JP2013028478A - Dielectric ceramic composition and electronic component - Google Patents

Dielectric ceramic composition and electronic component Download PDF

Info

Publication number
JP2013028478A
JP2013028478A JP2011164707A JP2011164707A JP2013028478A JP 2013028478 A JP2013028478 A JP 2013028478A JP 2011164707 A JP2011164707 A JP 2011164707A JP 2011164707 A JP2011164707 A JP 2011164707A JP 2013028478 A JP2013028478 A JP 2013028478A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
batio
ceramic composition
area
nbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011164707A
Other languages
Japanese (ja)
Other versions
JP5668632B2 (en
Inventor
Gakuo Tsukada
岳夫 塚田
Tomoshi Wada
智志 和田
Kenta Yamashita
健太 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2011164707A priority Critical patent/JP5668632B2/en
Publication of JP2013028478A publication Critical patent/JP2013028478A/en
Application granted granted Critical
Publication of JP5668632B2 publication Critical patent/JP5668632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead-free niobic acid-based dielectric ceramic composition having a small rate of change of relative dielectric constant (for example, ΔC/C=±22% or less) in a wide temperature region (for example -55 to 350°C), various excellent characteristic up to a high temperature region near 350°C, and a high relative dielectric constant, and to provide an electronic component using the dielectric ceramic composition.SOLUTION: A niobic acid compound region and a barium titanate region form respectively a composite structure in a dielectric ceramic composition containing a niobic acid compound represented by general formula (KNa)NbOand barium titanate represented by BaTiO, and further assuming that a solid solution region area of a solid solution represented by [(KNa)Ba](NbTi)Ois A1 and the whole region area is A2, an inequality A1/A2≤0.35 is fulfilled.

Description

本発明は、高温領域での特性が良好な誘電体磁器組成物、及びその誘電体磁器組成物を用いた電子部品に関する。   The present invention relates to a dielectric ceramic composition having good characteristics in a high temperature region, and an electronic component using the dielectric ceramic composition.

従来、誘電体磁器組成物及び誘電体磁器コンデンサや圧電素子等の電子部品としては、例えば主成分として(Ba,Sr,Ca)(Ti,Zr)Oを含む磁器組成物が用いられてきた(例えば、特許文献1〜3参照)
これらの組成物において、例えばBaTiOはキュリー点が125℃付近であり、150℃以上の高温領域では、室温の比誘電率に比較して大きく低下してしまい、また、100℃以上の領域では、キュリー点近傍となるために、室温に比べて比誘電率が著しく増大してしまうために、単体では比誘電率の温度変化率が非常に大きく実用に耐えられない。このため、副成分として例えば希土類元素を混入することによって、磁器コンデンサとして実用領域である−55℃〜150℃における比誘電率の温度依存性を制御し、広く産業分野で用いられてきた。
Conventionally, as electronic parts such as dielectric ceramic compositions and dielectric ceramic capacitors and piezoelectric elements, for example, ceramic compositions containing (Ba, Sr, Ca) (Ti, Zr) O 3 as main components have been used. (For example, see Patent Documents 1 to 3)
In these compositions, for example, BaTiO 3 has a Curie point of around 125 ° C., and in a high temperature region of 150 ° C. or higher, it is greatly reduced compared to the relative dielectric constant at room temperature, and in a region of 100 ° C. or higher. Since the relative dielectric constant is remarkably increased as compared to room temperature because it is in the vicinity of the Curie point, the temperature change rate of the relative dielectric constant is very large and cannot be practically used. For this reason, for example, rare earth elements are mixed as subcomponents to control the temperature dependence of the relative permittivity at −55 ° C. to 150 ° C., which is a practical range for ceramic capacitors, and has been widely used in the industrial field.

特開2007−169090号公報JP 2007-169090 A 特開2006−342025号公報JP 2006-342025 A 特開2005−194138号公報 また、例えばPbTiO3−BaZrO3で示されるような2成分系の誘電体磁器成分は、PbTiO3のキュリー点が490℃前後であることを利用して、300℃程度まで比誘電率の温度依存性を比較的少なくできるが、組成にPbを用いなくてはならない。JP, 2005-194138, A For example, a two-component dielectric ceramic component such as PbTiO3-BaZrO3 uses a PbTiO3 Curie point of around 490 ° C to make a dielectric constant up to about 300 ° C. The temperature dependence of the rate can be made relatively small, but Pb must be used for the composition.

一方、鉛を含有しないニオブ酸系の圧電磁器組成物が周知である。(例えば、特許文献4〜5参照)が、いずれの文献にも、誘電体磁器組成物について広い温度域における比誘電率の温度依存性を少なくすることについては開示されていない。また、特許文献5には、広い温度領域で比誘電率の温度依存性を小さくする試みは行われているが、その温度領域が、−55℃から350℃の範囲で静電容量変化率(ΔC/C)が±22%を超えており必ずしも満足な特性が得られているとは言えない。   On the other hand, niobic acid-based piezoelectric ceramic compositions that do not contain lead are well known. (For example, refer to Patent Documents 4 to 5), however, none of the documents disclose the temperature dependence of the relative permittivity in a wide temperature range for the dielectric ceramic composition. Further, Patent Document 5 attempts to reduce the temperature dependence of the relative permittivity over a wide temperature range. However, the capacitance change rate (-55 ° C. to 350 ° C.) ΔC / C) exceeds ± 22%, and it cannot be said that satisfactory characteristics are necessarily obtained.

特開2003−252681号公報JP 2003-252681 A 特開2009−227482号公報JP 2009-227482 A 特開2009−249244号公報JP 2009-249244 A

例えば車載用途などの電子部品においては、従来においては、例えばEIA規格X8S(−55℃〜150℃において静電容量の変化率が±22%以内(ΔC/C=±22%以内)を満たす誘電体磁器コンデンサが必要とされている。自動車内のスペースをより広くし、より快適な操縦環境を得ようとする場合、電子部品はよりいっそう自動車エンジン周域に近づけて使用されるため、現在規定されているEIA規格で保証されている最高温度よりもさらに高い、150℃を超える温度領域においても、ΔC/C=±22%を満たす誘電体磁器コンデンサが求められている。   For example, in electronic parts for on-vehicle applications, conventionally, for example, EIA standard X8S (capacitance change rate within −22% (−C / C = within ± 22%) at −55 ° C. to 150 ° C.) There is a need for a porcelain capacitor, as electronic components are used closer to the car engine perimeter when more space is required in the car and a more comfortable driving environment is required. There is a demand for a dielectric ceramic capacitor that satisfies ΔC / C = ± 22% even in a temperature region exceeding 150 ° C., which is higher than the maximum temperature guaranteed by the EIA standard.

さらに、SiCやGaN系の半導体を用いたパワーデバイスの使用温度域は350℃付近の高温領域まで求められはじめており、平滑用のコンデンサとして利用するためには、例えば−55〜350℃の温度範囲においてもΔC/C=±22%を満たすことが好ましい。しかしながら、−55〜350℃の温度範囲においてΔC/C=±22%以内を満たす誘電体磁器組成物については何ら記載されていなかった。   Furthermore, the operating temperature range of power devices using SiC or GaN-based semiconductors is beginning to be required up to a high temperature range around 350 ° C., and for use as a smoothing capacitor, for example, a temperature range of −55 to 350 ° C. Also, it is preferable that ΔC / C = ± 22%. However, no description has been made about a dielectric ceramic composition satisfying ΔC / C = ± 22% within a temperature range of −55 to 350 ° C.

また、EIA規格X8Sを満たすことのできる誘電体磁器コンデンサで、例えば、BaTiO、SrTiO、CaTiOなどを主成分とする誘電体磁器コンデンサは、希土類元素である、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなどの希土類元素を使用することによって、その特性を達成している。これらのレアアースを用いずとも従来のEIA規格X8S特性を達成しうることができれば、希少元素を使用せずとも従来の特性を達成することができ、近年の希少元素の高騰など、市場原理に依存することを防ぐことができる。 In addition, dielectric ceramic capacitors that can satisfy the EIA standard X8S, for example, dielectric ceramic capacitors mainly composed of BaTiO 3 , SrTiO 3 , CaTiO 3, etc., are rare earth elements such as Sc, Y, La, Ce. The characteristics are achieved by using rare earth elements such as Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. If the conventional EIA standard X8S characteristics can be achieved without using these rare earth elements, the conventional characteristics can be achieved without using rare elements, depending on market principles such as the recent rise in rare elements. Can be prevented.

従来、例えばPbTiOを主成分とすることによって、150℃以上の高い温度でΔC/C=±22%以内を満たす誘電体磁器コンデンサは存在するが、組成にPbが存在するために、原料として例えばPbO、PbO、Pbなどを用いなければならず、生産工程において、これら原料の環境への拡散が起こりうるため、これを解決することは、近年の環境との調和が求められる技術として有望である。 Conventionally, there are dielectric ceramic capacitors that satisfy ΔC / C = ± 22% at a high temperature of 150 ° C. or higher by using, for example, PbTiO 3 as a main component. However, since Pb exists in the composition, For example, PbO, PbO 2 , Pb 3 O 4 or the like must be used, and in the production process, these raw materials may diffuse into the environment. Therefore, solving this requires harmony with the recent environment. It is promising as a technology.

本発明は、上記のような観点から、広範囲な温度領域(例えば、−55〜350℃)において比誘電率の変化率(例えば、ΔC/C=±22%以内)が小さく、350℃付近の高温領域に至るまでの諸特性に優れ、比誘電率が大きく、鉛を含有しないニオブ酸系の誘電体磁器組成物と、その誘電体磁器組成物を用いた電子部品を提供することを課題とする。   From the above viewpoint, the present invention has a small relative dielectric constant change rate (for example, ΔC / C = within ± 22%) in a wide temperature range (for example, −55 to 350 ° C.), and is around 350 ° C. An object is to provide a niobic acid-based dielectric ceramic composition that is excellent in various properties up to a high temperature range, has a large relative dielectric constant, and does not contain lead, and an electronic component using the dielectric ceramic composition. To do.

本発明は、上記の課題を解決するために、一般式(K1−xNa)NbOで表されるニオブ酸化合物と、BaTiO3表されるチタン酸バリウムとを含有する誘電体磁器組成物であって、前記ニオブ酸化合物領域とチタン酸バリウム領域とがそれぞれコンポジット構造を形成し、前記(K1−xNa)NbOとBaTiOとが固溶した固溶体の領域面積をA1とし、全体の領域面積をA2とした場合、A1/A2≦0.35であることを特徴とする誘電体磁器組成物を提供そることを目的とする。尚、前記固溶体は一般式[(K1−xNaαBaβ](NbαTiβ)O12などで表される。 In order to solve the above problems, the present invention provides a dielectric ceramic composition comprising a niobic acid compound represented by the general formula (K 1-x Na x ) NbO 3 and barium titanate represented by BaTiO 3 . Wherein the niobic acid compound region and the barium titanate region form a composite structure, respectively, and the region area of the solid solution in which the (K 1-x Na x ) NbO 3 and BaTiO 3 are solid solution is A1, It is an object of the present invention to provide a dielectric ceramic composition characterized in that A1 / A2 ≦ 0.35 when the total area of the area is A2. Note that the solid solution has the general formula [(K 1-x Na x ) α Ba β] (Nb α Ti β) O 12 represented by like.

また、コンポジット構造を構成する前記ニオブ酸化合物粒子の粒径が100nm以上、1000nm以下であり、且つ、前記チタン酸バリウムの粒子の粒径が50nm以上、1200nm以下であることが望ましい。   In addition, it is desirable that the niobic acid compound particles constituting the composite structure have a particle size of 100 nm to 1000 nm and the barium titanate particles have a particle size of 50 nm to 1200 nm.

さらに、前記コンポジット構造をなす、(K1−xNa)NbOで表されるニオブ酸化合物の領域面積をa、BaTiO表されるチタン酸バリウムの領域面積をbとしたとき、1≦a/b≦9、0≦x≦0.5、の関係を満たすことが望ましい。 Further, when the area area of the niobic acid compound represented by (K 1-x Na x ) NbO 3 forming the composite structure is a and the area area of barium titanate represented by BaTiO 3 is b, 1 ≦ It is desirable to satisfy the relationship of a / b ≦ 9 and 0 ≦ x ≦ 0.5.

また、これらの前記誘電体磁器組成物を用いて誘電体磁器コンデンサや圧電素子などの電子部品として利用することが望ましい。   Moreover, it is desirable to use these dielectric ceramic compositions as electronic parts such as dielectric ceramic capacitors and piezoelectric elements.

本発明によれば、その主成分に、Pb、Bi、Sbなどの環境に負荷を及ぼす重金属元素を使用することなく広範囲な温度領域(例えば、−55〜350℃)における比誘電率の変化率が±22%以内に平坦化でき良好な温度特性と高い比誘電率を示すことができる。   According to the present invention, the change rate of the relative dielectric constant in a wide temperature range (for example, −55 to 350 ° C.) without using a heavy metal element that exerts a load on the environment such as Pb, Bi, or Sb as the main component. Can be flattened within ± 22%, exhibiting good temperature characteristics and a high relative dielectric constant.

さらに、本発明によれば、広範囲の温度領域で高い比誘電率を示すことができ、例えば25℃における比誘電率が700以上の特性を有する誘電体磁器組成物が得られる。   Furthermore, according to the present invention, a dielectric ceramic composition that can exhibit a high relative dielectric constant in a wide temperature range, for example, has a characteristic of a relative dielectric constant of 700 or more at 25 ° C. can be obtained.

したがって、本発明にかかわる誘電体磁器組成物としては、高温領域での使用が求められる車載用途や、さらにより高温領域まで求められている、SiCやGaN系の半導体を用いたパワーデバイス用の平滑用のコンデンサとして最適である。   Therefore, as a dielectric ceramic composition according to the present invention, smoothing for a power device using a SiC or GaN-based semiconductor, which is required to be used in a high temperature region, or to a higher temperature region, is required. It is optimal as a capacitor for use.

また、本発明に関わる誘電体磁器組成物は、EIA規格X8S特性(−55℃〜150℃におけるΔC/C=±22%以内)満足できるため、X8S特性のコンデンサとしても利用することができる。   Further, the dielectric ceramic composition according to the present invention can satisfy the EIA standard X8S characteristic (ΔC / C at −55 ° C. to 150 ° C. = within ± 22%), and therefore can be used as a capacitor having X8S characteristic.

図1は実験No.3、7、16、33、53、55における−55〜350℃における比誘電率の変化率を示す図である。FIG. It is a figure which shows the change rate of the dielectric constant in -55-350 degreeC in 3, 7, 16, 33, 53, 55. 図2は本発明にかかわる実験No.1の誘電体磁器組成物断面のSTEM−EDSによる元素マッピング画像である。図2(a)はTi元素の分布状態を示す。図2(b)はK元素の分布状態を示す。FIG. 2 shows an experiment No. 1 related to the present invention. It is an element mapping image by STEM-EDS of the cross section of 1 dielectric ceramic composition. FIG. 2A shows the distribution state of the Ti element. FIG. 2B shows the distribution state of the K element. 図3は本発明の比較例にかかわる実験No.5の誘電体磁器組成物断面のSTEM−EDSによる元素マッピング画像である。図3(a)はTi元素の分布状態を示す。図3(b)はK元素の分布状態を示す。FIG. 3 shows an experiment No. 1 relating to a comparative example of the present invention. 5 is an element mapping image by STEM-EDS of a section of dielectric ceramic composition of No. 5. FIG. 3A shows the distribution state of the Ti element. FIG. 3B shows the distribution state of the K element.

以下、本発明を図面に示す実施するための形態に基づき説明する   Hereinafter, the present invention will be described based on an embodiment shown in the drawings.

本実施形態にかかわる誘電体磁器組成物は、一般式(K1−xNa)NbOで表されるニオブ酸化合物と、BaTiO表されるチタン酸バリウムとを含有する誘電体磁器組成物であって、前記ニオブ酸化合物領域とチタン酸バリウム領域とがコンポジット構造を形成している。 A dielectric ceramic composition according to this embodiment includes a niobic acid compound represented by the general formula (K 1-x Na x ) NbO 3 and barium titanate represented by BaTiO 3 . The niobate compound region and the barium titanate region form a composite structure.

コンポジット構造の一方を構成する前記ニオブ酸化合物粒子(K1−xNa)NbOはx=0.5のときにTc(キュリー温度)約420℃となるので高温時の比誘電率を改善することができる。一方コンポジット構造のもう一方のBaTiOはTc約130℃と比較的室温近くで良好な温度特性を示すため、Baの一部をアルカリ金属で置換、Tiの一部をZrで置換、希土類元素の微量添加等により室温付近での実用組成が得られていることが知られている。 The niobic acid compound particles (K 1-x Na x ) NbO 3 constituting one of the composite structures have a Tc (Curie temperature) of about 420 ° C. when x = 0.5, thus improving the relative dielectric constant at high temperatures. can do. On the other hand, the other BaTiO 3 of the composite structure has a Tc of about 130 ° C. and relatively good room temperature characteristics. Therefore, a part of Ba is replaced with an alkali metal, a part of Ti is replaced with Zr, It is known that a practical composition near room temperature is obtained by addition of a small amount.

このため、前記の(K1−xNa)NbOとBaTiOとはお互いに固溶体を形成することなく、ニオブ酸化合物の領域と、チタン酸バリウムの領域が相互に分散されたコンポジット構造をとることが好ましく、お互いが固溶してなる一般式[(K1−xNaαBaβ](NbαTiβ)O12で表される固溶体領域が生成されると比誘電率は低下する。このため、[(K1−xNaαBaβ](NbαTiβ)O12で表される固溶体領域の面積をA1とし、全体の領域面積をA2とした場合、A1/A2≦0.35であることが好ましい。 Therefore, the (K 1-x Na x ) NbO 3 and BaTiO 3 do not form a solid solution with each other, and a composite structure in which the niobic acid compound region and the barium titanate region are dispersed with each other is formed. it is preferable to take the general formula comprising the solid solution state in each other [(K 1-x Na x ) α Ba β] (Nb α Ti β) the solid solution region represented by O 12 is produced relative dielectric constant descend. Therefore, when the area of the solid solution region represented by [(K 1-x Na x ) α Ba β ] (Nb α Ti β ) O 12 is A1 and the entire region area is A2, A1 / A2 ≦ It is preferably 0.35.

また、(K1−xNa)NbOの結晶粒子の平均粒径が100nmより小さいか、または、BaTiOの結晶粒子の平均粒径が50nmより小さい場合は、前記固溶体の生成が進み易くなり、得られる誘電体磁器組成物の比誘電率が低下してしまう。さらに、BaTiOの結晶粒子の平均粒径が50nmより小さいときには、BaTiOの結晶粒子自体の比誘電率が低下するため、コンポジット構造を成す(K1−xNa)NbOとBaTiOとの比誘電率のバランスが崩れるので、−55〜350℃の温度範囲において、静電容量の変化率であるΔC/C=±22%以内を満たさなくなる。 In addition, when the average particle size of the crystal particles of (K 1-x Na x ) NbO 3 is smaller than 100 nm or the average particle size of the crystal particles of BaTiO 3 is smaller than 50 nm, the formation of the solid solution is likely to proceed. Thus, the dielectric constant of the obtained dielectric ceramic composition is lowered. Further, when the average particle diameter of the crystal grains of BaTiO 3 is smaller than 50nm, because the dielectric constant of the crystal grains themselves BaTiO 3 is lowered, form a composite structure (K 1-x Na x) NbO 3 and BaTiO 3 Since the relative dielectric constant balance is lost, the capacitance change rate within ΔC / C = ± 22% is not satisfied within the temperature range of −55 to 350 ° C.

(K1−xNa)NbOの結晶粒子の平均粒径が1000nm、または、BaTiOの結晶粒子の平均粒径が1200nmより大きい場合は、温度特性を平坦化させる作用が低下し、−55〜350℃の温度範囲において、静電容量変化率であるΔC/C=±22%以内を満たさなくなる。 When the average particle diameter of the crystal particles of (K 1-x Na x ) NbO 3 is 1000 nm or the average particle diameter of the crystal particles of BaTiO 3 is larger than 1200 nm, the effect of flattening the temperature characteristics decreases, − In the temperature range of 55 to 350 ° C., the capacitance change rate is not satisfied within ΔC / C = ± 22%.

このため、コンポジット構造を構成する前記ニオブ酸化合物粒子の平均粒径が100nm以上、1000nm以下であり、且つ、前記チタン酸バリウムの粒子の平均粒径が50nm以上、1200nm以下であることが好ましい。   For this reason, it is preferable that the niobic acid compound particles constituting the composite structure have an average particle size of 100 nm to 1000 nm and the barium titanate particles have an average particle size of 50 nm to 1200 nm.

さらに、誘電体磁器組成物の作製方法としては、コンポジット構造を構成する場合、原料粉末の粒径が維持され易い条件が好ましく、原料の粒子径としては、100nm≦(K1−xNa)NbOの平均粒径≦1000nm、および、50nm≦BaTiOの平均粒径≦1300nmの原料を用いることが好ましい。これらの原料を所定量に混合して用いる。(K1−xNa)NbOはK、Na、Nbの酸化物や複合酸化物となる各種化合物、例えば炭酸塩、硝酸塩、水酸化物、有機金属化合物などの素原料を用いて作成できるが、(K1−xNa)NbOとなる前の未反応の酸化物や化合物などの素原料が含まれる場合は、BaTiOと混合後の焼成過程において、ニオブ酸化合物とチタン酸バリウムとの固溶体部分が多く発生し、誘電率の低下や諸特性の劣化を招く。このため、チタン酸バリウムと混合する際に用いる原料としてはK、Na、Nbの未反応物が無い(K1−xNa)NbOとなった原料を用いることが好ましい。また、通常は原料粒径を維持した状態で焼成することが好ましいが、固溶体を生成しない条件であれば、粒が成長する条件で焼成してもよい。 Furthermore, as a method for producing a dielectric ceramic composition, in the case of constituting a composite structure, a condition that the particle diameter of the raw material powder is easily maintained is preferable. The particle diameter of the raw material is 100 nm ≦ (K 1−x Na x ). It is preferable to use a raw material having an average particle diameter of NbO 3 ≦ 1000 nm and an average particle diameter of 50 nm ≦ BaTiO 3 ≦ 1300 nm. These raw materials are used in a predetermined amount. (K 1-x Na x ) NbO 3 can be made using various raw materials such as carbonates, nitrates, hydroxides, organometallic compounds such as oxides and composite oxides of K, Na, and Nb. Is a raw material such as an unreacted oxide or compound before becoming (K 1-x Na x ) NbO 3 , the niobic acid compound and barium titanate in the baking process after mixing with BaTiO 3 A large amount of solid solution is generated, leading to a decrease in dielectric constant and various characteristics. Therefore, as the raw material to be used for mixing with barium titanate K, Na, it is preferable to use a raw material left unreacted was no (K 1-x Na x) NbO 3 of Nb. In general, firing is preferably performed while maintaining the particle size of the raw material, but firing may be performed under conditions that allow the grains to grow as long as the solid solution is not generated.

コンポジット構造を構成する(K1−xNa)NbOの領域面積をa、BaTiOの領域面積をbとしたとき、コンポジット面積比のa/bは、1≦a/b≦9の範囲が好ましい。コンポジット面積比(a/b)が、1≦a/b≦9の範囲外になると−55〜350℃の温度範囲での静電容量の変化が大きくなり、22%以内の静電容量変化率を達成することができなくなる。 When the area area of (K 1-x Na x ) NbO 3 constituting the composite structure is a and the area area of BaTiO 3 is b, the composite area ratio a / b is in the range of 1 ≦ a / b ≦ 9. Is preferred. When the composite area ratio (a / b) falls outside the range of 1 ≦ a / b ≦ 9, the change in capacitance in the temperature range of −55 to 350 ° C. increases, and the change rate of capacitance within 22% Cannot be achieved.

コンポジット構造の一方を構成する(K1−xNa)NbOのxは、0≦x≦0.5の範囲が好ましい。xが0≦x≦0.5の範囲内であれば、−55〜350℃の温度範囲において高い静電容量を維持したまま、22%以内の静電容量変化率を達成することができるが、xが0.5を超えると前記固溶体領域が増えて静電容量が低下し、さらに22%以内の静電容量変化率を達成することができなくなる。このため比誘電率を大きくするためには固溶体領域が発生しにくい、x=0が好ましいが、xが0.5以下の範囲であれば、xを変化させることにより静電容量変化率を調整することができ、高温時の温度特性をさらに改善することが可能となる。 The x of (K 1-x Na x ) NbO 3 constituting one of the composite structures is preferably in the range of 0 ≦ x ≦ 0.5. If x is in a range of 0 ≦ x ≦ 0.5, a capacitance change rate within 22% can be achieved while maintaining a high capacitance in a temperature range of −55 to 350 ° C. When x exceeds 0.5, the solid solution region increases, the capacitance decreases, and a capacitance change rate within 22% cannot be achieved. For this reason, in order to increase the relative dielectric constant, solid solution regions are unlikely to occur, and x = 0 is preferable. However, if x is in the range of 0.5 or less, the capacitance change rate is adjusted by changing x. It is possible to further improve the temperature characteristics at high temperatures.

尚、本実施形態に係る誘電体磁器組成物に、副成分を含有させることにより、焼成温度の低下や寿命の改善することができる。このような副成分としては、特に限定されないが、例えば、焼成温度させる効果を有する化合物として二酸化珪素、酸化アルミニウムが挙げられる。さらに、寿命を改善させる効果を有する化合物として酸化マグネシウムのようなアルカリ金属化合物、酸化マンガン、希土類元素酸化物、酸化バナジウム等が挙げられるがこれらに限定されるものではない。その含有量も組成等に応じて適宜決定すればよい。   In addition, the dielectric ceramic composition according to the present embodiment can contain a subcomponent to reduce the firing temperature and improve the life. Such subcomponents are not particularly limited, and examples thereof include silicon dioxide and aluminum oxide as a compound having an effect of firing temperature. Further, examples of the compound having an effect of improving the life include alkali metal compounds such as magnesium oxide, manganese oxide, rare earth element oxide, vanadium oxide, and the like, but are not limited thereto. The content may be appropriately determined according to the composition and the like.

次に、本実施の形態の誘電体磁器組成物およびこれを用いたコンデンサの製造法について説明する。   Next, a dielectric ceramic composition of the present embodiment and a method for manufacturing a capacitor using the same will be described.

まず、誘電体磁器組成物を構成する各成分の結晶粒子粉を準備する。本実施形態では、(K1−xNa)NbOの粉体と、BaTiOの粉体を準備する。これらの結晶粒子粉の準備については、例えば市販の水熱合成法、蓚酸塩法、ゾル−ゲル法等を用いて作製したBaTiO3の粉体を用いても良い。さらに、(K1−xNa)NbOの粉体は、KCO,NaCO,Nbを原料として、混合、仮焼き、粉砕を行う、固相合成法を用いて作製した粉体を用いても良い。 First, crystal particle powder of each component constituting the dielectric ceramic composition is prepared. In the present embodiment, a powder of (K 1-x Na x ) NbO 3 and a powder of BaTiO 3 are prepared. As for the preparation of these crystal particle powders, for example, a BaTiO3 powder produced using a commercially available hydrothermal synthesis method, oxalate method, sol-gel method, or the like may be used. Further, the powder of (K 1-x Na x ) NbO 3 uses a solid phase synthesis method in which mixing, calcining, and pulverization are performed using K 2 CO 3 , Na 2 CO 3 , and Nb 2 O 5 as raw materials. A powder prepared in this manner may be used.

予め(K1−xNa)NbOの粉体と、BaTiOの粉体を前述の方法にて準備し、焼成条件を調整することにより、本発明の誘電体磁器組成物は一般式[(K1−xNaαBaβ](NbαTiβ)O12ので表されるような固溶体の生成を極力少なくすることができる。 The dielectric ceramic composition of the present invention is obtained by preparing the powder of (K 1-x Na x ) NbO 3 and the powder of BaTiO 3 in advance by the above-mentioned method and adjusting the firing conditions. (K 1-x Na x) α Ba β] (Nb α Ti β) O 12 it is possible to minimize the generation of a solid solution as represented since.

また、本実施形態に係る誘電体磁器組成物が、上記の副成分を含有する場合には、副成分の原料も準備する。副成分の原料としては、特に限定されず、上記した各成分の酸化物や複合酸化物、または焼成によりこれら酸化物や複合酸化物となる各種化合物、例えば炭酸塩、硝酸塩、水酸化物、有機金属化合物などから適宜選択して用いることができる。   Moreover, when the dielectric ceramic composition according to the present embodiment contains the above-described subcomponent, a raw material for the subcomponent is also prepared. The raw material of the subcomponent is not particularly limited, and the above-described oxides and composite oxides of the respective components, or various compounds that become these oxides and composite oxides by firing, such as carbonates, nitrates, hydroxides, organics It can be appropriately selected from metal compounds and the like.

準備した原料を、所定の組成比となるように秤量して混合し、原料混合物を得る。混合する方法としては、例えば、ボールミルを用いて行う湿式混合や、乾式ミキサーを用いて行う乾式混合が挙げられる。   The prepared raw materials are weighed and mixed so as to have a predetermined composition ratio to obtain a raw material mixture. Examples of the mixing method include wet mixing using a ball mill and dry mixing using a dry mixer.

得られた原料混合物は、バインダ樹脂を添加し造粒して、造粒物としてもよいし、バインダ樹脂や溶剤とともにペースト化して、スラリーとしてもよい。また、造粒物やスラリーとする前に、原料混合物を予め仮焼してもよい。   The obtained raw material mixture may be granulated by adding a binder resin, or may be granulated, or may be pasted together with a binder resin or a solvent to form a slurry. In addition, the raw material mixture may be preliminarily calcined before making the granulated product or slurry.

造粒物やスラリーを成形する方法としては特に制限されず、例えば、シート法、印刷法、乾式成形、湿式成形、押出成形などが挙げられる。本実施形態では、乾式成形を採用し、造粒物を金型に充填して圧縮加圧(プレス)することにより成形する。成形体の形状は、特に限定されず、用途に応じて適宜決定すればよいが、本実施形態では円盤状の成形体とする。   The method for molding the granulated product or slurry is not particularly limited, and examples thereof include a sheet method, a printing method, dry molding, wet molding, and extrusion molding. In the present embodiment, dry molding is adopted, and the granulated product is filled in a mold and molded by compression and pressing (pressing). The shape of the molded body is not particularly limited, and may be appropriately determined according to the application. In the present embodiment, a disk-shaped molded body is used.

得られた成形体は、必要に応じて、脱バインダ処理した後、焼成される。   The obtained molded body is baked after removing the binder as necessary.

焼成条件は、組成等に応じて適宜決定すればよいが、焼成温度は、好ましくは1000〜1200℃、保持時間は、好ましくは1〜24時間である。   The firing conditions may be appropriately determined according to the composition and the like, but the firing temperature is preferably 1000 to 1200 ° C., and the holding time is preferably 1 to 24 hours.

焼成後、必要に応じて、アニール処理を行い、焼結体としての誘電体磁器組成物を得る。本発明には必ずしも前記アニール処理を行う必要はないが、アニール処理条件を調整することにより、焼成後の粒径を変えることなく(K1−xNa)NbOとBaTiOとの固溶体の生成する量を変えることができる。次いで、得られた誘電体磁器組成物に端面研磨を施し、電極を形成する。 After firing, annealing is performed as necessary to obtain a dielectric ceramic composition as a sintered body. In the present invention, it is not always necessary to perform the annealing treatment, but by adjusting the annealing treatment conditions, the solid solution of (K 1-x Na x ) NbO 3 and BaTiO 3 does not change without changing the grain size after firing. The amount generated can be varied. Next, the obtained dielectric ceramic composition is subjected to end face polishing to form an electrode.

このようにして製造された本実施形態の誘電体磁器組成物は、セラミックコンデンサなどの電子部品に好適に使用される。尚、前述では、本実施形態にかかわる誘電体磁器組成物として、円盤状のセラミックコンデンサを例示したが、本誘電磁器組成物を用いたシートと、電極材料とを交互に積層して形成する積層型誘電体材料磁器コンデンサのような電子部品の誘電体層を構成する誘電体磁器組成物としてもよい。   The dielectric ceramic composition of the present embodiment produced as described above is suitably used for electronic parts such as ceramic capacitors. In the above description, the disk-shaped ceramic capacitor has been exemplified as the dielectric ceramic composition according to the present embodiment. However, the stack is formed by alternately laminating sheets using the dielectric ceramic composition and electrode materials. It may be a dielectric ceramic composition constituting a dielectric layer of an electronic component such as a type dielectric material ceramic capacitor.

また、本実施形態の誘電体磁器組成物は、良好な圧電特性(例えば、圧電定数:d33=40pC/N)も有しているため、圧電体素子にも好適に使用される。   Further, the dielectric ceramic composition of the present embodiment also has good piezoelectric characteristics (for example, piezoelectric constant: d33 = 40 pC / N), and therefore is suitably used for piezoelectric elements.

さらに、本発明に係る誘電体磁器組成物は、単板型のコンデンサ等の電子部品に用いてもよいし、積層型のコンデンサ等の電子部品に用いてもよい。あるいは、圧電体素子に用いてもよい。   Furthermore, the dielectric ceramic composition according to the present invention may be used for an electronic component such as a single-plate capacitor or an electronic component such as a multilayer capacitor. Alternatively, it may be used for a piezoelectric element.

以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to the embodiment mentioned above at all, and can be variously modified within the range which does not deviate from the summary of this invention.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

実施例1
まず、出発粉として平均粒径が500nmのKNbO、および平均粒径が300nmのBaTiOを準備し、70モル%のKNbOと、30モル%のBaTiOになるように、それぞれ秤量し、分散媒としての水を用いでボールミルにより17時間湿式混合した。その後、得られた混合物を乾燥して原料粉末を得た。
Example 1
First, KNbO 3 having an average particle diameter of 500 nm and BaTiO 3 having an average particle diameter of 300 nm are prepared as starting powders, and weighed so as to be 70 mol% KNbO 3 and 30 mol% BaTiO 3 , respectively. Wet mixing was performed for 17 hours by a ball mill using water as a dispersion medium. Thereafter, the obtained mixture was dried to obtain a raw material powder.

得られた原料粉末に対し、バインダ樹脂としてPVBを2重量%添加し、250MPaの圧力で成形することにより、直径10mm、厚さ約1mmの円盤状のグリーン成形体を得た。これを空気中で、700℃、10時間加熱して脱バインダ処理を行った。   A disc-shaped green molded body having a diameter of 10 mm and a thickness of about 1 mm was obtained by adding 2% by weight of PVB as a binder resin to the obtained raw material powder and molding it at a pressure of 250 MPa. This was heated in the air at 700 ° C. for 10 hours for binder removal treatment.

次いで、得られた脱バインダ後の成形体を、空気中で、1100〜1200℃、10時間、焼成することにより、円盤状の焼結体を得た。得られた円盤状の焼結体は、(K1−xNa)NbOとBaTiOとの固溶体相の生成量を調整するため、さらにアニール処理を行った。アニール条件は、表1の実験No.1〜6に示されるように、空気中で、825℃、850℃、900℃で30〜600分間、熱処理を行った。さらに、得られた焼結体を研磨し、その主表面にAg電極を塗布し、空気中、650℃で20分間焼付け処理を行うことによって、円盤状のセラミックコンデンサの試料を得た。 Next, the obtained molded body after the binder removal was fired in air at 1100 to 1200 ° C. for 10 hours to obtain a disk-shaped sintered body. The obtained disc-shaped sintered body was further subjected to annealing treatment in order to adjust the amount of solid solution phase formed of (K 1-x Na x ) NbO 3 and BaTiO 3 . The annealing conditions are as shown in Experiment No. 1 in Table 1. As shown in 1 to 6, heat treatment was performed in air at 825 ° C., 850 ° C., and 900 ° C. for 30 to 600 minutes. Further, the obtained sintered body was polished, an Ag electrode was applied to the main surface thereof, and a baking process was performed in air at 650 ° C. for 20 minutes to obtain a disk-shaped ceramic capacitor sample.

得られた資料は、表1の実験No.1〜6に示されるように前記固溶体相の生成量はアニール時間が長く、温度が高いほど多く生成され、固溶体相の生成につれて比誘電率は低下し、静電容量温度特性は平坦性が悪くなる傾向が見られる。しかしながら、資料の焼成後に生成される固溶体の面積比(A1/A2)が0.35以下であれば、温度範囲−55〜350℃においてΔC/C=22%以内を達成できる。   The obtained material is the experiment No. 1 in Table 1. As shown in 1 to 6, the amount of the solid solution phase generated is longer as the annealing time is longer and the temperature is higher, the relative dielectric constant decreases as the solid solution phase is generated, and the capacitance temperature characteristic is poor in flatness. There is a tendency to become. However, if the area ratio (A1 / A2) of the solid solution produced after firing the material is 0.35 or less, ΔC / C can be within 22% in the temperature range of −55 to 350 ° C.

また、表に示す(K1−xNa)NbOとBaTiOの平均粒径は、焼成後に資料素体の断面を研磨し、SEM写真を画像処理により求めたものである。今回の焼成では原料として用いた(K1−xNa)NbOとはやや粒成長が見られるものの、BaTiOとともに焼成前の粒径が維持できる条件を選んだ。 Moreover, the average particle diameters of (K 1-x Na x ) NbO 3 and BaTiO 3 shown in the table are those obtained by polishing the cross section of the material body after firing and obtaining SEM photographs by image processing. In this firing, although (G 1-x Na x ) NbO 3 used as a raw material shows a slight grain growth, conditions were selected so that the grain size before firing can be maintained together with BaTiO 3 .

実験No.7は出発粉として平均粒径が500nm以下のKCO、Nb、および平均粒径が300nmのBaTiOを準備し、それぞれが35モル%のKCO、Nbと、30モル%のBaTiO3になるように秤量し、以下同様に資料を作成した。尚、本資料は焼成後にニオブ酸化合物とチタン酸バリウムとの固溶体を多量に生成していたため、アリール処理は省略した。 Experiment No. No. 7 prepared as starting powders K 2 CO 3 and Nb 2 O 5 having an average particle size of 500 nm or less, and BaTiO 3 having an average particle size of 300 nm, each of 35 mol% K 2 CO 3 and Nb 2 O 5. And weighed so as to be 30 mol% of BaTiO 3, and materials were prepared in the same manner. In this material, since the solid solution of niobic acid compound and barium titanate was produced in large quantities after firing, the aryl treatment was omitted.

実施例2
出発粉として平均粒径が50〜1300nmのKNbO、および平均粒径が20〜1500nmのBaTiO(以下、BTともいう)を準備し、70モル%のKNbOと、30モル%のBaTiOになるように、それぞれ秤量し、分散媒としての水を用いでボールミルにより17時間湿式混合した。その後、得られた混合物を乾燥して原料粉末を得た。
Example 2
KNbO 3 having an average particle diameter of 50 to 1300 nm and BaTiO 3 (hereinafter also referred to as BT) having an average particle diameter of 20 to 1500 nm were prepared as starting powders, and 70 mol% of KNbO 3 and 30 mol% of BaTiO 3 were prepared. Then, each was weighed and wet mixed by a ball mill for 17 hours using water as a dispersion medium. Thereafter, the obtained mixture was dried to obtain a raw material powder.

その他、実施例1と同様にして表2に示される資料を得た。   In addition, the materials shown in Table 2 were obtained in the same manner as in Example 1.

尚、得られた焼結体資料のコンポジット構造を成す、KNbOおよびBaTiOの平均粒径は、今回の焼成条件では出発粉として準備した焼成前のKNbOおよびBaTiOの粒子径をほぼ維持することができ、表2に示す値となった。 The average particle size of KNbO 3 and BaTiO 3 constituting the composite structure of the obtained sintered material is almost the same as the particle size of KNbO 3 and BaTiO 3 before firing prepared as a starting powder under the current firing conditions. The values shown in Table 2 were obtained.

表2に示すように、焼成後のKNbOの平均粒径が100nmより小さくなると、静電容量温度特性は平坦性が悪くなり、また、平均粒径が1000nmを超えると、比誘電率は小さくなる。したがって、KNbOの平均粒径範囲は100nm以上、1000nm以下にすることが好ましい。また、焼成後のBaTiOの平均粒径が50nmより小さくなるとBaTiO自体の比誘電率が小さくなり、固溶体の生成量が増えるため、資料の比誘電率はは小さくなり、また、平均粒径が1200nmを超えると、静電容量温度特性は平坦性が悪くなる。したがって、BaTiOの平均粒径範囲は50nm以上、1200nm以下にすることが好ましい。 As shown in Table 2, when the average particle size of KNbO 3 after firing becomes smaller than 100 nm, the flatness of the capacitance temperature characteristic becomes poor, and when the average particle size exceeds 1000 nm, the relative dielectric constant becomes small. Become. Therefore, the average particle size range of KNbO 3 is preferably 100 nm or more and 1000 nm or less. In addition, when the average particle size of BaTiO 3 after firing becomes smaller than 50 nm, the relative dielectric constant of BaTiO 3 itself decreases, and the amount of solid solution increases, so the relative dielectric constant of the material decreases, and the average particle size When the thickness exceeds 1200 nm, the flatness of the capacitance temperature characteristic becomes poor. Therefore, the average particle diameter range of BaTiO 3 is preferably 50 nm or more and 1200 nm or less.

実施例3
出発原料粉として平均粒径が500nm程度のKNbOと、平均粒径が300nm程度のBaTiOをモル比で4:6、5:5、6:4、7:3、8:2、9:1、19:1の割合になるように、それぞれ秤量し、分散媒としての水と共にボールミルにより17時間湿式混合した。そして、混合物を乾燥して誘電体磁器組成物の原料粉末を得た。
Example 3
As a starting material powder, KNbO 3 having an average particle size of about 500 nm and BaTiO 3 having an average particle size of about 300 nm in molar ratios of 4: 6, 5: 5, 6: 4, 7: 3, 8: 2, 9: Each was weighed to a ratio of 1, 19: 1 and wet-mixed with a water as a dispersion medium by a ball mill for 17 hours. And the mixture was dried and the raw material powder of the dielectric ceramic composition was obtained.

以下、実施例1、2と同様にして表3に示される資料を得た。   Thereafter, materials shown in Table 3 were obtained in the same manner as in Examples 1 and 2.

得られた焼結体資料のKNbOの領域面積をa、BaTiOの領域面積をbとしたとき、コンポジット領域比(a/b)は、1≦a/b≦9の範囲で、温度範囲−55〜350℃においてΔC/C=22%以内を満足することができるが、この範囲を超えるとKNbOとBaTiOとのコンポジット効果が弱くなり、静電容量の変化率悪くなる。 The composite area ratio (a / b) is in the range of 1 ≦ a / b ≦ 9, where a is the area area of KNbO 3 and b is the area area of BaTiO 3 in the obtained sintered material. Within −55 to 350 ° C., ΔC / C = within 22% can be satisfied, but if this range is exceeded, the composite effect of KNbO 3 and BaTiO 3 becomes weak, and the rate of change in capacitance becomes worse.

実施例4
出発粉として平均粒径が500nm程度で、xがそれぞれ0、0.1、0.2、0.3、0.4、0.5、0.6の値を取る(K1−xNa)NbO、および平均粒径が300nm程度のBaTiO(以下、BTともいう)を準備した。これらxの値が異なる(K1−xNa)NbOをそれぞれ70モル%準備して、BaTiOが30モル%になるようにそれぞれ秤量し、分散媒としての水と共にボールミルにより17時間湿式混合した。そして、混合物を乾燥して誘電体磁器組成物の原料粉末を得た。
Example 4
As the starting powder, the average particle diameter is about 500 nm, and x takes values of 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, respectively (K 1-x Na x ) NbO 3 and BaTiO 3 (hereinafter also referred to as BT) having an average particle size of about 300 nm were prepared. 70 mol% of (K 1-x Na x ) NbO 3 having different values of x is prepared, each is weighed so that BaTiO 3 is 30 mol%, and wetted by a ball mill with water as a dispersion medium for 17 hours. Mixed. And the mixture was dried and the raw material powder of the dielectric ceramic composition was obtained.

以下、実施例1、2、3と同様にして表4に示される資料を得た。   Thereafter, the materials shown in Table 4 were obtained in the same manner as in Examples 1, 2, and 3.

表4に示されるように、(K1−xNa)NbOで表されるニオブ酸化合物のxを大きくしてNaを増やすことで温度特性を制御でき、必要温度領域の温度特性をよりフラットにすることができる。しかしながら、xを大きくすると(K1−xNa)NbOがBaTiO反応して固溶体ができ易く比誘電率の低下傾向が生じるため、xの範囲としては0以上、5以下の範囲が好ましく、さらにxが2以下であれば比誘電率1000以上を確保することができる。 As shown in Table 4, the temperature characteristics can be controlled by increasing x of the niobic acid compound represented by (K 1-x Na x ) NbO 3 and increasing Na. Can be flat. However, when x is increased, (K 1-x Na x ) NbO 3 reacts with BaTiO 3 to easily form a solid solution, and the relative permittivity tends to decrease. Therefore, the range of x is preferably 0 or more and 5 or less. Furthermore, if x is 2 or less, a relative dielectric constant of 1000 or more can be secured.

尚、表4の、実験No.55として、BaTiOを主成分とし副成分としてMg、Ca、Mn、V、Y、Yb、Si、Zrなどを加えた、X8S特性よりもさらに温度特性に優れている、X8R特性を満足する積層セラミックコンデンサについての静電容量変化率である。図1に示されるように使用温度が150℃を超えると急激に静電容量が低下し、温度特性が悪くなるため150℃を超える高温での利用には適していない。 In Table 4, Experiment No. No. 55, a BaTiO 3 main component and Mg, Ca, Mn, V, Y, Yb, Si, Zr, etc. added as a minor component, which is superior in temperature characteristics to X8S characteristics and satisfies X8R characteristics It is the capacitance change rate for a ceramic capacitor. As shown in FIG. 1, when the use temperature exceeds 150 ° C., the capacitance rapidly decreases and the temperature characteristics deteriorate, so that it is not suitable for use at a high temperature exceeding 150 ° C.

画像解析による領域の評価
ニオブ酸化合物と、チタン酸バリウムと前記実施例にて焼成して得られた誘電体磁器組成物に対して、FIB(集束イオンビーム)を用いてマイクロ−サンプリングを行い、TEM試料を作製した。この試料に対しJEM2200FSを用いSTEM像観察を行いSTEM−EDSマッピング行った。観察視野は、3.0μm×3.0μmとし、各試料に対し5視野以上観察を行った。これらの方法で得られた組成マップを用いて、K、Na、Nb、Ba、Tiの元素が同時に観察された領域を固溶体領域とみなし、各5視野以上の結果の平均面積を用いた。
Evaluation of the area by image analysis The niobic acid compound, the barium titanate, and the dielectric ceramic composition obtained by firing in the above-described examples are subjected to micro-sampling using FIB (focused ion beam), A TEM sample was prepared. This sample was subjected to STEM image observation using JEM2200FS and STEM-EDS mapping. The observation visual field was set to 3.0 μm × 3.0 μm, and five or more visual fields were observed for each sample. Using the composition maps obtained by these methods, a region where elements of K, Na, Nb, Ba, and Ti were simultaneously observed was regarded as a solid solution region, and an average area of the results of five or more fields of view was used.

固溶体の面積比(A1/A2)は、(K1−xNa)NbOとBaTiOとが固溶してなる固溶体の領域面積をA1とし、全体の領域面積をA2とし、前記のTEM−EDSマッピングによる画像を用いて求めた。図2は(K1−xNa)NbOとBaTiOとが固溶していない場合(A1/A2=0)、図3は(K1−xNa)NbOとBaTiOとが固溶していない場合(A1/A2=0.41)のTEM−EDSマッピングによる画像である。図2(a)、図3(a)の明るい部分はTi元素が多い領域を示し、暗い部分は少ない領域を示す。また、図2(b)、図3(b)の明るい部分はK元素が多い領域を示し、暗い部分は少ない領域を示す。 The area ratio (A1 / A2) of the solid solution is such that the area of the solid solution formed by solid solution of (K 1-x Na x ) NbO 3 and BaTiO 3 is A1, the entire area is A2, and the TEM -It calculated | required using the image by EDS mapping. FIG. 2 shows the case where (K 1-x Na x ) NbO 3 and BaTiO 3 are not dissolved (A1 / A2 = 0), and FIG. 3 shows that (K 1-x Na x ) NbO 3 and BaTiO 3 are It is an image by TEM-EDS mapping when it is not solid solution (A1 / A2 = 0.41). The bright portions in FIGS. 2A and 3A indicate regions with a large Ti element, and dark portions indicate regions with a small amount. Moreover, the bright part of FIG.2 (b) and FIG.3 (b) shows an area | region with many K elements, and a dark part shows an area | region with few.

尚、図2(a)、図3(a)の明るい部分BaTiO領域を示し、暗い部分は(K1−xNa)NbO領域を示している。図2には見られず、図3にのみ見られる明暗色が中間の領域が(K1−xNa)NbOとBaTiOとが固溶してなる固溶体の領域面積(A1)である。 Incidentally, FIG. 2 (a), the show bright areas BaTiO 3 regions of FIG. 3 (a), a dark portion shows a (K 1-x Na x) NbO 3 region. The region of light and dark colors that is not seen in FIG. 2 but is only seen in FIG. 3 is the area (A1) of the solid solution in which (K 1-x Na x ) NbO 3 and BaTiO 3 are dissolved. .

(K1−xNa)NbOの領域面積a、BaTiOの領域面積bについても同様にして求めた。 The area area a of (K 1-x Na x ) NbO 3 and the area area b of BaTiO 3 were determined in the same manner.

画像解析による粒径の評価
コンポジット構造体中の結晶の平均粒径は、前記の方法で得られたTEM像とSTEM組成像を用いて、ニオブ酸化合物粒子とBaTiO粒子を弁別し、その粒径と数を評価した。粒径の測定にはコード法を用いた。
Evaluation of particle diameter by image analysis The average particle diameter of crystals in the composite structure is determined by discriminating niobic acid compound particles and BaTiO 3 particles using the TEM image and STEM composition image obtained by the above method. Diameter and number were evaluated. The code method was used to measure the particle size.

比誘電率
コンデンサ試料に対し、基準温度25℃において、アジレントテクノロジー社製4294Aを用いて、周波数1kHz、測定電圧1Vとし、静電容量(C)を測定した。そして、比誘電率εs(単位なし)を、誘電体磁器組成物の厚みと、有効電極面積と、測定の結果得られた静電容量とに基づき算出した。
The capacitance (C) was measured for a dielectric constant capacitor sample at a reference temperature of 25 ° C. using a 4294A manufactured by Agilent Technologies, with a frequency of 1 kHz and a measurement voltage of 1 V. The relative dielectric constant εs (no unit) was calculated based on the thickness of the dielectric ceramic composition, the effective electrode area, and the capacitance obtained as a result of the measurement.

静電容量温度特性
コンデンサ試料をDespatch社製恒温槽内に載置し、−55〜350℃の温度範囲で1Vの電圧での静電容量を測定し、+25℃での静電容量(C25)に対する静電容量の変化率(ΔC/C(%))を、ΔC/C={(C−C25)/C25}×100の式より算出した。
Capacitance temperature characteristic Capacitor sample was placed in a Despatch thermostat, the capacitance at a voltage of 1V was measured in the temperature range of -55 to 350 ° C, and the capacitance at + 25 ° C (C25) The rate of change in capacitance (ΔC / C (%)) with respect to was calculated from the equation: ΔC / C = {(C−C25) / C25} × 100.

広範囲な温度領域において比誘電率の変化率が小さいため、車載用としてエンジンルームに近接する環境下や、さらに、SiCやGaN系の半導体を用いたパワーデバイス用の平滑用のコンデンサとしての用途にも適用できる。   Because the rate of change of relative permittivity is small in a wide temperature range, it is suitable for use as a smoothing capacitor for power devices using SiC or GaN-based semiconductors in an environment close to the engine room for automotive use. Is also applicable.

1 BaTiO
2 (K1−xNa)NbO
3 (K1−xNa)NbOとBaTiOとの固溶体
1 BaTiO 3
2 (K 1-x Na x ) NbO 3
3 (K 1-x Na x ) NbO 3 and BaTiO 3 solid solution

Claims (4)

一般式(K1−xNa)NbOで表されるニオブ酸化合物と、BaTiO表されるチタン酸バリウムとを含有する誘電体磁器組成物であって、前記ニオブ酸化合物領域とチタン酸バリウム領域とがコンポジット構造を形成し、前記(K1−xNa)NbOとBaTiOとが固溶してなる固溶体の領域面積をA1とし、全体の領域面積をA2としたとき、A1/A2≦0.35であることを特徴とする誘電体磁器組成物。 A dielectric ceramic composition comprising a niobic acid compound represented by the general formula (K 1-x Na x ) NbO 3 and barium titanate represented by BaTiO 3 , wherein the niobic acid compound region and titanic acid When the barium region forms a composite structure, the area of the solid solution formed by dissolving (K 1-x Na x ) NbO 3 and BaTiO 3 is A1, and the total area is A2, /A2≦0.35, wherein the dielectric ceramic composition is characterized. 前記コンポジット構造を構成する前記ニオブ酸化合物の平均粒径が100nm以上、1000nm以下であり、且つ、前記チタン酸バリウムの平均粒径が50nm以上、1200nm以下であることを特徴とする請求項1記載の誘電体磁器組成物。   The average particle size of the niobic acid compound constituting the composite structure is 100 nm or more and 1000 nm or less, and the average particle size of the barium titanate is 50 nm or more and 1200 nm or less. Dielectric porcelain composition. 前記コンポジット構造をなす、(K1−xNa)NbOで表されるニオブ酸化合物の領域面積をa、BaTiO表されるチタン酸バリウムの領域面積をbとしたとき、1≦a/b≦9、0≦x≦0.5、の関係を満たすことを特徴とする請求項1、2のいずれか1項に記載の誘電体磁器組成物。 When the area area of the niobic acid compound represented by (K 1-x Na x ) NbO 3 forming the composite structure is a and the area area of barium titanate represented by BaTiO 3 is b, 1 ≦ a / 3. The dielectric ceramic composition according to claim 1, wherein the relation of b ≦ 9 and 0 ≦ x ≦ 0.5 is satisfied. 請求項1〜3のいずれか1項に記載の誘電体磁器組成物よりなることを特徴とする電子部品。   An electronic component comprising the dielectric ceramic composition according to any one of claims 1 to 3.
JP2011164707A 2011-07-27 2011-07-27 Dielectric porcelain composition and electronic component Active JP5668632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164707A JP5668632B2 (en) 2011-07-27 2011-07-27 Dielectric porcelain composition and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164707A JP5668632B2 (en) 2011-07-27 2011-07-27 Dielectric porcelain composition and electronic component

Publications (2)

Publication Number Publication Date
JP2013028478A true JP2013028478A (en) 2013-02-07
JP5668632B2 JP5668632B2 (en) 2015-02-12

Family

ID=47785904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164707A Active JP5668632B2 (en) 2011-07-27 2011-07-27 Dielectric porcelain composition and electronic component

Country Status (1)

Country Link
JP (1) JP5668632B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162691A (en) * 2013-02-26 2014-09-08 Tdk Corp Dielectric ceramic composition and electronic component
JP2016029708A (en) * 2014-07-23 2016-03-03 Tdk株式会社 Thin-film dielectric and thin-film capacitor element
JP2016098169A (en) * 2014-11-24 2016-05-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric porcelain composition and electronic element using the same
JP2016138036A (en) * 2015-01-27 2016-08-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition, dielectric material, and multilayer ceramic capacitor containing the same
JP2017119609A (en) * 2015-12-29 2017-07-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition and laminated ceramic capacitor containing the same
JP2018190956A (en) * 2017-05-11 2018-11-29 コリア・アドバンスト・インスティテュート・オブ・サイエンス・アンド・テクノロジー Non-ferroelectric high dielectric body and method for manufacturing the same
KR20190015434A (en) * 2019-01-30 2019-02-13 삼성전기주식회사 Dielectric ceramic composition and electronic device using the same
JP2020029375A (en) * 2018-08-20 2020-02-27 Tdk株式会社 Dielectric composition and electronic component
KR20200110946A (en) * 2019-03-18 2020-09-28 한국과학기술원 Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
WO2020209039A1 (en) * 2019-04-08 2020-10-15 株式会社 オハラ Dielectric inorganic composition
KR20200135913A (en) * 2015-12-29 2020-12-04 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252681A (en) * 2002-03-05 2003-09-10 Nec Tokin Corp Piezoelectric ceramic composition
JP2007169090A (en) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd Dielectric ceramic composition and laminated ceramic capacitor using the same
JP2007246347A (en) * 2006-03-16 2007-09-27 Tdk Corp Electronic part, dielectric porcelain composition, and method for manufacturing the same
JP2009227482A (en) * 2008-03-19 2009-10-08 Tdk Corp Piezoelectric ceramic and piezoelectric element employing it
JP2009234888A (en) * 2008-03-28 2009-10-15 Nippon Tungsten Co Ltd Dielectric porcelain composition
JP2009249244A (en) * 2008-04-08 2009-10-29 Taiyo Yuden Co Ltd Dielectric ceramic composition, method for producing the same and dielectric ceramic capacitor
JP2010053022A (en) * 2008-07-28 2010-03-11 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic sintered body and piezoelectric/electrostrictive device using the same
JP2011011948A (en) * 2009-07-02 2011-01-20 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic sintered body and piezoelectric/electrostrictive device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252681A (en) * 2002-03-05 2003-09-10 Nec Tokin Corp Piezoelectric ceramic composition
JP2007169090A (en) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd Dielectric ceramic composition and laminated ceramic capacitor using the same
JP2007246347A (en) * 2006-03-16 2007-09-27 Tdk Corp Electronic part, dielectric porcelain composition, and method for manufacturing the same
JP2009227482A (en) * 2008-03-19 2009-10-08 Tdk Corp Piezoelectric ceramic and piezoelectric element employing it
JP2009234888A (en) * 2008-03-28 2009-10-15 Nippon Tungsten Co Ltd Dielectric porcelain composition
JP2009249244A (en) * 2008-04-08 2009-10-29 Taiyo Yuden Co Ltd Dielectric ceramic composition, method for producing the same and dielectric ceramic capacitor
JP2010053022A (en) * 2008-07-28 2010-03-11 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic sintered body and piezoelectric/electrostrictive device using the same
JP2011011948A (en) * 2009-07-02 2011-01-20 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic sintered body and piezoelectric/electrostrictive device using the same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6014039656; DAI,Y. et al: '"Phase transition behavior and electrical properties of lead-free(1-x)(0.98K0.5Na0.5NbO3-0.02LiTaO3)' Journal of the European Ceramic Society Vol.28, 20080703, p.3193-3198 *
JPN6014039658; DU,H. et al: '"Sintering Characteristic, Microstructure, and Dielectric Relaxor Behavior of (K0.5Na0.5)NbO3-(Bi0.5' Journal of the American Ceramic Society Vol.91, No.9, 200809, p.2903-2909 *
JPN6014039659; AHN,C. et al: '"Effect of particle size distribution on microstructure and piezoelectric properties of MnO2-added 0' Journal of Materials Science Vol.43, No.17, 20080813, p.6016-6019 *
JPN6014039661; WU,Y. et al: '"Lead-free piezoelectric ceramics with composition of (0.97-x)Na1/2Bi1/2TiO3-0.03NaNbO3-xBaTiO3"' Journal of Materials Science Vol.38, No.5, 20030301, p.987-994 *
JPN6014039664; AHN,C. et al: '"Dielectric and piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xBaTiO3 ceramics"' Journal of Materials Science Vol.43, No.20, 200810, p.6784-6797 *
JPN7014002735; LIN,D. et al: '"Structure, dielectric, and piezoelectric properties of CuO-doped K0.5Na0.5NbO3-BaTiO3 lead-free cer' JOURNAL OF APPLIED PHYSICS Vol.102, 20071011, p.074113-1〜074113-6 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162691A (en) * 2013-02-26 2014-09-08 Tdk Corp Dielectric ceramic composition and electronic component
JP2016029708A (en) * 2014-07-23 2016-03-03 Tdk株式会社 Thin-film dielectric and thin-film capacitor element
KR101973421B1 (en) * 2014-11-24 2019-04-29 삼성전기주식회사 Dielectric ceramic composition and electronic device using the same
JP2016098169A (en) * 2014-11-24 2016-05-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric porcelain composition and electronic element using the same
KR20160061829A (en) * 2014-11-24 2016-06-01 삼성전기주식회사 Dielectric ceramic composition and electronic device using the same
JP2016138036A (en) * 2015-01-27 2016-08-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition, dielectric material, and multilayer ceramic capacitor containing the same
JP2019081697A (en) * 2015-01-27 2019-05-30 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition, dielectric material, and multilayer ceramic capacitor containing the same
JP2017119609A (en) * 2015-12-29 2017-07-06 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition and laminated ceramic capacitor containing the same
KR102184672B1 (en) 2015-12-29 2020-11-30 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor including the same
KR20170078171A (en) * 2015-12-29 2017-07-07 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor including the same
KR102295110B1 (en) 2015-12-29 2021-08-31 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor including the same
KR20200135913A (en) * 2015-12-29 2020-12-04 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor including the same
JP2018190956A (en) * 2017-05-11 2018-11-29 コリア・アドバンスト・インスティテュート・オブ・サイエンス・アンド・テクノロジー Non-ferroelectric high dielectric body and method for manufacturing the same
US10577285B2 (en) 2017-05-11 2020-03-03 Korea Advanced Institute Of Science And Technology Non-ferroelectric high dielectric and preparation method thereof
JP7087816B2 (en) 2018-08-20 2022-06-21 Tdk株式会社 Dielectric compositions and electronic components
JP2020029375A (en) * 2018-08-20 2020-02-27 Tdk株式会社 Dielectric composition and electronic component
KR102064105B1 (en) * 2019-01-30 2020-01-08 삼성전기주식회사 Dielectric ceramic composition and electronic device using the same
KR20190015434A (en) * 2019-01-30 2019-02-13 삼성전기주식회사 Dielectric ceramic composition and electronic device using the same
KR102184931B1 (en) * 2019-03-18 2020-12-01 한국과학기술원 Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
CN111718193A (en) * 2019-03-18 2020-09-29 韩国科学技术院 Method for producing dielectric with low dielectric loss and dielectric produced thereby
KR20200110946A (en) * 2019-03-18 2020-09-28 한국과학기술원 Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
WO2020209039A1 (en) * 2019-04-08 2020-10-15 株式会社 オハラ Dielectric inorganic composition
CN113631509A (en) * 2019-04-08 2021-11-09 株式会社小原 Dielectric inorganic composition

Also Published As

Publication number Publication date
JP5668632B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5668632B2 (en) Dielectric porcelain composition and electronic component
TWI402872B (en) Electrolyte procelain, laminated ceramic capacitor and methods for manufacturing electrolyte porcelain and laminated ceramic capacitor
Yuan et al. High-temperature stable dielectrics in Mn-modified (1-x) Bi 0.5 Na 0.5 TiO 3-xCaTiO 3 ceramics
JP4165893B2 (en) Semiconductor ceramic, multilayer semiconductor ceramic capacitor, and method of manufacturing semiconductor ceramic
TWI441791B (en) Dielectric ceramic and laminated ceramic capacitor
JP5760890B2 (en) Dielectric porcelain composition and electronic component
JP5372181B2 (en) Fine barium titanate powder
KR100466073B1 (en) Dielectric Composition Having Improved Homogeneity And Insulation Resistance, Preparing Method Thereof And Multilayer Ceramic Condenser Using The Same
TW201340146A (en) Dielectric ceramic material and multilayer ceramic capacitor using the same
JP2010285336A (en) Sintered material for dielectric substance and method for producing the same, and sintered material for dielectric substance which has core-shell fine structure and method for producing the same
JP2011195359A (en) Dielectric ceramic composition
JP2003002739A (en) Method for manufacturing barium titanate powder, barium titanate powder and its evaluation method, dielectric ceramic and laminated ceramic capacitor
JP5831079B2 (en) Dielectric porcelain composition and electronic component
JP5153069B2 (en) Dielectric porcelain
KR101515522B1 (en) Method for producing perovskite type composite oxide
JP6636744B2 (en) Dielectric ceramic composition and electronic device using the same
JP2012517955A (en) Sintered precursor powder for dielectric production and method for producing the same
US20120250216A1 (en) Semiconductor ceramic and a multilayer semiconductor ceramic capacitor
JP5207675B2 (en) Dielectric porcelain and multilayer ceramic capacitor using the same
JP5834674B2 (en) Dielectric porcelain composition and electronic component
JP4954135B2 (en) Dielectric ceramic composition, manufacturing method thereof, and dielectric ceramic capacitor
US20220130608A1 (en) Dielectric ceramic and multilayer ceramic capacitor
TWI468363B (en) Semiconductor Ceramic and Positive Characteristic Thermistors
WO2017104539A1 (en) Dielectric ceramic composition, method for producing dielectric ceramic composition and multilayer ceramic electronic component
JP5062244B2 (en) Dielectric powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5668632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150