器では、転移温度を低温度にシフトさせる上でZr量、Sr量、Ca量の調整が必要であり、特に、Ti量に対するZr量を調整することが重要である。   In the dielectric ceramic according to the present invention, it is necessary to adjust the amount of Zr, the amount of Sr, and the amount of Ca in order to shift the transition temperature to a low temperature. In particular, it is important to adjust the amount of Zr with respect to the amount of Ti.

通常、温度補償用の誘電体磁器としては強誘電性を抑制させる必要があるが、本発明においては、強誘電体の常誘電相−強誘電相の相転移温度を使用温度領域より低温度にシフトさせることにより、室温を含む使用温度域において現れる常誘電的性質が大きくなる。このため比誘電率の温度変化率が抑制されて、比誘電率が高く、誘電損失の低い誘電体磁器を得ることができる。   Usually, it is necessary to suppress ferroelectricity as a dielectric ceramic for temperature compensation. However, in the present invention, the phase transition temperature of the ferroelectric paraelectric phase to the ferroelectric phase is set lower than the operating temperature range. By shifting, the paraelectric property appearing in the use temperature range including room temperature is increased. For this reason, the temperature change rate of the relative permittivity is suppressed, and a dielectric ceramic having a high relative permittivity and a low dielectric loss can be obtained.

また、上記誘電体磁器では、主結晶粒子の平均粒径が0.5μm以下であることが望ましい。主結晶粒子の平均粒径が0.5μm以下であると比誘電率の温度変化率を低減できるという利点がある。   In the dielectric ceramic, it is desirable that the average grain size of the main crystal particles is 0.5 μm or less. When the average particle size of the main crystal particles is 0.5 μm or less, there is an advantage that the temperature change rate of the relative dielectric constant can be reduced.

また、本発明の誘電体磁器は主結晶粒子の表面から5nmの領域での平均カルシウム濃度をCとし、粒子中心部におけるカルシウムの濃度をCとした時、C/C≦0.7を満足することが望ましい。 In the dielectric ceramic according to the present invention, when the average calcium concentration in the region 5 nm from the surface of the main crystal particle is C 5 and the calcium concentration in the center of the particle is C C , C C / C 5 ≦ 0. It is desirable to satisfy 7.

通常、上記Ba、Sr、Ca、TiおよびZrを含む組成の誘電体磁器においてCa量が多いと高温負荷寿命の信頼性が高くかつ比誘電率の温度変化率も小さいものとなるが、これに加えて、本発明では、特に、主結晶粒子の表面付近にCaを偏在させて粒界近傍でのCaの固溶量を増大することで、比誘電率が高く、かつ高温負荷寿命の信頼性が高く、比誘電率の温度変化率の小さい誘電体磁器を実現する。   Usually, in a dielectric ceramic having a composition containing Ba, Sr, Ca, Ti and Zr, if the amount of Ca is large, the reliability of the high temperature load life is high and the temperature change rate of the relative dielectric constant is small. In addition, in the present invention, in particular, the Ca is unevenly distributed in the vicinity of the surface of the main crystal grains to increase the solid solution amount of Ca in the vicinity of the grain boundary, so that the relative dielectric constant is high and the reliability of the high temperature load life is increased. This realizes a dielectric ceramic having a high relative dielectric constant and a small temperature change rate of relative permittivity.

また、一般に、ペロブスカイト型酸化物材料においては、非酸化性の雰囲気において焼成を行うと酸素欠陥を生じやすく絶縁性と高温負荷寿命の信頼性が低下するが、BaサイトをCaで置換し、上記のようにCaを主結晶粒子の表面付近に偏在させることで、酸素欠陥を補償でき、高温負荷寿命の信頼性を向上できる。   In general, in the perovskite type oxide material, if baked in a non-oxidizing atmosphere, oxygen defects are likely to occur, and the reliability of insulation and high temperature load life is reduced. However, the Ba site is replaced with Ca, As described above, Ca is unevenly distributed in the vicinity of the surface of the main crystal grains, whereby oxygen defects can be compensated for and the reliability of the high temperature load life can be improved.

次に、本発明の誘電体磁器の製法について説明する。本発明の誘電体磁器は、組成が(Ba1−x−ySrCa(Ti1−zZr)Oと表した時、各構成元素の組成範囲が、0≦x≦0.5、0<y<0.10、0.4≦z≦0.6、0.995≦m≦1.010の範囲にある誘電体粉末を主成分粉末(BSCTZ粉末)として用いるものである。この主成分粉末の平均粒径は0.5μm以下、特に0.4μm以下が好ましい。主成分粉末の平均粒径が0.5μm以下であると、焼結後の主結晶粒子の平均粒径を0.5μm以下にできるために、誘電体磁器の比誘電率の温度変化率を小さくできるという利点がある。一方、主成分粉末の平均粒径は0.2μm以上であると、焼結後に形成される主結晶粒子が結晶性の高いものとなり、そのために誘電体磁器の比誘電率を高めることができるという利点がある。 Next, a method for manufacturing the dielectric ceramic according to the present invention will be described. When the composition of the dielectric ceramic according to the present invention is expressed as (Ba 1-xy Sr x Ca y ) m (Ti 1-z Zr z ) O 3 , the composition range of each constituent element is 0 ≦ x ≦ A dielectric powder in the range of 0.5, 0 <y <0.10, 0.4 ≦ z ≦ 0.6, 0.995 ≦ m ≦ 1.010 is used as the main component powder (BSCTZ powder). is there. The average particle size of the main component powder is preferably 0.5 μm or less, particularly preferably 0.4 μm or less. If the average particle size of the main component powder is 0.5 μm or less, the average particle size of the sintered main crystal particles can be 0.5 μm or less, so the temperature change rate of the dielectric constant of the dielectric ceramic is reduced. There is an advantage that you can. On the other hand, when the average particle size of the main component powder is 0.2 μm or more, the main crystal particles formed after sintering have high crystallinity, and therefore the dielectric constant of the dielectric ceramic can be increased. There are advantages.

次に、上記主成分粉末に対して組成式Ba1−pCaTiO(p=0.01〜0.1)で表される副成分粉末(BCT粉末)を所定量添加する。この副成分粉末の平均粒径は0.02μm以上0.1μm以下、特に0.03μm以上0.08μm以下であることが好ましい。副成分粉末の平均粒径が0.1μm以下であると主成分粉末の表面に均一に分散しやすくなり、これにより主成分粉末の表面付近のCa濃度を高めやすくなり、焼結後は主結晶粒子の表面付近にCaを偏在させやすくなる。主成分粉末の平均粒径が0.2μm以上であると焼成時の異常粒成長を抑制できるという利点がある。また、この副成分粉末の添加量は主成分粉末100質量部に対して0.3〜1.2質量部が好ましい。 Then it added a predetermined amount of the secondary component powder (BCT powder) represented by the above-mentioned main components powder relative composition formula Ba 1-p Ca p TiO 3 (p = 0.01~0.1). The average particle size of the subcomponent powder is preferably 0.02 μm or more and 0.1 μm or less, and particularly preferably 0.03 μm or more and 0.08 μm or less. If the average particle size of the subcomponent powder is 0.1 μm or less, it becomes easy to uniformly disperse on the surface of the main component powder, which makes it easy to increase the Ca concentration near the surface of the main component powder, and after sintering, the main crystal Ca tends to be unevenly distributed near the surface of the particle. When the average particle size of the main component powder is 0.2 μm or more, there is an advantage that abnormal particle growth during firing can be suppressed. Moreover, the addition amount of the subcomponent powder is preferably 0.3 to 1.2 parts by mass with respect to 100 parts by mass of the main component powder.

副成分粉末の添加量は主成分粉末100質量部に対して0.3質量部以上であると、主結晶粒子の焼結性を高めることができるとともに主結晶粒子の表面付近におけるCa濃度を高めることができるという利点がある。一方、副成分粉末の添加量は主成分粉末100質量部に対して1質量部以下であると、誘電体磁器の比誘電率を高めることができるという利点がある。   When the added amount of the subcomponent powder is 0.3 parts by mass or more with respect to 100 parts by mass of the main component powder, the sinterability of the main crystal particles can be enhanced and the Ca concentration near the surface of the main crystal particles is increased. There is an advantage that you can. On the other hand, when the added amount of the subcomponent powder is 1 part by mass or less with respect to 100 parts by mass of the main component powder, there is an advantage that the dielectric constant of the dielectric ceramic can be increased.

ここで用いる主成分粉末および副成分粉末は、固相法、液相法(蓚酸塩を介して生成する方法を含む)、水熱合成法、気相法などから選ばれる合成法により得られたものである。前記製法のなかで特に原料単価が安く、合成方法も仮焼手段が取れ、多量に生産でき、得られる誘電体粉末の結晶性が高く、焼結性が高いという理由から固相法により得られた誘電体粉末がより望ましい。   The main component powder and subcomponent powder used here were obtained by a synthesis method selected from a solid phase method, a liquid phase method (including a method of forming via oxalate), a hydrothermal synthesis method, a gas phase method, and the like. Is. Among the above-mentioned production methods, the raw material unit price is particularly low, the synthesis method can also be obtained by calcining means, can be produced in large quantities, and the dielectric powder obtained has high crystallinity and high sinterability. A dielectric powder is more desirable.

次に、本発明の誘電体磁器を形成する場合、上記主成分粉末および副成分粉末に対して所定量の添加物を添加する。添加物としてはMg、Mn、希土類元素が好ましく、Mg、希土類元素およびMnの酸化物は誘電体磁器における主結晶粒子の粒成長の制御および絶縁性を高めるという効果があり、Mnの酸化物はまた耐還元性を高められる。希土類元素としては、例えば、Y、Dy、Er、Ho等が選択され、Yは比誘電率を高める効果がある。   Next, when forming the dielectric ceramic of the present invention, a predetermined amount of additives is added to the main component powder and subcomponent powder. As additives, Mg, Mn, and rare earth elements are preferable, and oxides of Mg, rare earth elements, and Mn have the effect of controlling the grain growth of the main crystal grains in the dielectric ceramic and improving the insulation properties. Moreover, reduction resistance can be improved. For example, Y, Dy, Er, Ho or the like is selected as the rare earth element, and Y has an effect of increasing the relative dielectric constant.

Mg、Mn、希土類元素のそれぞれの酸化物(Mnは炭酸化合物)の添加量は主成分粉末100質量部に対して、MgはMgO換算で0.04〜0.14質量部、MnはMnCO換算で0.04〜0.3質量部、希土類元素の酸化物は0.1〜1.5質量部であることが望ましい。これらMg、Mn、希土類元素のそれぞれの酸化物の平均粒径は0.01μm以上0.1μm以下であることがこれら添加物粉末の分散性を高めるという点で好ましい。 The added amount of each of Mg, Mn, and rare earth element oxide (Mn is a carbonic acid compound) is 100 parts by mass of the main component powder, Mg is 0.04 to 0.14 parts by mass in terms of MgO, and Mn is MnCO 3. It is desirable that 0.04 to 0.3 parts by mass in terms of conversion and 0.1 to 1.5 parts by mass of the rare earth element oxide. The average particle size of the respective oxides of Mg, Mn, and rare earth elements is preferably 0.01 μm or more and 0.1 μm or less from the viewpoint of improving the dispersibility of these additive powders.

次に、上記主成分粉末(BSCTZ粉末)に対して副成分粉末(BCT粉末)、ならびにMg,Mn希土類元素のそれぞれの酸化物などの添加物を混合した混合粉末を所定の形状に成形し、この成形体を、所定の雰囲気下、温度条件で焼成して誘電体磁器が形成される。   Next, a mixed powder obtained by mixing additives such as subcomponent powder (BCT powder) and Mg, Mn rare earth elements with respect to the main component powder (BSCTZ powder) is formed into a predetermined shape, The molded body is fired under a predetermined atmosphere at a temperature condition to form a dielectric ceramic.

焼成温度は最高温度が1200〜1400℃の範囲で、最高温度での保持時間が2〜3時間、雰囲気は大気中での焼成が一般的であるが、本発明では積層セラミックコンデンサに適用する場合に内部電極層として卑金属を用いることができる非還元性の誘電体磁器への可能性を有するという点で水素−窒素雰囲気の焼成にも対応可能である。また、焼成後の熱処理(再酸化処理)の最高温度が900〜1100℃、この熱処理での雰囲気も窒素を主成分とする還元雰囲気であることが好ましい。   The firing temperature is in the range of 1200 to 1400 ° C., the retention time at the maximum temperature is 2 to 3 hours, and the atmosphere is generally fired in the air, but in the present invention, it is applied to a multilayer ceramic capacitor In addition, it is possible to deal with firing in a hydrogen-nitrogen atmosphere in that it has a possibility of a non-reducing dielectric ceramic that can use a base metal as an internal electrode layer. The maximum temperature of the heat treatment (reoxidation treatment) after firing is 900 to 1100 ° C., and the atmosphere in this heat treatment is also preferably a reducing atmosphere containing nitrogen as a main component.

なお、上記本発明に係る混合粉末を用いてグリーンシートを形成し、このグリーンシートの主面に内部電極パターンを形成し、この内部電極パターンを形成したグリーンシートを複数積層して積層体を形成し、上記温度条件で焼成することにより、本発明の誘電体磁器を誘電体層として具備する積層セラミックコンデンサを形成できることはいうまでもない。   A green sheet is formed using the mixed powder according to the present invention, an internal electrode pattern is formed on the main surface of the green sheet, and a laminate is formed by laminating a plurality of green sheets formed with the internal electrode pattern. It goes without saying that a multilayer ceramic capacitor comprising the dielectric ceramic of the present invention as a dielectric layer can be formed by firing at the above temperature conditions.

即ち、本発明の積層セラミックコンデンサは誘電体層および内部電極層を交互に積層したコンデンサ本体の端部に外部電極を具備してなるものであり、前記誘電体層が前記請求項1記載の誘電体磁器からなることを特徴とするものである。   That is, the multilayer ceramic capacitor of the present invention comprises an external electrode at the end of a capacitor body in which dielectric layers and internal electrode layers are alternately laminated, and the dielectric layer is the dielectric according to claim 1. It consists of a body porcelain.

また本発明の誘電体磁器の製法は、組成が(Ba1−x−ySrCa(Ti1−zZr)Oと表した時、各構成元素の組成範囲が、0≦x≦0.5、0<y<0.10、0.4≦z≦0.6、0.995≦m≦1.010の範囲にある誘電体粉末を主成分粉末に、組成式Ba1−pCaTiO(p=0.01〜0.1)で表される副成分粉末およびMg、Mn、希土類元素のそれぞれの酸化物粉末を添加した混合粉末を調製し、その混合粉末を所定形状に成形し焼成して得られる誘電体磁器の製法であって、前記主成分粉末の平均粒径が0.2μm以上0.5μm以下であり、また、副成分粉末の平均粒径が0.02μm以上0.1μm以下であることを特徴とするものであり、特に、主成分粉末に添加する添加物の成分は、主成分粉末100質量部に対して、それぞれ、Mg=0.04〜0.14質量部、希土類元素=0.1〜1.5質量部、Mn=0.04〜0.3質量部であることが望ましいものである。 The method of the dielectric ceramic of the present invention, when the composition is expressed as (Ba 1-x-y Sr x Ca y) m (Ti 1-z Zr z) O 3, the composition range of each component elements, 0 ≦ x ≦ 0.5, 0 <y <0.10, 0.4 ≦ z ≦ 0.6, 0.995 ≦ m ≦ 1.010 are used as the main component powder, and the composition formula Ba 1-p Ca p TiO 3 subcomponent powder and Mg is expressed by (p = 0.01~0.1), Mn, to prepare a mixed powder prepared by adding each of the oxide powders of rare earth elements, a mixture powder Is formed into a predetermined shape and fired to obtain a dielectric ceramic, wherein the main component powder has an average particle size of 0.2 μm or more and 0.5 μm or less, and the subcomponent powder has an average particle size of It is characterized by being 0.02 μm or more and 0.1 μm or less, and in particular, added to the main component powder The components of Mg are 0.04 to 0.14 parts by mass, rare earth elements are 0.1 to 1.5 parts by mass, and Mn is 0.04 to 0.3 parts with respect to 100 parts by mass of the main component powder. A mass part is desirable.

用いた主成分粉末であるBSCTZ粉末の平均粒径および組成、ならびに副成分粉末であるBCT粉末の平均粒径、組成および添加量、ガラス粉末として加えたSiO粉末量、焼成温度および誘電体磁器の特性を表1に示した。ここで、BSCTZ粉末は、BSCTZ粉末100質量部に対して、Mg(MgO)、Y(Y)、Mn(MnCO)をそれぞれ0.3、0.7、0.2質量部を添加して含有させた
上記粉末を直径5mmのジルコニアボールを用いて、溶媒としてトルエンとアルコールとの混合溶媒を添加し湿式混合した。次に、湿式混合した粉末にポリビニルブチラール樹脂およびトルエン・アルコールの混合溶媒を添加し、同じく直径5mmのジルコニアボールを用いて湿式混合して、直径16mm、厚み1mmのタブレット状に成形し、これを水素―窒素混合ガス雰囲気中にて焼成して試料を作製した。
Average particle size and composition of BSCTZ powder used as main component powder, average particle size, composition and addition amount of BCT powder as subcomponent powder, amount of SiO 2 powder added as glass powder, firing temperature and dielectric ceramic The characteristics are shown in Table 1. Here, the BSCTZ powder has 0.3, 0.7, and 0.2 parts by mass of Mg (MgO), Y (Y 2 O 3 ), and Mn (MnCO 3 ), respectively, with respect to 100 parts by mass of the BSCTZ powder. The above powder was added and contained in a zirconia ball having a diameter of 5 mm, and a mixed solvent of toluene and alcohol was added as a solvent and wet mixed. Next, a mixed solvent of polyvinyl butyral resin and toluene / alcohol is added to the wet-mixed powder, and wet-mixed using a zirconia ball having the same diameter of 5 mm to form a tablet with a diameter of 16 mm and a thickness of 1 mm. A sample was prepared by firing in a hydrogen-nitrogen mixed gas atmosphere.

次に、上記誘電体磁器を構成する主結晶粒子の平均粒径は走査型電子顕微鏡(SEM)により求めた。研磨面をエッチングし、電子顕微鏡写真内の結晶粒子を任意に20個選択し、インターセプト法により各結晶粒子の最大径を求め、それらの平均値(D50)を求めた。   Next, the average grain size of the main crystal particles constituting the dielectric ceramic was determined by a scanning electron microscope (SEM). The polished surface was etched, 20 crystal particles in the electron micrograph were arbitrarily selected, the maximum diameter of each crystal particle was determined by the intercept method, and the average value (D50) was determined.

次に、上記誘電体磁器を厚さ200μmに研磨加工し、試料上下面にスパッタ法によりAu電極を形成した。電気特性はLCRメータを用いて−25℃〜85℃の温度範囲で、AC:1V、測定周波数:1kHzの条件で静電容量および誘電損失を測定し比誘電率を算出した。比誘電率の温度係数(×10−6/℃)は、−40℃〜85℃の範囲での各温度での温度変化率である。 Next, the dielectric ceramic was polished to a thickness of 200 μm, and Au electrodes were formed on the upper and lower surfaces of the sample by sputtering. The electrical characteristics were calculated by measuring the capacitance and dielectric loss using an LCR meter in the temperature range of −25 ° C. to 85 ° C. under the conditions of AC: 1 V and measurement frequency: 1 kHz. The temperature coefficient (× 10 −6 / ° C.) of the relative dielectric constant is the rate of temperature change at each temperature in the range of −40 ° C. to 85 ° C.

また、信頼性は高温負荷寿命の評価により行った。その条件は275℃の恒温糟中に保持した試料に直流400Vを印加し、抵抗値が初期値に比べ、1桁低下した時間とした。   Reliability was evaluated by evaluating the high temperature load life. The condition was a time in which DC 400 V was applied to a sample held in a constant temperature bath at 275 ° C., and the resistance value decreased by an order of magnitude compared to the initial value.

主結晶粒子中央部および結晶粒子の界面からの距離5nmの位置におけるカルシウムの濃度は透過電子顕微鏡に付設した分析装置により求めた。この場合、結晶粒子の粒界側から中央部側にむけて直線的に走査して検出されたカウントから元素濃度を求めた。また、磁器中のCa量はICP法を用いて分析した。試料No.25は、組成を(Ba1−x−ySrCa(Ti1−zZr)Oと表した時のmが0.98であり、一方、試料No.26はmが1.02であり、mの値が本発明の範囲からはずれるものである。組成は、得られた磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、各元素を1000ppm含むの標準液を希釈したものを標準試料としてICP発光分光分析にかけて定量化した。結果を表1、2に示した。

Figure 2007119275
The calcium concentration at a distance of 5 nm from the center of the main crystal particles and the interface between the crystal particles was determined by an analyzer attached to a transmission electron microscope. In this case, the element concentration was determined from the count detected by linear scanning from the grain boundary side to the center side of the crystal grains. The amount of Ca in the porcelain was analyzed using the ICP method. Sample No. 25, when the composition is expressed as (Ba 1-xy Sr x Ca y ) m (Ti 1-z Zr z ) O 3 , m is 0.98. In 26, m is 1.02, and the value of m deviates from the scope of the present invention. The composition was quantified by ICP emission spectroscopic analysis using a solution obtained by mixing and melting the obtained porcelain with boric acid and sodium carbonate in hydrochloric acid and diluting a standard solution containing 1000 ppm of each element as a standard sample. . The results are shown in Tables 1 and 2.
Figure 2007119275

Figure 2007119275
Figure 2007119275

表1、2の結果から明らかなように、本発明の組成範囲で規定した誘電体磁器では、いずれも比誘電率が315以上、誘電損失が0.8%以下、比誘電率の変化率である温度係数も−1030×10−6/℃以下、高温負荷寿命(MTTF)が69時間以上であった。 As is clear from the results in Tables 1 and 2, all of the dielectric ceramics defined in the composition range of the present invention have a relative dielectric constant of 315 or more, a dielectric loss of 0.8% or less, and a change rate of the relative dielectric constant. A certain temperature coefficient was −1030 × 10 −6 / ° C. or less, and a high temperature load life (MTTF) was 69 hours or more.

特に、粒径が0.1μm以下のBCT粉末を所定量添加して主結晶粒子の平均粒径を0.2〜0.5μmとして得られた本発明に係る誘電体磁器では、粒界から5nmの領域での平均カルシウム濃度と、粒子中心部におけるカルシウムの濃度の比は0.7以下であり、それら本発明の試料No.3〜No.17、No.19〜21では、比誘電率が315以上、誘電損失が0.8%以下、比誘電率の変化率である温度係数も−990×10−6/℃以下、高温負荷寿命(MTTF)が71時間以上であった。 In particular, in a dielectric ceramic according to the present invention obtained by adding a predetermined amount of BCT powder having a particle size of 0.1 μm or less and having an average particle size of main crystal particles of 0.2 to 0.5 μm, 5 nm from the grain boundary. The ratio of the average calcium concentration in the region and the concentration of calcium in the center of the particle is 0.7 or less. 3-No. 17, no. 19 to 21, the dielectric constant is 315 or more, the dielectric loss is 0.8% or less, the temperature coefficient that is the rate of change of the dielectric constant is −990 × 10 −6 / ° C. or less, and the high temperature load life (MTTF) is 71. It was over time.

本発明の誘電体磁器のキュリー温度は上記した−40℃〜85℃の範囲での比誘電率の温度係数から推定して、いずれも−40℃〜85℃の使用温度範囲よりも低温側にシフトしていることがわかった。   The Curie temperature of the dielectric ceramic of the present invention is estimated from the temperature coefficient of the relative dielectric constant in the range of −40 ° C. to 85 ° C., and both are on the lower temperature side than the operating temperature range of −40 ° C. to 85 ° C. I found out that it was shifting.

一方、本発明の範囲外の組成を有する試料では、温度変化率が大きくなり、また、Zr濃度が大きい試料No.22では、転移温度が低温化しすぎて比誘電率が195であった。常誘電相−強誘電相の相転移温度が−50℃程度で十分低温化できていないためと考えられた。また、Sr濃度の高い試料No.23では、同様に転移温度が低温下して比誘電率が230以下であった。組成を(Ba1−x−ySrCa(Ti1−zZr)Oと表した時のmが0.98である試料No.25、および、mが1.02である試料No.26では、mの値が本発明の範囲からはずれているため、比誘電率が低く、誘電損失が大きかった。 On the other hand, in the sample having a composition outside the range of the present invention, the temperature change rate is large, and the sample No. In No. 22, the transition temperature was too low and the relative dielectric constant was 195. This is considered to be because the phase transition temperature between the paraelectric phase and the ferroelectric phase was about −50 ° C. and could not be sufficiently lowered. In addition, the sample No. In No. 23, similarly, the transition temperature was lowered and the relative dielectric constant was 230 or less. When the composition is expressed as (Ba 1-xy Sr x Ca y ) m (Ti 1-z Zr z ) O 3 , m is 0.98. 25 and sample No. with m being 1.02. In No. 26, since the value of m deviated from the range of the present invention, the relative dielectric constant was low and the dielectric loss was large.

Claims (3)

Ba、Sr、Ca、TiおよびZrをそれぞれ酸化物として含有する主結晶粒子により形成された誘電体磁器であって、
前記Ba、Sr、Ca、TiおよびZrが、
Ba=0.45〜1.01、
Sr=0〜0.5、
Ca=0〜0.05、
Ti=0.4〜0.6、
Zr=0.4〜0.6
のモル比であるとともに、
TiおよびZrの合量モル数を1としたときに、Ba、SrおよびCaの合量のモル数mが0.995〜1.01の範囲であることを特徴とする誘電体磁器。
A dielectric ceramic formed of main crystal particles each containing Ba, Sr, Ca, Ti and Zr as oxides,
Ba, Sr, Ca, Ti and Zr are
Ba = 0.45 to 1.01,
Sr = 0-0.5,
Ca = 0-0.05,
Ti = 0.4-0.6,
Zr = 0.4-0.6
As well as the molar ratio of
A dielectric ceramic, wherein the total number of moles m of Ba, Sr, and Ca is in the range of 0.995 to 1.01, where the total number of moles of Ti and Zr is 1.
前記主結晶粒子の平均粒径が0.5μm以下である請求項1に記載の誘電体磁器。 The dielectric ceramic according to claim 1, wherein an average particle size of the main crystal particles is 0.5 μm or less. 前記主結晶粒子の表面から5nmの領域での平均カルシウム濃度をCとし、粒子中心部におけるカルシウムの濃度をCとした時、C/C≦0.7を満足する請求項1または2に記載の誘電体磁器。 2. When the average calcium concentration in a region 5 nm from the surface of the main crystal particle is C 5 and the concentration of calcium in the center of the particle is C C , C C / C 5 ≦ 0.7 is satisfied or 2. The dielectric ceramic according to 2.
JP2005310956A 2005-10-26 2005-10-26 Dielectric porcelain Expired - Fee Related JP5153069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310956A JP5153069B2 (en) 2005-10-26 2005-10-26 Dielectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310956A JP5153069B2 (en) 2005-10-26 2005-10-26 Dielectric porcelain

Publications (2)

Publication Number Publication Date
JP2007119275A true JP2007119275A (en) 2007-05-17
JP5153069B2 JP5153069B2 (en) 2013-02-27

Family

ID=38143509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310956A Expired - Fee Related JP5153069B2 (en) 2005-10-26 2005-10-26 Dielectric porcelain

Country Status (1)

Country Link
JP (1) JP5153069B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176388A (en) * 2004-11-26 2006-07-06 Kyocera Corp Dielectric ceramic and method of manufacturing the same
WO2012124736A1 (en) * 2011-03-16 2012-09-20 株式会社 村田製作所 Derivative ceramics and laminated ceramic capacitor
JP2013112569A (en) * 2011-11-29 2013-06-10 Tdk Corp Dielectric ceramic composition and ceramic electronic component
US20150274600A1 (en) * 2014-03-28 2015-10-01 Tdk Corporation Dielectric composition and electronic component
US20160002114A1 (en) * 2013-03-26 2016-01-07 Ngk Insulators, Ltd. Dielectric ceramic composition and composite ceramic structure
US20170015590A1 (en) * 2015-07-16 2017-01-19 National Taipei University Of Technology Ceramic capacitor dielectric material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6686676B2 (en) 2016-04-28 2020-04-22 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065460A (en) * 1991-03-16 1994-01-14 Taiyo Yuden Co Ltd Porcelain capacitor and manufacture thereof
JP2001031472A (en) * 1999-07-21 2001-02-06 Tdk Corp Dielectric substance composition and ceramic capacitor using the same
JP2001080959A (en) * 1999-09-07 2001-03-27 Murata Mfg Co Ltd Dielectric ceramic composition and laminated ceramic parts
JP2001199765A (en) * 2000-01-18 2001-07-24 Murata Mfg Co Ltd Raw material powder for dielectric porcelain composition, and dielectric porcelain composition
JP2002193667A (en) * 2000-12-27 2002-07-10 Kyocera Corp Dielectric ceramic and stacked electronic part
JP2003100544A (en) * 2001-09-27 2003-04-04 Taiyo Yuden Co Ltd Porcelain capacitor and its manufacturing method
JP2006151766A (en) * 2004-11-30 2006-06-15 Tdk Corp Dielectric ceramic composition and electronic component
JP2006321670A (en) * 2005-05-17 2006-11-30 Murata Mfg Co Ltd Dielectric ceramic composition and laminated ceramic capacitor
JP2007055835A (en) * 2005-08-23 2007-03-08 Tdk Corp Dielectric ceramic composition and electronic component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065460A (en) * 1991-03-16 1994-01-14 Taiyo Yuden Co Ltd Porcelain capacitor and manufacture thereof
JP2001031472A (en) * 1999-07-21 2001-02-06 Tdk Corp Dielectric substance composition and ceramic capacitor using the same
JP2001080959A (en) * 1999-09-07 2001-03-27 Murata Mfg Co Ltd Dielectric ceramic composition and laminated ceramic parts
JP2001199765A (en) * 2000-01-18 2001-07-24 Murata Mfg Co Ltd Raw material powder for dielectric porcelain composition, and dielectric porcelain composition
JP2002193667A (en) * 2000-12-27 2002-07-10 Kyocera Corp Dielectric ceramic and stacked electronic part
JP2003100544A (en) * 2001-09-27 2003-04-04 Taiyo Yuden Co Ltd Porcelain capacitor and its manufacturing method
JP2006151766A (en) * 2004-11-30 2006-06-15 Tdk Corp Dielectric ceramic composition and electronic component
JP2006321670A (en) * 2005-05-17 2006-11-30 Murata Mfg Co Ltd Dielectric ceramic composition and laminated ceramic capacitor
JP2007055835A (en) * 2005-08-23 2007-03-08 Tdk Corp Dielectric ceramic composition and electronic component

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176388A (en) * 2004-11-26 2006-07-06 Kyocera Corp Dielectric ceramic and method of manufacturing the same
WO2012124736A1 (en) * 2011-03-16 2012-09-20 株式会社 村田製作所 Derivative ceramics and laminated ceramic capacitor
JP5761627B2 (en) * 2011-03-16 2015-08-12 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitor
US9111683B2 (en) 2011-03-16 2015-08-18 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
KR101575614B1 (en) 2011-03-16 2015-12-08 가부시키가이샤 무라타 세이사쿠쇼 Derivative ceramics and laminated ceramic capacitor
JP2013112569A (en) * 2011-11-29 2013-06-10 Tdk Corp Dielectric ceramic composition and ceramic electronic component
US20160002114A1 (en) * 2013-03-26 2016-01-07 Ngk Insulators, Ltd. Dielectric ceramic composition and composite ceramic structure
US9573851B2 (en) * 2013-03-26 2017-02-21 Ngk Insulators, Ltd. Dielectric ceramic composition and composite ceramic structure
KR20150112787A (en) * 2014-03-28 2015-10-07 티디케이가부시기가이샤 Dielectric composition and electronic component
KR101706071B1 (en) 2014-03-28 2017-02-14 티디케이가부시기가이샤 Dielectric composition and electronic component
US20150274600A1 (en) * 2014-03-28 2015-10-01 Tdk Corporation Dielectric composition and electronic component
US9643890B2 (en) * 2014-03-28 2017-05-09 Tdk Corporation Dielectric composition and electronic component
US20170015590A1 (en) * 2015-07-16 2017-01-19 National Taipei University Of Technology Ceramic capacitor dielectric material
US9963393B2 (en) * 2015-07-16 2018-05-08 National Taipei University Of Technology Ceramic capacitor dielectric material

Also Published As

Publication number Publication date
JP5153069B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4965435B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR101156015B1 (en) Multi layer ceramic capacitor and method of manufacturing the same
EP1767507B1 (en) Dielectric ceramic composition and laminated ceramic capacitor
US7498285B2 (en) Nonreducing dielectric ceramic, and manufacturing method and monolithic ceramic capacitor of the same
TWI402872B (en) Electrolyte procelain, laminated ceramic capacitor and methods for manufacturing electrolyte porcelain and laminated ceramic capacitor
KR101494851B1 (en) Laminated ceramic capacitor and method for producing laminated ceramic capacitor
TWI441791B (en) Dielectric ceramic and laminated ceramic capacitor
JP5153069B2 (en) Dielectric porcelain
JP2009035431A (en) Dielectric porcelain, method for producing the same, and laminated ceramic capacitor using the same
JP2013028478A (en) Dielectric ceramic composition and electronic component
JP2006232629A (en) Dielectric ceramic, method for manufacturing the same, and multilayer ceramic capacitor
JP2009263209A (en) Dielectric ceramic composition, electronic component and manufacturing method thereof
JP4862501B2 (en) Dielectric ceramic, manufacturing method thereof and multilayer ceramic capacitor
JP4502741B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2009096671A (en) Dielectric ceramic and multi-layer ceramic capacitor
KR20140118557A (en) Dielectric composition and multi layer ceramic capacitor comprising the same
JP4836509B2 (en) Dielectric porcelain
JP2006156450A (en) Laminated ceramic capacitor and its manufacturing method
JP2012049449A (en) Multilayer ceramic capacitor
JP2019129232A (en) Ceramic capacitor and production method thereof
JP4508858B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2005187218A (en) Dielectric porcelain, laminated electronic component, and production method for laminated electronic component
JP2005263508A (en) Dielectric ceramic composition, laminated porcelain capacitor, and method for producing the capacitor
JP4954135B2 (en) Dielectric ceramic composition, manufacturing method thereof, and dielectric ceramic capacitor
JP5146492B2 (en) Dielectric ceramic composition and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5153069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees