JP2009234888A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition Download PDF

Info

Publication number
JP2009234888A
JP2009234888A JP2008085955A JP2008085955A JP2009234888A JP 2009234888 A JP2009234888 A JP 2009234888A JP 2008085955 A JP2008085955 A JP 2008085955A JP 2008085955 A JP2008085955 A JP 2008085955A JP 2009234888 A JP2009234888 A JP 2009234888A
Authority
JP
Japan
Prior art keywords
dielectric
composition
ceramic composition
dielectric ceramic
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008085955A
Other languages
Japanese (ja)
Other versions
JP5248161B2 (en
Inventor
Tetsuo Miyazono
哲郎 宮園
Yasushi Iwasako
恭 祝迫
Toshiaki Uki
利明 宇木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2008085955A priority Critical patent/JP5248161B2/en
Publication of JP2009234888A publication Critical patent/JP2009234888A/en
Application granted granted Critical
Publication of JP5248161B2 publication Critical patent/JP5248161B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a dielectric composition capable of adjusting the temperature coefficient of resonance frequency to a low value while keeping a high dielectric constant and high resonance frequency and to obtain a material. <P>SOLUTION: The dielectric porcelain composition is shown by the general formula: aATiO<SB>3</SB>-bNaNbO<SB>3</SB>(wherein A is one or both of Ca and Sr; 0.030≤a≤0.170, 0.830≤b≤0.970 and a+b=1). The material is a sintered compact or a mixture which comprises the dielectric porcelain composition as a main material system and another composition for lowering the temperature coefficient of the resonance frequency of the dielectric porcelain composition while keeping high the dielectric constant and the like. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、マイクロ波誘電体、特にマイクロ波やミリ波等の高周波領域において使用される種々の共振器材料、フィルター材料、MIC用誘電体基板材料、アンテナ材料、積層チップコンデンサー材料、アイソレータ材料等の携帯電話部品の容量素子等に好適に用いることができるマイクロ波誘電体磁器組成物に関する。
The present invention relates to microwave dielectrics, particularly various resonator materials, filter materials, dielectric substrate materials for MICs, antenna materials, multilayer chip capacitor materials, isolator materials, etc. used in high frequency regions such as microwaves and millimeter waves. The present invention relates to a microwave dielectric porcelain composition that can be suitably used for a capacitor element of mobile phone parts.

近年、通信技術の進歩により、自動車電話や携帯電話、PHS(簡易型携帯電話)などの移動体通信システムやGPS(汎地球測位システム)が急速に普及している。そのため通信機に利用される周波数帯域が拡大し、マイクロ波帯域での利用が盛んになっている。
このマイクロ波帯域で使用される回路には、空洞共振器、アンテナ等の部品が用いられていた。しかし、これらの部品はマイクロ波の波長と同程度の大きさになるため、携帯電話基地局用のフィルター装置、自動車用電話機、携帯電話機および小型GPS装置等に適用できるような部品の小型化は不可能であった。
これに対し、近年のマイクロ波フィルターや発信器の周波数安定化回路に誘電体共振器を用いることによって回路部品の小型化が盛んに行われ一般化しつつある。
In recent years, mobile communication systems such as car phones, mobile phones, and PHS (simple mobile phones) and GPS (Global Positioning System) are rapidly spreading due to advances in communication technology. Therefore, the frequency band used for communication devices has been expanded, and the use in the microwave band has become active.
Circuits used in this microwave band use components such as a cavity resonator and an antenna. However, since these components are about the same size as the wavelength of the microwave, miniaturization of components that can be applied to filter devices for mobile phone base stations, automobile phones, mobile phones, small GPS devices, etc. It was impossible.
On the other hand, circuit components have been actively reduced in size and generalized by using dielectric resonators in frequency filters for microwave filters and oscillators in recent years.

近年、通信技術の進歩により、自動車電話や携帯電話、PHS等の移動体通信システム、GPSが急速に普及し、マイクロ波帯域での利用が盛んになっている。このマイクロ波帯域で使用される回路には、空洞共振器、アンテナ等の部品が用いられてきた。
しかし、これらの部品はマイクロ波の波長と同程度の大きさになるため、自動車用電話機、携帯電話機および小型GPS装置等に適用できるような部品の小型化は不可能であった。
In recent years, due to advances in communication technology, mobile communication systems such as car phones, mobile phones, and PHS, and GPS have rapidly spread, and their use in the microwave band has become active. Circuits used in this microwave band have used components such as a cavity resonator and an antenna.
However, since these components have the same size as the microwave wavelength, it is impossible to reduce the size of components that can be applied to automobile telephones, mobile phones, small GPS devices, and the like.

このような誘電体共振器に用いられる誘電体材料には、使用周波数帯域における誘電率(εr)が高く、マイクロ波帯域での無負荷品質係数(Q)と共振周波数(f0)との積(Q×f0、以下、Qfと略称する。)が高く、かつ共振周波数の温度係数(τf:ppm/K)がゼロを中心に正から負に自由に制御できることが強く要望され、携帯電話部品等に用いられるコンデンサーなどの容量素子材には、εrが180以上さらにはτfが任意に制御可能であることが要望されている。   The dielectric material used in such a dielectric resonator has a high dielectric constant (εr) in the operating frequency band, and is the product of the no-load quality factor (Q) and the resonant frequency (f0) in the microwave band ( Q × f0, hereinafter abbreviated as Qf), and the temperature coefficient of resonance frequency (τf: ppm / K) is strongly desired to be freely controlled from positive to negative centering on zero, such as mobile phone parts Capacitance element materials such as capacitors used in the above are required to have εr of 180 or more and τf can be arbitrarily controlled.

このような誘電体磁器組成物として、例えば特許文献1には、LiO−Bi−Ln−TiO−CaO系の誘電体磁器組成物が開示されている。しかしながら、この組成系における誘電率の最大値は220を僅かに超える程度であり、温度係数を好適に調整した場合は200程度までしか高くできないという欠点があった。さらには原料としてランタノイド系酸化物などを用いており、近年の希土類の価格高騰により製品価格が高くなるという欠点も有している。
また特許文献2にはAg(Nb1−xTa)Oを含有する誘電率460以下の複合誘電体材料が開示されている。この中で例えば誘電率455のAg(Nb0.75Ta0.25)Oに対し、CaTiOおよび有機高分子を添加した材料が述べられているが、誘電率に関しては12以上とするのみで具体的な記述は無く、更にはこの組成系は酸化銀を原料の一部に利用していることから、原料原価が極めて高くなり、なおかつその合成には高酸素濃度雰囲気中での焼成が必要になるという欠点を有しており、製品コストが極めて高くなるという問題点を有している。

このように以上の従来技術では、何れも近年の小型化に要求されるεr>250、Qf≧100GHzにおいて共振周波数の温度係数τfを自由にコントロールできるものは開示されておらず、更に原料価格の面からも工業的に利用価値の低いものであった。

特開2000−335964号公報 特開2006−260895号公報
As such a dielectric ceramic composition, for example, Patent Document 1 discloses a Li 2 O—Bi 2 O 3 —Ln 2 O 3 —TiO 2 —CaO-based dielectric ceramic composition. However, the maximum value of the dielectric constant in this composition system is slightly over 220, and there is a drawback that it can only be increased to about 200 when the temperature coefficient is suitably adjusted. Furthermore, lanthanoid oxides and the like are used as raw materials, and the product price is increased due to the recent rise in the price of rare earths.
Patent Document 2 discloses a composite dielectric material containing Ag (Nb 1-x Ta x ) O 3 and having a dielectric constant of 460 or less. Among them, for example, a material in which CaTiO 3 and an organic polymer are added to Ag (Nb 0.75 Ta 0.25 ) O 3 having a dielectric constant of 455 is described, but the dielectric constant is only set to 12 or more. In addition, since this composition system uses silver oxide as a part of the raw material, the raw material cost is extremely high, and the synthesis requires baking in a high oxygen concentration atmosphere. It has the disadvantage that it is necessary, and the product cost is extremely high.

As described above, none of the above prior arts discloses a technique that can freely control the temperature coefficient τf of the resonance frequency when εr> 250 and Qf ≧ 100 GHz required for recent miniaturization. From the aspect, it was industrially low in utility value.

JP 2000-335964 A JP 2006-260895 A

本発明は、特に高価な原料を使用することなく、極めて高い誘電率を有する誘電体組成物を提供し、さらにそれを用いて高い誘電率を有しながら温度安定性に優れた複合誘電体磁器組成物、それを用いた誘電体磁器、樹脂誘電体を提供することにある。
The present invention provides a dielectric composition having an extremely high dielectric constant without using a particularly expensive raw material, and further using this, a composite dielectric ceramic having a high dielectric constant and excellent temperature stability The object is to provide a composition, a dielectric ceramic using the composition, and a resin dielectric.

(Ca、Sr)TiO−NaNbO系複合酸化物はマイクロ波領域において十分なQ値を保持しつつ、極めて高い誘電率をもつ。また、これらの複合酸化物のモル比を制御した共振周波数の温度変化τfが負の誘電体磁器組成物に対し、高誘電率かつ温度係数がプラスの誘電体磁器組成物を複合化することにより、誘電率が極めて高く、温度変化に対して特性を安定させることができた。
これらの技術により誘電体磁器および誘電体樹脂を得ることができ、前記課題を解決した。
The (Ca, Sr) TiO 3 —NaNbO 3 composite oxide has an extremely high dielectric constant while maintaining a sufficient Q value in the microwave region. In addition, by combining a dielectric ceramic composition having a high dielectric constant and a positive temperature coefficient with respect to a dielectric ceramic composition having a negative temperature change τf of the resonance frequency in which the molar ratio of these composite oxides is controlled. The dielectric constant was extremely high, and the characteristics could be stabilized against temperature changes.
With these techniques, dielectric ceramics and dielectric resins can be obtained, and the above problems have been solved.

即ち、本願請求項1に記載の誘電体磁器組成物は、aATiO−bNaNbO(AはCa、Srのいずれか1種または2種)で表され、前記aおよびbが、0.030≦a≦0.170、0.83≦b≦0.970、a+b=1を満足し、かつATiO成分およびNaNbO成分がお互いに固溶体を形成していることを特徴とする。
A(AはCa、Srのいずれか1種または2種)成分は誘電体磁器として高周波領域において安定した電気特性を有しており、Tiとの複合酸化物を形成し、誘電率を上昇させる作用がある。また、NaNbO成分との固溶体を作り、その組成比に応じて誘電率を170〜1400の範囲内で、共振周波数の温度係数τfを−650〜−1800(ppm/K)と負の範囲で調整することを可能とする。
That is, the dielectric ceramic composition according to claim 1 of the present invention is represented by aATiO 3 -bNaNbO 3 (A is one or two of Ca and Sr), and the a and b are 0.030 ≦ a ≦ 0.170, 0.83 ≦ b ≦ 0.970, a + b = 1 are satisfied, and the ATiO 3 component and the NaNbO 3 component form a solid solution with each other.
The component A (A is one or two of Ca and Sr) has a stable electric characteristic in a high frequency region as a dielectric ceramic, and forms a complex oxide with Ti, thereby increasing the dielectric constant. There is an effect. Further, a solid solution with the NaNbO 3 component is prepared, and the dielectric constant is within a range of 170 to 1400 according to the composition ratio, and the temperature coefficient τf of the resonance frequency is within a negative range of −650 to −1800 (ppm / K). It is possible to adjust.

組成比である前記a,bを前記範囲に限定することにより、次の効果が得えられる。まずaを0.030以上の値とすることにより誘電率及び共振周波数の温度変化τfを調整することができ、誘電率も170以上と高いまま保つことができる。また、aが0.170以下の値とするのは、τf値が負の値を保てるためである。aの値が0.030未満であれば、誘電率及び共振周波数の温度変化τfを調整する効果が十分に得られず、また、aの値が0.170より大きい場合は共振周波数の温度変化τfが急激に大きな正の値となり、高温安定性に優れた高誘電率誘電体が得られなくなる。   By limiting the composition ratios a and b to the above ranges, the following effects can be obtained. First, by setting a to a value of 0.030 or more, the temperature change τf of the dielectric constant and the resonance frequency can be adjusted, and the dielectric constant can also be kept as high as 170 or more. The reason why a is 0.170 or less is that the τf value can be kept negative. If the value of a is less than 0.030, the effect of adjusting the temperature change τf of the dielectric constant and the resonance frequency cannot be obtained sufficiently, and if the value of a is greater than 0.170, the temperature change of the resonance frequency. τf suddenly becomes a large positive value, and a high dielectric constant dielectric having excellent high temperature stability cannot be obtained.

請求項2に記載の本発明は、共振周波数の温度係数τf値が正であり、かつ誘電率が150以上である第2の誘電体磁器組成物を10〜80体積%と、請求項1に記載の誘電体磁器組成物20〜90体積%とを混合した複合誘電体磁器組成物である。
共振周波数の温度係数τfが正の値を示し、かつ誘電率が150以上である第2の誘電体磁器組成物を、請求項1の誘電体磁器組成物と混合し、第2の誘電体磁器組成物をその10〜80体積%とすることにより、誘電率の温度変化の調整を容易にすることができる複合誘電体磁器組成物が得られる。第2の誘電体磁器組成物を10〜80体積%に限定した理由は、この範囲においては誘電特性を安定化するのが容易であるためである。これに対して、第2の誘電体磁器組成物が10体積%以下であれば誘電率が低下し、さらには温度係数が負へ大きくシフトし、逆に80体積%を超えると、温度係数が正へ大きくシフトし、誘電率の温度安定性が低下してしまう。
The present invention described in claim 2 is characterized in that the second dielectric ceramic composition having a positive temperature coefficient τf value of the resonance frequency and a dielectric constant of 150 or more is 10 to 80% by volume. It is a composite dielectric ceramic composition obtained by mixing 20 to 90% by volume of the described dielectric ceramic composition.
The second dielectric ceramic composition of claim 1 is mixed with the second dielectric ceramic composition having a positive temperature coefficient τf of the resonance frequency and a dielectric constant of 150 or more. By setting the composition to 10 to 80% by volume, a composite dielectric ceramic composition that can easily adjust the temperature change of the dielectric constant can be obtained. The reason why the second dielectric ceramic composition is limited to 10 to 80% by volume is that it is easy to stabilize the dielectric characteristics within this range. On the other hand, if the second dielectric ceramic composition is 10% by volume or less, the dielectric constant decreases, and further, the temperature coefficient is greatly shifted to negative, and conversely if it exceeds 80% by volume, the temperature coefficient is decreased. A large shift to positive results in a decrease in the temperature stability of the dielectric constant.

前記第2の誘電体磁器組成物に当てはまるのは、たとえばAgNbO、AgTaO、SrTiO、CaTiO、ATiOとNaNbOとの組成比を変えたcBTiO−dNaNbO(ただしBはCa、Srのいずれか1種または2種、cおよびdが0.171≦c≦1.000かつ、0.000≦d<0.829かつ、c+d=1)などであり、いずれも化学的に安定で、150以上の高誘電率かつ共振周波数の温度係数τfが正の材料であるが、これらの誘電体磁器組成物などを適量混合することによって、高誘電率を有しながら温度安定性に優れた誘電体磁器組成物や、高誘電率を有しながら任意の温度における誘電率変化挙動を示す誘電体磁器組成物を容易に得ることが可能となる。 The true of the second dielectric ceramic composition, for example AgNbO 3, AgTaO 3, SrTiO 3 , CaTiO 3, cBTiO 3 -dNaNbO 3 changed ATiO 3 and the composition ratio of NaNbO 3 (provided that B is Ca, Any one or two of Sr, c and d are 0.171 ≦ c ≦ 1.000 and 0.000 ≦ d <0.829 and c + d = 1), etc., both of which are chemically stable In this case, the material has a high dielectric constant of 150 or more and a positive temperature coefficient τf of the resonance frequency. By mixing an appropriate amount of these dielectric ceramic compositions, etc., the material has high dielectric constant and excellent temperature stability. It is possible to easily obtain a dielectric ceramic composition or a dielectric ceramic composition that exhibits a change in dielectric constant at an arbitrary temperature while having a high dielectric constant.

請求項3に記載の本発明は、前記第2の誘電体磁器組成物が一般式cBTiO−dNaNbO(BはCa、Srのいずれか1種または2種)で表され、前記cおよびdが0.171≦c≦1.000、0.000≦d≦0.829、c+d=1を満足し、BTiO成分およびNaNbO成分がお互いに固溶体を形成してからなる請求項2に記載の複合誘電体磁器組成物である。
この範囲のc、d値を満たすcBTiO−dNaNbO成分は、誘電率が170〜1400と高く、共振周波数の温度変化τfが正に大きいため、請求項1に記載のaATiO−bNaNbOの成分と混合することにより、誘電率が高く、温度変化しても特性の変化が少ない、優れた複合誘電体磁器組成物を得られる。
このように、誘電率が極めて高く、かつ共振周波数が負の誘電体磁器組成物を用いることは、高誘電率材料の設計の自由度を広げ、高誘電率ながら温度変化に対して安定した誘電体磁器組成物の設計を容易に得ることが可能となる。
According to a third aspect of the present invention, the second dielectric ceramic composition is represented by a general formula cBTiO 3 —dNaNbO 3 (B is one or two of Ca and Sr), and the c and d There 0.171 ≦ c ≦ 1.000,0.000 ≦ d ≦ 0.829, satisfy c + d = 1, claim 2 BTiO 3 components and NaNbO 3 component consisting to form a solid solution with each other The composite dielectric ceramic composition.
CBTiO 3 -dNaNbO 3 components satisfying c, and d values of this range has a dielectric constant as high as 170 to 1400, because the temperature change τf of the resonance frequency is exactly large, the aATiO 3 -bNaNbO 3 according to claim 1 By mixing with the components, an excellent composite dielectric ceramic composition having a high dielectric constant and little change in characteristics even when the temperature changes can be obtained.
Thus, the use of a dielectric ceramic composition having an extremely high dielectric constant and a negative resonance frequency broadens the degree of freedom in designing a high dielectric constant material, and is a dielectric that is stable against temperature changes while having a high dielectric constant. It becomes possible to easily obtain the design of the body porcelain composition.

請求項4に記載の本発明は、請求項3に記載の複合誘電体磁器組成物20〜97体積%と、残部が絶縁体磁器組成物からなる複合誘電体磁器組成物であり、前記絶縁体磁器組成物は1050℃以下で焼成可能であることを特徴とする複合誘電体磁器組成物である。
すなわち前記絶縁体磁器組成成分は3〜80体積%となる。
絶縁体磁器組成成分は、高誘電率でτf値が負である前記aATiO−bNaNbO成分と、τf値が正である前記cBTiO−dNaNbOとの固溶体成分、この両固溶体同士の固溶体化を阻害し、焼結ロットごとの特性バラツキおよびτf値が小さく安定した誘電体磁器を得る効果がある。3〜80体積%の範囲の限定については、前記両固溶体同士の固溶体化を妨げる働きが十分であり、τf値を小さい値に制御できるためである。3体積%以下の添加では前記両固溶体化を妨げる働きが低く、逆に80体積%を超えるとτf値の増加が避けられない。
1050℃以下で焼成可能とした理由は、この温度を超えると前記両固溶体同士の固溶が進行し、その混合比に応じてaATiO−bNaNbO成分系固溶体単一相あるいはcATiO−dNaNbO成分系固溶体単一相となり、目的の特性が得られないため適していないのである。
The present invention described in claim 4 is a composite dielectric ceramic composition comprising 20 to 97% by volume of the composite dielectric ceramic composition according to claim 3 and the balance being an insulator ceramic composition, wherein the insulator The porcelain composition can be fired at 1050 ° C. or less, and is a composite dielectric porcelain composition.
That is, the insulator ceramic composition component is 3 to 80% by volume.
The insulator porcelain composition component includes a solid solution component of the aATiO 3 -bNaNbO 3 component having a high dielectric constant and a negative τf value, and a solid solution component of the cBTiO 3 -dNaNbO 3 having a positive τf value. And has the effect of obtaining a stable dielectric ceramic having a small characteristic variation and a small τf value for each sintering lot. This is because the limitation of the range of 3 to 80% by volume is sufficient to prevent the solid solutions between the two solid solutions, and the τf value can be controlled to a small value. Addition of 3% by volume or less has a low effect of hindering both solid solutions. Conversely, if it exceeds 80% by volume, an increase in τf value is unavoidable.
1050 ° C. The reason for enabling firing below, the solid solution of both solid solution with each other and above this temperature proceeds, aATiO 3 -bNaNbO 3-component system solid solution single phase or cATiO 3 -dNaNbO 3 in accordance with the mixing ratio It is not suitable because it becomes a component-based solid solution single phase and the desired properties cannot be obtained.

請求項5に記載の本発明は、前記絶縁体磁器組成物が、特にガラスあるいは酸化ビスマスであることを特徴とする複合誘電体磁器組成物である。
これらは、誘電体磁器組成物の混合物に対し、ガラス成分あるいは酸化ビスマスの低温で固化可能な組成物を添加することにより、共振周波数温度特性τfが負である成分と、τfが正である成分の固溶体化を進行させずに焼結することが可能となる。
The present invention according to claim 5 is a composite dielectric ceramic composition, wherein the insulator ceramic composition is particularly glass or bismuth oxide.
These components include a component having a negative resonance frequency temperature characteristic τf and a component having a positive τf by adding a glass component or a composition that can be solidified at a low temperature of bismuth oxide to a mixture of dielectric ceramic compositions. It becomes possible to sinter without proceeding to solid solution.


請求項6に記載の本発明は、請求項1の誘電体組成物、または請求項2から請求項5のいずれかに記載の複合誘電体磁器組成物を粉末状態で樹脂中に分散した構造を有する樹脂誘電体である。樹脂と混合することにより、柔軟性や易加工性、割れ欠けにくさなどを持つことにより、アンテナや携帯用電子機器などに使用する誘電体として使用することができる。樹脂については特に下記に限定するものではないが、適当な例としてはポリフェニレンサルファイド、ポリプロピレン、液晶ポリマー、シンジオタクチックポリスチレン、ポリテトラフルオロエチレンなどを用いることができる。樹脂誘電体は、そのうちの樹脂が占める割合が3体積%以上80体積%以下の範囲が柔軟性や易加工性、誘電率や温度変化による変化が少ないために好ましく、さらには5〜30体積%の範囲が良い。

According to a sixth aspect of the present invention, there is provided a structure in which the dielectric composition according to the first aspect or the composite dielectric ceramic composition according to any one of the second to fifth aspects is dispersed in a resin in a powder state. It has a resin dielectric. When mixed with a resin, it can be used as a dielectric for antennas, portable electronic devices, etc. by having flexibility, easy processability, resistance to cracking, and the like. The resin is not particularly limited to the following, but suitable examples include polyphenylene sulfide, polypropylene, liquid crystal polymer, syndiotactic polystyrene, polytetrafluoroethylene, and the like. The resin dielectric is preferably in the range of 3% by volume to 80% by volume of the resin because the change in flexibility, easy processability, dielectric constant and temperature change is small, and further 5-30% by volume. The range of is good.

本発明の請求項1から請求項6のいずれかに記載の誘電体磁器組成物、複合誘電体磁器組成物、誘電体樹脂を用いることは、これら誘電体基板、誘電体共振器、誘電体多層基板、誘電体アンテナのサイズを小さく設計でき、またその高い誘電率や、0に近く制御したτf値により使用時の温度変化に対して特性の変動が小さく、これらを搭載した電子機器の小型化や、更には省スペース設計により生じた電子機器の空き領域に他の機能部品を搭載させて多機能化を図れるようになるなどの産業的な効果を有する。
Use of the dielectric ceramic composition, composite dielectric ceramic composition, and dielectric resin according to any one of claims 1 to 6 of the present invention means that these dielectric substrate, dielectric resonator, and dielectric multilayer The size of the substrate and dielectric antenna can be designed to be small, and due to its high dielectric constant and the τf value controlled to be close to 0, there is little variation in characteristics with respect to temperature changes during use, and miniaturization of electronic equipment equipped with these In addition, it has an industrial effect such that other functional parts can be mounted in an empty area of an electronic device generated by a space-saving design to achieve multi-functionality.

以下、本発明の実施の形態を、実施例を基に詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail based on examples.

実施例1
本発明の誘電体磁器組成物を以下の要領で試料を作製し、その特性を調べた。 この実施例1は、請求項1に記載の磁器組成成分に関する実施例を示す。
まず、99.9%以上の高純度のTiO、CaCO、SrCO、NaCO、Nbの各種原料を用い、表1の各配合比率になるように秤量し、その後メタノールを用い、300mlのウレタン内張りポットミルおよび高純度で直径5mm〜直径12mmの球状酸化ジルコニウムボールを用いて24時間混合し、その後60℃で乾燥させた。
その後乾燥粉末をアルミナ製乳鉢で粉砕し、アルミナ製るつぼを用いて900〜1300℃の範囲で、粒子同士がネッキングを起こし始める程度までの加熱、いわゆる仮焼結を行なった。
そして、この仮焼物を再度乳鉢で粉砕した後、PVA(ポリビニルアルコール)5%水溶液を4質量部添加し、乳鉢で均一になるよう攪拌し、その後320メッシュの篩いを用い整粒し、プレス圧100MPaで直径12mm、厚み7mmの円盤状に成型した。
その後、上記成型体を焼成温度1400℃で約2時間保持で焼成しマイクロ波誘電体磁器を得た。得られたマイクロ波誘電体磁器の上下面を番手#200のダイヤモンドホイールを用い研磨し直径10mm×厚さ5mmの測定用素子に加工した後、Hakki−Coleman法によりヒューレットパッカード社のネットワークアナライザーを用い測定周波数5〜10GHz、さらに恒温槽を用いεr値、Qf値および温度に対する変化特性τfを調べた。
Example 1
A sample of the dielectric ceramic composition of the present invention was prepared in the following manner, and its characteristics were examined. This Example 1 shows an example relating to the porcelain composition component according to claim 1.
First, various raw materials of 99.9% or more of high-purity TiO 2 , CaCO 3 , SrCO 3 , Na 2 CO 3 , Nb 2 O 5 were weighed so as to have the respective blending ratios in Table 1, and then methanol. Were mixed for 24 hours using a 300 ml urethane-lined pot mill and high-purity spherical zirconium oxide balls having a diameter of 5 mm to 12 mm and then dried at 60 ° C.
Thereafter, the dried powder was pulverized in an alumina mortar, and heated to a level at which the particles began to neck each other in a range of 900 to 1300 ° C. using an alumina crucible, so-called pre-sintering.
And after calcining this calcined material again in a mortar, 4 parts by mass of 5% aqueous solution of PVA (polyvinyl alcohol) is added and stirred uniformly in the mortar, then sized using a 320 mesh sieve, It was molded into a disk shape having a diameter of 12 mm and a thickness of 7 mm at 100 MPa.
Thereafter, the molded body was fired at a firing temperature of 1400 ° C. for about 2 hours to obtain a microwave dielectric ceramic. The upper and lower surfaces of the obtained microwave dielectric ceramic were polished with a # 200 diamond wheel and processed into a measuring element having a diameter of 10 mm × thickness of 5 mm, and then a network analyzer of Hewlett-Packard was used by the Hakki-Coleman method. The change frequency τf with respect to the εr value, the Qf value, and the temperature was examined using a measurement frequency of 5 to 10 GHz and a constant temperature bath.

以上の作業を表1に示す試料について行った。 表1は、第1誘電体磁器組成成分であるaATiO−bNaNbOはa、b各々の成分量およびA成分を変化させたときの諸特性との関連を調べたものである。 The above operation was performed on the samples shown in Table 1. Table 1 shows the relationship between the characteristics of aATiO 3 -bNaNbO 3, which is the first dielectric ceramic composition component, when the component amounts of the a and b and the A component are changed.

Figure 2009234888
表1に記載の試料番号で、*印のつくものは、本発明外の比較試料
Figure 2009234888
Sample numbers in Table 1 marked with * are comparative samples outside the present invention

表1から明らかなように、本発明の基本成分である第1誘電体磁器組成成分aATiO−bNaNbOでのa値、b値を前記請求の範囲内とした試料.1〜試料.8については、誘電率が170以上、Qf値が100(GHz)以上、τf値がいずれも負の範囲であり、目的とする特性が得られた。
また、a値が請求の範囲より小さい値である0.02とした比較試料.9および11は、誘電率の低下が起こり、適していない。また、aの値が逆に0.170を超えて大きい比較試料.10,12の場合は、τf値が大きく正の値を示すために、やはり適していない。
As is apparent from Table 1, the samples in which the a value and the b value in the first dielectric ceramic composition component aATiO 3 -bNaNbO 3 , which are the basic components of the present invention, are within the above-mentioned claims. The dielectric constant was 170 or more, the Qf value was 100 (GHz) or more, and the τf value was in the negative range, and the desired characteristics were obtained.
Further, Comparative Samples .9 and 11 in which the a value is 0.02 which is smaller than the claims are not suitable because the dielectric constant decreases. On the other hand, in the case of comparative samples .10, 12 where the value of a is larger than 0.170, the τf value is large and shows a positive value.

実施例2
本発明請求項2に記載の複合誘電体磁器組成物試料を以下の要領で製作し、その特性を調べた。この実施例2は、実施例1中の試料.6を請求項1に記載の誘電体磁器組成物として、第2の誘電体磁器組成物と混合した実施例である。
試料の製作はおおむね実施例1に示した方法と同じであるが、乾燥粉末を乳鉢で粉砕する段階で実施例1中の試料.6と第2の誘電体磁器組成物を混合した。
第2の誘電体磁器組成物の材質や量を変えて実施例1と同様の実験を行い、誘電特性を測定した。結果を表2に示す。
Example 2
A composite dielectric ceramic composition sample according to claim 2 of the present invention was manufactured in the following manner, and its characteristics were examined. Example 2 is an example in which Sample 6 in Example 1 was mixed with the second dielectric ceramic composition as the dielectric ceramic composition according to claim 1.
The preparation of the sample was almost the same as the method shown in Example 1, but the sample .6 in Example 1 and the second dielectric ceramic composition were mixed at the stage of pulverizing the dry powder with a mortar.
The same experiment as in Example 1 was performed by changing the material and amount of the second dielectric ceramic composition, and the dielectric characteristics were measured. The results are shown in Table 2.

Figure 2009234888
Figure 2009234888

表2に記載の試料番号で、*印のつくものは、本発明外の比較試料 Sample numbers in Table 2 marked with * are comparative samples outside the present invention

表2の結果より本発明請求項2に示す複合誘電体磁器組成物は、誘電率はいずれも250を超えつつQf値も300(GHz)超える良好な特性を有していることがわかる。特筆すべきはτfが正負に100(ppm/K)以内と非常に制御されており、高温特性にも優れていることがわかる。
第2の誘電体磁器組成物の割合が、10体積%未満もしくは80体積%を超える比較試料.26、27はいずれもτf値が正負に大きい値となり適さなかった。
比較試料である試料.29および30は、AlおよびTiOの誘電率が低いために、混合した複合磁器組成物も誘電率をはじめ誘電特性が満足できなかった。
From the results of Table 2, it can be seen that the composite dielectric ceramic composition according to claim 2 of the present invention has good characteristics in which the dielectric constant exceeds 250 and the Qf value exceeds 300 (GHz). It should be noted that τf is very controlled positively or negatively within 100 (ppm / K), and it is understood that the high temperature characteristics are also excellent.
Comparative Samples 26 and 27 in which the ratio of the second dielectric ceramic composition was less than 10% by volume or more than 80% by volume were not suitable because the τf value was large in both positive and negative directions.
Samples 29 and 30, which are comparative samples, have low dielectric constants of Al 2 O 3 and TiO 2 , so that the mixed composite ceramic composition also cannot satisfy the dielectric characteristics including the dielectric constant.

実施例3
この実施例3は、請求項3に記載の複合誘電体磁器組成物に関する実施例を示す。
請求項1に記載の誘電体磁器組成物は試料.6を用いた。
第2の誘電体磁器組成物は10〜80体積%を占め、cBTiO−dNaNbO(BはCa、Srのいずれか1種または2種)で表され、前記cおよびdが0.171≦c≦1.000、かつ0.000≦d<0.829、かつc+d=1を満足し、BTiO成分およびNaNbO成分がお互いに固溶体を形成してからなる。
この両者をc、d値および組成の条件を変え、実施例2と同様の方法にて両者を混合し、最終的に複合誘電体磁器組成物を得た。この結果を表3に示す。
Example 3
This Example 3 shows an example relating to the composite dielectric ceramic composition according to claim 3.
Sample 6 was used for the dielectric ceramic composition according to claim 1.
The second dielectric ceramic composition occupies 10 to 80% by volume and is represented by cBTiO 3 —dNaNbO 3 (B is one or two of Ca and Sr), and the c and d are 0.171 ≦ c ≦ 1.000, and 0.000 ≦ d <0.829, and satisfied c + d = 1, BTiO 3 components and NaNbO 3 component consisting to form a solid solution with each other.
The two were mixed in the same manner as in Example 2 while changing the c and d values and the composition conditions, and finally a composite dielectric ceramic composition was obtained. The results are shown in Table 3.

Figure 2009234888
Figure 2009234888

表3に記載の試料番号で、*印のつくものは、本発明外の比較試料
表3の「※割合」は、cBTiO−dNaNbOの複合誘電体磁器組成物に占める割合を体積%で表したもの
Sample numbers in Table 3 marked with an asterisk (*) are comparative samples outside the present invention. The “* ratio” in Table 3 is the percentage of the composite dielectric ceramic composition of cBTiO 3 -dNaNbO 3 in volume%. Representation

表3から明らかなように、本発明の範囲内である試料.41〜44は温度係数τfが±100(ppm/K)以内であるにもかかわらず、誘電率が350を超える極めて優秀な値を示した。しかしながら、本発明の範囲外である比較試料.45、46では請求項1に記載の誘電体磁器組成成分aATiO−bNaNbOおよび第2の誘電体磁器組成成分cBTiO−dNaNbO同士の固溶体化が起こり、誘電率は極めて高いものの温度係数τfが正負に大きいという、好ましくない特性となった。
As is apparent from Table 3, samples within the scope of the present invention. Nos. 41 to 44 showed extremely excellent values where the dielectric constant exceeded 350, even though the temperature coefficient τf was within ± 100 (ppm / K). However, comparative samples that are outside the scope of the present invention. 45 and 46, the dielectric ceramic composition component aATiO 3 —bNaNbO 3 and the second dielectric ceramic composition component cBTiO 3 —dNaNbO 3 according to claim 1 are solid solutionized, and the dielectric constant has a very high temperature coefficient τf It became an unfavorable characteristic that is large positively and negatively.

実施例4、実施例5
この実施例4は、本発明請求項4および請求項5に記載の、複合誘電体磁器組成物に関する実施例である。
20〜97体積%を占める請求項3に記載の誘電体磁器組成物は試料.42を用いた。一方3〜80体積%を占める絶縁体組成物は、1050℃以下の熱処理で硬化可能であるガラス、酸化ビスマス、酸化ホウ素、三酸化アンチモンを挙げた。
これらを実施例1に示した工程の仮焼結後に混合し、複合誘電体組成物を得た。
Example 4 and Example 5
Example 4 relates to the composite dielectric ceramic composition according to claims 4 and 5 of the present invention.
Sample .42 was used as the dielectric ceramic composition according to claim 3 occupying 20 to 97% by volume. On the other hand, the insulator composition occupying 3 to 80% by volume includes glass, bismuth oxide, boron oxide, and antimony trioxide that can be cured by heat treatment at 1050 ° C. or less.
These were mixed after the preliminary sintering in the step shown in Example 1 to obtain a composite dielectric composition.

Figure 2009234888
Figure 2009234888

表4に記載の試料番号で、*印のつくものは、本発明外の比較試料
表4の「※割合」は、絶縁体組成物の複合誘電体磁器組成物に占める割合を体積%で表したもの
Sample numbers in Table 4 marked with an asterisk (*) are comparative samples outside the present invention. “* Proportion” in Table 4 represents the ratio of the insulator composition to the composite dielectric ceramic composition in volume%. What

表4の結果より、請求項4の複合誘電体組成物は、絶縁体組成物を3〜80体積%の組成では、誘電率自体は試料.42より劣るものの、τf値をきわめて小さくすることができ、また製造ロットごとのばらつきも非常に小さいという結果を得た。また、特に有効なのはガラスと酸化ビスマスであることが分かった。
また、実施例には記載していないが1050℃を超える温度でしか固化しない絶縁体組成物の場合は、試料.42のaATiO−bNaNbOとcBTiO−dNaNbO両成分の固溶体同士の固溶体化が進行するために、誘電諸特性に低下が見られた。
From the results of Table 4, the composite dielectric composition according to claim 4 can make the τf value very small although the dielectric constant itself is inferior to that of sample .42 when the insulator composition is 3 to 80% by volume. It was also possible to obtain a result that the variation among production lots was very small. It was also found that glass and bismuth oxide are particularly effective.
Further, in the case of an insulator composition that is not described in the examples but solidifies only at a temperature exceeding 1050 ° C., a solid solution of solid solutions of both the aATiO 3 -bNaNbO 3 and cBTiO 3 -dNaNbO 3 components of Sample 42 As the process progresses, the dielectric properties are reduced.

実施例5
実施例3で得られた試料.42の組成物を、粉末の段階で各種樹脂(フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、ポリイミド、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、ABS樹脂、AS樹脂、アクリル樹脂、ナイロン、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート)と混合を行い、樹脂誘電体を作製した。粉状の誘電体磁器組成物が樹脂で固められた構造となるために、高誘電率で取り扱いや加工が簡単にでき、アンテナや携帯用電子機器などに適用できた。樹脂の種類や誘電体磁器組成物の分量は、求められる誘電率や耐環境性、アンテナ特性、密度、費用などから適当な種類と組成を選ぶことができる。
Example 5
The composition of sample .42 obtained in Example 3 was mixed with various resins (phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, polyimide, polyethylene, polypropylene, (Polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, ABS resin, AS resin, acrylic resin, nylon, polycarbonate, polyacetal, polyethylene terephthalate, polybutylene terephthalate) and mixing the resin dielectric Produced. Since the powdery dielectric ceramic composition is solidified with resin, it can be easily handled and processed with a high dielectric constant, and can be applied to antennas and portable electronic devices. Appropriate types and compositions can be selected for the type of resin and the amount of dielectric ceramic composition from the required dielectric constant, environmental resistance, antenna characteristics, density, cost, and the like.

以上に述べた本発明の誘電体磁器組成物、複合誘電体磁器組成物、樹脂誘電体は、それぞれの組成成分を特定範囲内で制御することによって、高周波領域における誘電率を250以上と極めて高く保ちながら、Qf値を100以上と高く、τfを制御することで共振周波数の温度係数を制御することを可能にする。また、前記誘電体組成物と樹脂を複合したものは、高誘電率で樹脂の優位点(変形、被加工性、破壊のしにくさなど)を持つ樹脂誘電体とすることができた。
また、本発明に使用する材料は、Ca,Sr,Na,Tiなどであり、希少金属や高価な原料を必要とせずに製造できるために、誘電体組成物として極めて安価に製造することができる。
The dielectric ceramic composition, composite dielectric ceramic composition, and resin dielectric of the present invention described above have extremely high dielectric constants of 250 or higher in the high frequency region by controlling the respective composition components within a specific range. While maintaining the Qf value as high as 100 or more, the temperature coefficient of the resonance frequency can be controlled by controlling τf. Further, the composite of the dielectric composition and the resin could be a resin dielectric having a high dielectric constant and the advantages of the resin (deformation, workability, resistance to breakage, etc.).
The materials used in the present invention are Ca, Sr, Na, Ti, etc., and can be manufactured without the need for rare metals or expensive raw materials, and therefore can be manufactured extremely inexpensively as a dielectric composition. .

本発明の基本組成成分のマイクロ波誘電体磁器組成物は、Qf値が高いので、マイクロ波領域において使用される共振器材料、フィルター材料、コンデンサー材料、温度補償用コンデンサー材料、高放電材料、バリア放電用材料、イオン発生源、高周波医療器具用部材、アイソレータ等の部材として利用できる。
またその高い誘電率や0に近く制御したτf値により、これらを搭載した電子機器の小型化や、更には省スペース設計により生じた電子機器の空き領域に他の機能部品を搭載させて多機能化を図れるようになるなどの産業的な効果を有する。
Since the microwave dielectric ceramic composition of the basic composition component of the present invention has a high Qf value, the resonator material, filter material, capacitor material, temperature compensation capacitor material, high discharge material, barrier used in the microwave region It can be used as a member for a discharge material, an ion generation source, a member for a high frequency medical instrument, an isolator or the like.
In addition, due to its high dielectric constant and τf value controlled close to 0, the electronic equipment on which these are mounted can be downsized, and other functional parts can be mounted on the free space of the electronic equipment resulting from space-saving design. It has industrial effects such as being able to make it easier.

Claims (6)

基本組成成分が、一般式aATiO−bNaNbO(AはCa、Srのいずれか1種または2種)で表され、前記aおよびbが
0.030≦a≦0.170かつ
0.830≦b≦0.970かつ
a+b=1
を満足し、ATiO成分およびNaNbO成分がお互いに固溶体を形成してなる誘電体磁器組成物。
The basic composition component is represented by the general formula aATiO 3 -bNaNbO 3 (A is one or two of Ca and Sr), and the a and b are 0.030 ≦ a ≦ 0.170 and 0.830 ≦. b ≦ 0.970 and a + b = 1
A dielectric ceramic composition in which the ATiO 3 component and the NaNbO 3 component form a solid solution with each other.
共振周波数の温度係数τf値が正であり、かつ誘電率が150以上である第2の誘電体磁器組成物を10〜80体積%と、
請求項1に記載の誘電体磁器組成物20〜90体積%とを混合した複合誘電体磁器組成物。
10-80 volume% of the second dielectric ceramic composition having a positive temperature coefficient τf value of the resonance frequency and a dielectric constant of 150 or more;
A composite dielectric ceramic composition obtained by mixing 20 to 90% by volume of the dielectric ceramic composition according to claim 1.
前記第2の誘電体磁器組成物が一般式cBTiO−dNaNbO(BはCa、Srのいずれか1種または2種)で表され、前記cおよびdが
0.171≦c≦1.000かつ
0.000≦d≦0.829かつ
c+d=1
を満足し、BTiO成分およびNaNbO成分がお互いに固溶体を形成してからなる請求項2に記載の複合誘電体磁器組成物
The second dielectric ceramic composition is represented by a general formula cBTiO 3 -dNaNbO 3 (B is one or two of Ca and Sr), and the c and d are 0.171 ≦ c ≦ 1.000. And 0.000 ≦ d ≦ 0.829 and c + d = 1
Satisfied, composite dielectric ceramic composition according to claim 2, BTiO 3 components and NaNbO 3 component consisting to form a solid solution with each other
請求項3に記載の複合誘電体磁器組成物20〜97体積%と、残部絶縁体組成物からなる複合誘電体組成物であり、
前記絶縁体組成物は1050℃以下の熱処理を行なうことで固化可能であることを特徴とする複合誘電体組成物。
A composite dielectric composition comprising 20 to 97% by volume of the composite dielectric ceramic composition according to claim 3 and the balance insulator composition,
A composite dielectric composition characterized in that the insulator composition can be solidified by heat treatment at 1050 ° C. or lower.
前記絶縁体組成物が、特にガラス、酸化ビスマスのいずれかであることを特徴とする複合誘電体組成物。 A composite dielectric composition characterized in that the insulator composition is either glass or bismuth oxide. 請求項1の誘電体組成物、または請求項2から請求項5のいずれかに記載の複合誘電体磁器組成物を、樹脂中に分散した構造を有する樹脂誘電体。 A resin dielectric having a structure in which the dielectric composition according to claim 1 or the composite dielectric ceramic composition according to any one of claims 2 to 5 is dispersed in a resin.
JP2008085955A 2008-03-28 2008-03-28 Composite dielectric ceramic composition Expired - Fee Related JP5248161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085955A JP5248161B2 (en) 2008-03-28 2008-03-28 Composite dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085955A JP5248161B2 (en) 2008-03-28 2008-03-28 Composite dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JP2009234888A true JP2009234888A (en) 2009-10-15
JP5248161B2 JP5248161B2 (en) 2013-07-31

Family

ID=41249322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085955A Expired - Fee Related JP5248161B2 (en) 2008-03-28 2008-03-28 Composite dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JP5248161B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069580A (en) * 2010-09-21 2012-04-05 Toyota Central R&D Labs Inc Dielectric ceramic for tunable devices
JP2013028478A (en) * 2011-07-27 2013-02-07 Tdk Corp Dielectric ceramic composition and electronic component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011062261; GLAISTER,R.M.: 'Solid Solution Dielectrics Based on Sodium Niobate' Journal of the American Ceramic Society Vol.43, No.7, pp.348-353, 196007, American Ceramics Society *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069580A (en) * 2010-09-21 2012-04-05 Toyota Central R&D Labs Inc Dielectric ceramic for tunable devices
JP2013028478A (en) * 2011-07-27 2013-02-07 Tdk Corp Dielectric ceramic composition and electronic component

Also Published As

Publication number Publication date
JP5248161B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
Huang et al. Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature
JP5582406B2 (en) High frequency dielectric ceramic composition and manufacturing method thereof, high frequency dielectric ceramic and manufacturing method thereof, and high frequency circuit element using the same
JP2003277130A (en) Dielectric porcelain composition and dielectric resonator
KR19990008479A (en) Ceramic Dielectric Compositions for High Frequency
JP5248161B2 (en) Composite dielectric ceramic composition
CN107253856A (en) A kind of microwave dielectric material of near-zero resonance frequency temperature coefficient and preparation method thereof
JP3793485B2 (en) Microwave dielectric porcelain composition and method for producing the porcelain
JP3287978B2 (en) Dielectric porcelain composition
JPWO2006013981A1 (en) Dielectric ceramic composition and dielectric ceramic
JP4006755B2 (en) Dielectric porcelain composition for microwave
CN108751983A (en) Microwave ceramics medium and preparation method thereof for high-frequency ceramic capacitor
CN110862256B (en) Preparation method of microwave dielectric sintered powder material, microwave dielectric ceramic and application thereof
JP4473099B2 (en) Ceramic composition for LTCC
Kim et al. Microwave dielectric properties of ZnO-RO 2-TiO 2-Nb 2 O 5 (R= Sn, Zr, Ce) ceramic system.
JP2004256360A (en) Microwave dielectric porcelain composition and its manufacturing method
JP2007045690A (en) Dielectric porcelain composition
JP2003146752A (en) Dielectric ceramic composition
JP3311928B2 (en) Alumina sintered body for high frequency
CN112500153A (en) Temperature coefficient adjustable low-loss dielectric constant microwave dielectric ceramic and preparation method thereof
JP4553301B2 (en) Dielectric porcelain composition and electronic component
JP2011079719A (en) Dielectric ceramic composition
JPH10324566A (en) Dielectric ceramic composition, its production and dielectric resonator and dielectric filter using that
KR20000031734A (en) Microwave dielectric ceramic composition
JPH0971464A (en) Dielectric porcelain composition
JP2000203934A (en) Dielectric porcelain composition for high frequency and dielectric resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Ref document number: 5248161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees