JP2016098169A - Dielectric porcelain composition and electronic element using the same - Google Patents

Dielectric porcelain composition and electronic element using the same Download PDF

Info

Publication number
JP2016098169A
JP2016098169A JP2015154339A JP2015154339A JP2016098169A JP 2016098169 A JP2016098169 A JP 2016098169A JP 2015154339 A JP2015154339 A JP 2015154339A JP 2015154339 A JP2015154339 A JP 2015154339A JP 2016098169 A JP2016098169 A JP 2016098169A
Authority
JP
Japan
Prior art keywords
subcomponent
main component
temperature
content
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015154339A
Other languages
Japanese (ja)
Other versions
JP6636744B2 (en
Inventor
ヨーン セオク−ヒュン
Seok-Hyun Yoon
ヨーン セオク−ヒュン
パーク ユン−ジョン
Yunjung Park
パーク ユン−ジョン
キム ドゥ−ヤン
Doo-Young Kim
キム ドゥ−ヤン
ゼオン ソン−ジェ
Songje Jeon
ゼオン ソン−ジェ
キム チャン−フン
Changhun Kim
キム チャン−フン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2016098169A publication Critical patent/JP2016098169A/en
Application granted granted Critical
Publication of JP6636744B2 publication Critical patent/JP6636744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates

Abstract

PROBLEM TO BE SOLVED: To provide: a dielectric porcelain composition that satisfies characteristics of X5R, X7R and X8R specified in temperature characteristics symbols explicitly shown in the EIA standard; and an electronic element using the same.SOLUTION: A dielectric porcelain composition contains a main component being (1-x)BaTiO3-x(Na1-yKy)NbO3 (0.005≤x≤0.5, 0.3≤y≤1.0), which is a solid solution of BaTiO3 as a first main component and (Na1-yKy)NbO3 as a second main component; a first accessory component including an oxide or carbonate of an element selected from Mn, V, Cr, Fe, Ni, Co, Cu and Zn; and a second accessory component being SiO2 or a glass-forming substance containing the same.SELECTED DRAWING: None

Description

本発明は、誘電体磁器組成物及びこれを用いた電子素子に関し、より詳細には、EIA規格に明示されたX5R、X7R、そしてX8Rの特性を満足する誘電体磁器組成物及びこれを用いた電子素子に関する。   The present invention relates to a dielectric ceramic composition and an electronic device using the same, and more specifically, a dielectric ceramic composition that satisfies the characteristics of X5R, X7R, and X8R specified in the EIA standard and the same. The present invention relates to an electronic element.

従来X5R、X7RあるいはX8Rなどの高容量BME積層セラミックキャパシタの誘電体材料の組成システムは、主成分材料であるBaTiOあるいは(Ba1−xCa)(Ti1−yCa)Oなどの母材に、おおよそ4種類以上の添加剤の副成分を必須に含む。添加剤の副成分中、最も大きな割合を占めるものは、原子価固定アクセプタ(fixed−valence acceptor)であるMgなどと、希土類元素(rare−earth elements)であり、その他に原子価可変アクセプタ(variable−valence acceptor)がこれらよりも少量添加され、また焼結性の向上のために焼結助剤(sintering aids)が含まれることになる。このような従来の組成システムは、共通に希土類元素及び原子価固定アクセプタであるMgなどがBaTiOと反応してコア−シェル構造を形成し、これは正常な積層セラミックキャパシタの特性を実現するために必要なものである。 Conventionally, a composition system of a dielectric material of a high-capacity BME multilayer ceramic capacitor such as X5R, X7R, or X8R is BaTiO 3 or (Ba 1−x Ca x ) (Ti 1−y Ca y ) O 3 which is a main component material. The base material essentially contains subcomponents of approximately four or more types of additives. Among the subcomponents of the additive, those that occupy the largest proportion are Mg, which is a fixed-valence acceptor, and rare-earth elements, and other valence-variable acceptors (variable elements). -Valence acceptor) is added in a smaller amount than these, and sintering aids are included to improve sinterability. In such a conventional composition system, a rare earth element and a valence fixed acceptor Mg or the like react with BaTiO 3 to form a core-shell structure, which is to realize normal multilayer ceramic capacitor characteristics. It is necessary for

なお、BaTiO母材を用いてキュリー温度を上昇させるためには、CaZrOを添加するか、または過量の希土類元素を添加して、キュリー温度以上での誘電率の減少程度を緩和させる方法が知られている。 In order to increase the Curie temperature using a BaTiO 3 base material, there is a method of adding CaZrO 3 or adding an excessive amount of rare earth elements to alleviate the degree of decrease in the dielectric constant above the Curie temperature. Are known.

特開2009−173473号公報JP 2009-173473 A Yoon et al.、J. Mater. Res.、22[9] 2539 (2007)Yoon et al. J. et al. Mater. Res. 22 [9] 2539 (2007)

本発明は、EIA規格に明示されたX5R、X7R、そしてX8R特性を満足する誘電体磁器組成物であって、ニッケルを内部電極として用いて、1300℃以下で上記ニッケルが酸化しない還元雰囲気にて焼成が可能な誘電体磁器組成物と、これを用いた電子素子を提供することにその目的がある。   The present invention is a dielectric ceramic composition that satisfies the X5R, X7R, and X8R characteristics specified in the EIA standard, and uses nickel as an internal electrode in a reducing atmosphere in which the nickel is not oxidized below 1300 ° C. The object is to provide a dielectric ceramic composition that can be fired and an electronic device using the same.

本発明では、BaTiOと(Na,K)NbOとを適切な割合で混合するか、固溶体を形成するようにし、SiO及びMnOを少量添加して焼結体を製造することにより、常温で1500以上の比較的高い誘電率を維持することができ、かつX8R温度特性を満足することができる。 In the present invention, BaTiO 3 and (Na, K) NbO 3 are mixed at an appropriate ratio, or a solid solution is formed, and a small amount of SiO 2 and MnO 2 is added to produce a sintered body, A relatively high dielectric constant of 1500 or more can be maintained at room temperature, and X8R temperature characteristics can be satisfied.

本発明によれば、母材パウダーに、環境に有害な鉛(Pb)を使用せずに、キュリー温度の上昇及び高温部の誘電率が平坦になる特性を実現することができ、X8R温度特性及び優れた高温耐電圧特性を満足することができる。   According to the present invention, it is possible to realize the characteristic that the Curie temperature rises and the dielectric constant of the high temperature part becomes flat without using lead (Pb) harmful to the environment as the base material powder, and the X8R temperature characteristic. In addition, excellent high temperature withstand voltage characteristics can be satisfied.

以下、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明は、150℃まで温度特性及び信頼性が保証されるX8R特性を満足する新規の誘電体磁器組成物に関する。   The present invention relates to a novel dielectric ceramic composition that satisfies the X8R characteristic in which the temperature characteristic and reliability are guaranteed up to 150 ° C.

高容量のNi−MLCCの主材料であるBaTiOの場合、キュリー温度(TC)が125℃近傍であり、この温度以上では、誘電率が急激に低くなる現象が発生するので、150℃まで容量温度特性をX8R規格±15%以内にするためには、これに合わせた組成が要求される。 In the case of BaTiO 3 , which is the main material of high-capacity Ni-MLCC, the Curie temperature (TC) is around 125 ° C., and above this temperature, the phenomenon that the dielectric constant rapidly decreases occurs. In order to make the temperature characteristic within ± 15% of X8R standard, a composition corresponding to this is required.

例えば、BaTiO母材に希土類元素を過量添加して、キュリー温度以上での誘電率の減少程度を緩和させるか、CaZrOを適正量添加するとキュリー温度が上昇して高温部のTCC(Temperature Coefficient of Capacitance)が改善できるという報告がある(例えば、特開2002−255639号公報、特開2005−263508号公報など)。 For example, an excessive amount of rare earth element is added to the BaTiO 3 base material to reduce the decrease in the dielectric constant above the Curie temperature, or when an appropriate amount of CaZrO 3 is added, the Curie temperature rises to increase the TCC (Temperature Coefficient (of Capacitance) can be improved (for example, JP 2002-255639 A, JP 2005-263508 A, etc.).

しかし、希土類を過量添加する場合は、Pyrochloreという二次相が生成され、信頼性が低下するという問題があり(Yoon et al.、J. Mater. Res.、22[9] 2539 (2007))、キュリー温度が125℃であるBaTiO母材に希土類を過量添加したり、CaZrOを添加したりすると、X8R特性は満足するとしても、優れた高温部のTCC特性を得るには限界があった。 However, when an excessive amount of rare earth is added, there is a problem that a secondary phase called Pyrochlore is generated and the reliability is lowered (Yon et al., J. Mater. Res., 22 [9] 2539 (2007)). If an excessive amount of rare earth is added to a BaTiO 3 base material having a Curie temperature of 125 ° C. or CaZrO 3 is added, the X8R characteristic is satisfied, but there is a limit in obtaining an excellent TCC characteristic in the high temperature part. It was.

また他の方法として、キュリー温度の高いパウダーを採用して高温部のTCCを改善することができる。Caが、ABOのPerovskite構造のA−siteに固溶されると、キュリー温度が上がると知られており、このようにCaが固溶されたBaTiO(BCT)のパウダーを採用すると、高温部のTCC特性を向上させることができ、X8R材料としての可能性が提示されたことがあった(Yoon et al.、J. Mater. Res.、25[11] 2135 (2010))。 As another method, TCC in the high temperature part can be improved by using a powder having a high Curie temperature. It is known that when Ca is dissolved in ABO 3 of ABO 3 with a Perovskite structure, the Curie temperature is raised. When a powder of BaTiO 3 (BCT) in which Ca is dissolved in this way is used, the temperature is high. TCC characteristics of some parts could be improved, and the possibility as an X8R material has been presented (Yon et al., J. Mater. Res., 25 [11] 2135 (2010)).

固相法を用いて空気中でか焼してBaTiOを合成する場合、キュリー温度を高めることができる元素として現在まで知られているものは、上述のCa以外にPbがある。しかし、Pbの場合は、有害物質として分類されており、Ni−積層セラミックキャパシタのように、還元雰囲気にて焼成する場合は、揮発しやすくなるという問題が発生するので、工程上適用することは困難であった。 When BaTiO 3 is synthesized by calcination in the air using a solid phase method, elements known to date that can increase the Curie temperature include Pb in addition to Ca. However, in the case of Pb, it is classified as a harmful substance, and when it is fired in a reducing atmosphere like a Ni-multilayer ceramic capacitor, there is a problem that it tends to volatilize. It was difficult.

本発明は、BaTiOと(Na,K)NbOとを適正な割合で混合するか、固溶体を形成し、SiO及びMnOを少量添加して焼結体を製作することにより、誘電率が1500以上であり、さらに絶縁抵抗に優れて、X8R温度特性を実現することができる磁器組成物を提供する。すなわち、CaZrOや過量の希土類元素を添加しなくても、X8R特性の実現が可能であり、従来BaTiO母材を採用した場合に比べて、より良好な高温部のTCC特性を実現することができる。 In the present invention, BaTiO 3 and (Na, K) NbO 3 are mixed at an appropriate ratio, or a solid solution is formed, and a small amount of SiO 2 and MnO 2 is added to produce a sintered body. Is a ceramic composition that is excellent in insulation resistance and can realize X8R temperature characteristics. That is, the X8R characteristic can be realized without adding CaZrO 3 or an excessive amount of rare earth elements, and a better TCC characteristic of the high temperature part can be realized as compared with the case of using a conventional BaTiO 3 base material. Can do.

本発明の一側面によれば、第1主成分であるBaTiOと、第2主成分である(Na1−y)NbOとの固溶体である(1−x)BaTiO−x(Na1−y)NbO(0.005≦x≦0.5、0.3≦y≦1.0)を主成分とし、Mn、V、Cr、Fe、Ni、Co、Cu及びZnからなる群より選択された元素を含む第1副成分と、SiOまたはこれを含むガラスの形成物質を第2副成分として含有する誘電体磁器組成物が提供される。 According to one aspect of the present invention, (1-x) BaTiO 3 -x (1) is a solid solution of BaTiO 3 as the first main component and (Na 1-y K y ) NbO 3 as the second main component. Na 1-y K y ) NbO 3 (0.005 ≦ x ≦ 0.5, 0.3 ≦ y ≦ 1.0) as a main component, Mn, V, Cr, Fe, Ni, Co, Cu and Zn a first subcomponent including an element selected from the group consisting of a dielectric ceramic composition containing formation material glass containing SiO 2 or as the second subcomponent is provided.

上記で、x及びyの範囲は、上記組成及び本発明の実施例により導出された表1及び表2の実験結果に基づいたものである。   In the above, the ranges of x and y are based on the experimental results of Tables 1 and 2 derived from the above composition and examples of the present invention.

誘電体磁器組成物は、第1主成分であるBaTiOと、第2主成分である(Na,K)NbOとを混合固溶して母材を構成し、添加剤としては、第1副成分である原子価可変アクセプタ元素酸化物、あるいは炭酸塩と、第2副成分であるSiOとを含む。上記合成された母材は、パウダー状であって、その粒子の大きさは、1.0μm以下が好ましい。 The dielectric ceramic composition comprises a base material by mixing and dissolving BaTiO 3 as the first main component and (Na, K) NbO 3 as the second main component. It includes a valence variable acceptor element oxide or carbonate as a subcomponent and SiO 2 as a second subcomponent. The synthesized base material is in a powder form, and the particle size is preferably 1.0 μm or less.

一実施例において、上記第1副成分は、Mn、V、Cr、Fe、Ni、Co、Cu及びZnからなる群より選択された元素の酸化物または炭酸塩であってもよい。   In one embodiment, the first subcomponent may be an oxide or carbonate of an element selected from the group consisting of Mn, V, Cr, Fe, Ni, Co, Cu and Zn.

一実施例において、上記第1副成分は、MnO、またはMnCOであってもよい。 In one embodiment, the first subcomponent may be MnO 2 or MnCO 3 .

一実施例において、上記第1副成分の含量は、0.1〜5.0at%であることができる。   In one embodiment, the content of the first subcomponent may be 0.1 to 5.0 at%.

一実施例において、上記第2副成分中のSiOの含量は、0.1〜5.0at%であることができる。 In one embodiment, the content of SiO 2 in the second subcomponent may be 0.1 to 5.0 at%.

上記の各成分の含量範囲は、下記の表1及び表2の実験結果に基づいたものである。   The content range of each component described above is based on the experimental results shown in Tables 1 and 2 below.

本発明の他の側面によれば、上記誘電体磁器組成物を用いて形成された誘電体を含む電子素子が提供される。   According to another aspect of the present invention, an electronic device including a dielectric formed using the above dielectric ceramic composition is provided.

一実施例において、上記電子素子は、積層セラミックキャパシタ、圧電素子、チップインダクタ、チップバリスタ、チップ抵抗及びPTCR(Positive Temperature Coefficient Resistor)からなる群より選択された一つ以上であることができる。   In one embodiment, the electronic device may be one or more selected from the group consisting of a multilayer ceramic capacitor, a piezoelectric device, a chip inductor, a chip varistor, a chip resistor, and a PTCR (Positive Temperature Coefficient Resistor).

特に、本発明の誘電体磁器組成物は、積層型誘電体製品、内部電極層、例えば、Ni内部電極層と誘電体層とが交互に積層された製品に使用できる。極めて薄い厚さの誘電体層の場合は、一層内に存在する結晶粒の数が少なくて、信頼性に悪影響を及ぼすこともあるので、誘電体層の厚さは、焼成後、0.1μm以上の範囲で使用することが好ましい。   In particular, the dielectric ceramic composition of the present invention can be used for laminated dielectric products and internal electrode layers, for example, products in which Ni internal electrode layers and dielectric layers are alternately laminated. In the case of a very thin dielectric layer, since the number of crystal grains present in one layer is small and the reliability may be adversely affected, the thickness of the dielectric layer is 0.1 μm after firing. It is preferable to use in the above range.

母材パウダーである主成分(1−x)BaTiO−x(Na1−y)NbOの混合固溶体パウダーは、下記のように固相法を用いて製造した。出発原料としては、BaCO、TiO、NaO、KO、Nbを用いた。 The mixed solid solution powder of the main component (1-x) BaTiO 3 -x (Na 1-y K y ) NbO 3 , which is a base material powder, was produced using a solid phase method as described below. As starting materials, BaCO 3 , TiO 2 , Na 2 O, K 2 O, and Nb 2 O 5 were used.

先ず、BaCOとTiOとをボールミルにより混合し、900〜1000℃の範囲でか焼して平均粒子の大きさが300nmであるBaTiOパウダーを準備した。類似の方法により、NaO、KO、そして Nbをボールミルにより混合し、800〜900℃の範囲でか焼して平均粒子の大きさが300nmである(Na0.50.5)NbOパウダーを準備した。 First, BaCO 3 and TiO 2 were mixed by a ball mill and calcined in the range of 900 to 1000 ° C. to prepare BaTiO 3 powder having an average particle size of 300 nm. By a similar method, Na 2 O, K 2 O, and Nb 2 O 5 are mixed by a ball mill and calcined in the range of 800 to 900 ° C., and the average particle size is 300 nm (Na 0.5 K 0.5 ) NbO 3 powder was prepared.

下記の表1に示した組成比に応じて、それらをエタノールに分散及び混合させた。このように混合されたパウダーを空気中で、950〜1050℃の範囲でか焼し、平均粒子の大きさが300nm程度である母材パウダーを製造した。このような主成分の母材パウダーに副成分添加剤であるMnOとSiOとのパウダーを表1に示した組成比で添加した後に、主成分と副成分とが含まれた原料粉末を、ジルコニアボールを混合/分散メディアとして用いて、エタノール/トルエンと、分散剤と、バインダーとを混合した後に、20時間にわたってボールミリングした。製造されたスラリーは、ドクターブレード法のコータを用いて、10μmの厚さの成形シートを製造した。 They were dispersed and mixed in ethanol according to the composition ratio shown in Table 1 below. The powder thus mixed was calcined in the range of 950 to 1050 ° C. in the air to produce a base material powder having an average particle size of about 300 nm. After adding the powder of MnO 2 and SiO 2 which are subcomponent additives to the base material powder of such a main component at the composition ratio shown in Table 1, the raw material powder containing the main component and the subcomponent is added. Using zirconia balls as a mixing / dispersing medium, ethanol / toluene, a dispersant, and a binder were mixed, followed by ball milling for 20 hours. The produced slurry produced a 10 μm thick molded sheet using a doctor blade method coater.

上記製造された成形シートにNi内部電極を印刷した。上下カバーとしては、カバー用シートを25層積層し、21層の印刷された活性シートを加圧して積層することにより、バー(bar)を製造した。圧着バーは切断機を用いて3.2mmx1.6mm大きさのチップに切断した。   The Ni internal electrode was printed on the manufactured molded sheet. As upper and lower covers, 25 layers of cover sheets were laminated, and 21 layers of printed active sheets were pressed and laminated to produce a bar. The crimp bar was cut into 3.2 mm × 1.6 mm chips using a cutting machine.

このように製造された3216大きさの積層セラミックキャパシタ(MLCC)チップは、か焼を行った後に還元雰囲気の0.1%H/99.9%N(HO/H/N雰囲気)にて1200〜1300℃の温度で2時間焼成後、1000℃でN雰囲気にて再酸化を3時間にわたって熱処理した。焼成されたチップに対して、Cu ペーストでターミネーション工程及び電極焼成を経て外部電極を完成した。

Figure 2016098169
The 3216 size multilayer ceramic capacitor (MLCC) chip manufactured in this way is subjected to calcination and then 0.1% H 2 /99.9% N 2 (H 2 O / H 2 / N) in a reducing atmosphere. (2 atmospheres) was fired at a temperature of 1200 to 1300 ° C. for 2 hours, and then re-oxidized at 1000 ° C. in an N 2 atmosphere for 3 hours. The fired chip was subjected to a termination process and electrode firing with a Cu paste to complete an external electrode.
Figure 2016098169

上記表1に示すように完成されたプロトタイプ積層セラミックキャパシタの試片に対し、容量、DF、絶縁抵抗、TCC、高温150℃にて電圧ステップの増加による抵抗劣化挙動などを評価した。積層セラミックキャパシタチップの常温静電容量及び誘電損失は、LCRメーターを用いて、1kHz、AC0.2V/μm 条件にて容量を測定した。   The prototype multilayer ceramic capacitor specimens completed as shown in Table 1 were evaluated for capacity, DF, insulation resistance, TCC, resistance degradation behavior due to an increase in voltage step at a high temperature of 150 ° C., and the like. The room temperature capacitance and dielectric loss of the multilayer ceramic capacitor chip were measured using an LCR meter under the conditions of 1 kHz and AC 0.2 V / μm.

静電容量と積層セラミックキャパシタチップの誘電体の厚さ、内部電極の面積、積層数から、積層セラミックキャパシタチップ誘電体の誘電率を計算した。   The dielectric constant of the multilayer ceramic capacitor chip dielectric was calculated from the capacitance, the dielectric thickness of the multilayer ceramic capacitor chip, the area of the internal electrodes, and the number of layers.

常温絶縁抵抗(IR)は、10個ずつサンプルを取り、DC10V/μmを印加した状態で60秒経過後に測定した。温度に応じる静電容量の変化は、−55℃から150℃の温度範囲で測定した。   Room temperature insulation resistance (IR) was measured after 60 seconds with 10 samples taken and DC 10 V / μm applied. The change in capacitance according to temperature was measured in the temperature range of -55 ° C to 150 ° C.

高温IR昇圧実験は、150℃にて電圧ステップを5V/μmずつ増加させながら抵抗劣化挙動を測定した。ここで、各ステップの時間は10分であり、5秒間隔で抵抗値を測定した。   In the high temperature IR boost experiment, the resistance degradation behavior was measured while increasing the voltage step by 5 V / μm at 150 ° C. Here, the time of each step was 10 minutes, and the resistance value was measured at intervals of 5 seconds.

高温IR昇圧実験から高温耐電圧を導出するが、これは、焼成後、7μm厚さの20層の誘電体を有する3216大きさのチップに対し、150℃にて電圧ステップDC5V/μmを10分間印加し、該電圧ステップを増加させながら測定する時、IRが10Ω以上を耐える電圧を意味する。 A high-temperature withstand voltage is derived from a high-temperature IR boosting experiment. This is a voltage step DC5V / μm for 10 minutes at 150 ° C. for a 3216-sized chip having 20 dielectric layers 7 μm thick after firing. When applied and measured while increasing the voltage step, it means a voltage with which IR can withstand 10 5 Ω or more.

表2は、表1に示された組成に該当するプロトタイプ積層セラミックキャパシタチップの特性を示す。

Figure 2016098169
Table 2 shows characteristics of the prototype multilayer ceramic capacitor chip corresponding to the composition shown in Table 1.
Figure 2016098169

表1の実施例1〜12は、第2主成分の(Na1−y)NbOにおいて、y=0.5であり、第1副成分のMnO及び第2副成分のSiOの含量が母材パウダー(1−x)BaTiO−x(Na1−y)NbO対比それぞれ0.5at%及び0.5at%であるとき、第1主成分のBTの含量1−x及び第2主成分の(Na1−y)NbOの含量xの変化に応じるプロトタイプチップの特性を示す。xの含量が、0(実施例1)から0.6(実施例12)へ漸次増加することにより、誘電率は漸次減少することになり、xが0である場合は(実施例1)、誘電率は3156であって非常に高いが、TCC(150℃)が−35.2%となって±15%のX8R規格を外れるという問題があり、xが0.6である場合(実施例12)は、常温誘電率が1500未満であって低くなりすぎるという問題がある。 In Examples 1 to 12 in Table 1, in the second main component (Na 1-y K y ) NbO 3 , y = 0.5, and the first subcomponent MnO 2 and the second subcomponent SiO 2 When the content of the base material powder (1-x) BaTiO 3 -x (Na 1-y K y ) NbO 3 is 0.5 at% and 0.5 at%, respectively, the content of the first main component BT 1- It shows the x and (Na 1-y K y) characteristics of the prototype chip responsive to changes in the content x of NbO 3 of the second principal component. When the content of x gradually increases from 0 (Example 1) to 0.6 (Example 12), the dielectric constant gradually decreases. When x is 0 (Example 1), The dielectric constant is 3156, which is very high, but there is a problem that TCC (150 ° C.) is −35.2%, which is outside the ± 8% X8R standard, and x is 0.6 (Example) 12) has a problem that the room temperature dielectric constant is less than 1500 and becomes too low.

実施例2〜11の試片は、常温誘電率の1500以上、高温耐電圧の50V/μm以上、TCC(150℃)≦±15%のX8Rの温度特性を満足するので、適正なxの範囲は、0.005≦x≦0.5であると記述することができる。   The specimens of Examples 2 to 11 satisfy the temperature characteristics of X8R of room temperature dielectric constant of 1500 or more, high temperature withstand voltage of 50 V / μm or more, and TCC (150 ° C.) ≦ ± 15%. Can be described as 0.005 ≦ x ≦ 0.5.

表1の実施例13〜19は、第2主成分の(Na1−y)NbOにおいて、y=0.5であり、これの含量x=0.05であり、第2副成分のSiOの含量が母材パウダー対比0.5at%であるときの第1副成分のMnO含量の変化に応じるプロトタイプチップの特性を示す。 In Examples 13 to 19 in Table 1, in the second main component (Na 1-y K y ) NbO 3 , y = 0.5, the content x = 0.05, and the second subcomponent The characteristics of the prototype chip according to the change in the MnO 2 content of the first subcomponent when the SiO 2 content of the base material powder is 0.5 at% relative to the base material powder are shown.

Mnの含量が0である場合(実施例13)は、常温比抵抗値が8.480E7(ただし、xEy=x×10)であって非常に低く、Mnの含量の0.1(実施例14)以上からは、1E11以上の絶縁特性が実現されることを確認できる。 When the Mn content is 0 (Example 13), the room temperature resistivity value is 8.480E7 (xEy = x × 10 y ), which is very low, and the Mn content is 0.1 (Example). 14) From the above, it can be confirmed that an insulation characteristic of 1E11 or more is realized.

Mnの含量が増加するにつれて、誘電率及び常温比抵抗が減少し続けて、Mnの含量が0.07at%に大きくなる場合(実施例19)は、誘電率が1365に減少して1500未満となり、常温比抵抗が1E11未満となる問題が発生する。   As the Mn content increases, the dielectric constant and the room temperature resistivity continue to decrease, and when the Mn content increases to 0.07 at% (Example 19), the dielectric constant decreases to 1365 and becomes less than 1500. There arises a problem that the room temperature specific resistance is less than 1E11.

実施例14〜18の試片では、誘電率、高温耐電圧、TCC特性が本発明の目標特性を満足するので、Mnの含量は、0.1〜5.0at%の範囲に選定することができる。   In the specimens of Examples 14 to 18, since the dielectric constant, high-temperature withstand voltage, and TCC characteristics satisfy the target characteristics of the present invention, the Mn content can be selected within the range of 0.1 to 5.0 at%. it can.

表1の実施例20〜25は、第2主成分の(Na1−y)NbOにおいて、y=0.5、x=0.05であり、第1副成分のMnOの含量が母材パウダー対比0.5at%であるときの第2副成分のSiOの含量変化に応じるプロトタイプチップの特性を示す。 In Examples 20 to 25 of Table 1, in the second main component (Na 1-y K y ) NbO 3 , y = 0.5, x = 0.05, and the content of MnO 2 as the first subcomponent Shows the characteristics of the prototype chip according to the change in the content of SiO 2 as the second subcomponent when the ratio is 0.5 at% relative to the base material powder.

SiOの含量が0である場合(実施例20)は、適正焼成温度が1300℃程度に焼成温度が上がり、SiOが添加された場合(実施例21〜24)は、焼結性が改善される効果があった。 When the content of SiO 2 is 0 (Example 20), the firing temperature is increased to about 1300 ° C., and when SiO 2 is added (Examples 21 to 24), the sinterability is improved. There was an effect.

SiOの含量が7at%で場合(実施例25)は、焼結性の改善効果がほとんど無くなり、高温耐電圧特性が50V/μm未満と悪くなる。 When the content of SiO 2 is 7 at% (Example 25), the effect of improving the sinterability is almost lost, and the high-temperature withstand voltage characteristic becomes worse than less than 50 V / μm.

したがって、実施例20〜25の結果から、誘電率、高温耐電圧、TCC特性、そして焼結性を考慮して、好ましいSiOの含量は、0.1〜5.0at%範囲に選定ことができる。 Therefore, from the results of Examples 20 to 25, considering the dielectric constant, high-temperature withstand voltage, TCC characteristics, and sinterability, the preferable SiO 2 content can be selected in the range of 0.1 to 5.0 at%. it can.

表1における実施例26〜29は、第2主成分の(Na1−y)NbOの含量x=0.05であり、第1副成分のMnO及び第2副成分のSiOの含量が母材パウダー対比、それぞれ0.5at%及び0.5 at%であるとき、第2主成分の(Na1−y)NbOにおいてのKの含量y、及びNaの含量1−yに応じるプロトタイプチップの特性を示す。 In Examples 26 to 29 in Table 1, the content x of the second main component (Na 1-y K y ) NbO 3 is x = 0.05, the first subcomponent MnO 2 and the second subcomponent SiO 2. Content of the base material powder is 0.5 at% and 0.5 at%, respectively, the K content y and the Na content 1 in the second main component (Na 1-y K y ) NbO 3 Indicates the characteristics of the prototype chip depending on -y.

第2主成分の(Na1−y)NbOにおいて、Ti含量であるy=0.5を基準に、0.3(実施例27)〜0.2(実施例26)に減少するにつれて誘電率が減少し、高温耐電圧特性が悪くなることが分かり、y=0.2(実施例26)である場合は、高温耐電圧特性が50V/μm未満になるという問題が発生することが分かる。Tiの含量y=0.5を基準に、0.7(実施例28)〜1.0(実施例29)に増加するにつれて、誘電率及び高温耐電圧特性は多少低くなるが、誘電率、高温耐電圧、TCC特性は本発明の目標特性を満足する。 In the second main component (Na 1-y K y ) NbO 3 , the Ti content decreases to 0.3 (Example 27) to 0.2 (Example 26) on the basis of y = 0.5. As the dielectric constant decreases, the high-temperature withstand voltage characteristics deteriorate, and when y = 0.2 (Example 26), the high-temperature withstand voltage characteristics become less than 50 V / μm. I understand. The dielectric constant and the high-temperature withstand voltage characteristics are somewhat lowered as the Ti content is increased from 0.7 (Example 28) to 1.0 (Example 29) on the basis of y = 0.5. The high temperature withstand voltage and TCC characteristics satisfy the target characteristics of the present invention.

したがって、実施例26〜29の結果から、誘電率、高温耐電圧、常温比抵抗値を考慮して、好ましいKの含量yの範囲は、0.3≦y≦1.0に選定することができる。   Therefore, from the results of Examples 26 to 29, in consideration of the dielectric constant, the high-temperature withstand voltage, and the normal temperature specific resistance value, the preferable range of the K content y may be selected as 0.3 ≦ y ≦ 1.0. it can.

本発明は、誘電体磁器組成物及びこれを用いた電子素子に関するもので、より詳細には、EIA 規格に明示されたX5R、X7R、そしてX8R特性を満足する誘電体磁器組成物及びこれを用いた電子素子に関する。   The present invention relates to a dielectric ceramic composition and an electronic device using the same, and more specifically, a dielectric ceramic composition that satisfies the X5R, X7R, and X8R characteristics specified in the EIA standard and uses the same. The present invention relates to an electronic device.

本発明によれば、母材パウダーに環境に有害な鉛(Pb)を使用せずに、キュリー温度の上昇及び高温部誘電率が平坦になる特性を実現することができ、X8Rの温度特性及び良好な高温耐電圧特性を満足することができる。   According to the present invention, it is possible to realize the characteristics that the Curie temperature rises and the high temperature dielectric constant becomes flat without using lead (Pb) harmful to the environment as the base material powder. Good high temperature withstand voltage characteristics can be satisfied.

以上のように、本発明の特定の部分について詳細に記載したが、当業界の通常の知識を有した者にとってこのような具体的な記述は、単に好ましい実施態様であり、これにより本発明の範囲が制限されるものではないことは明らかである。したがって、本発明の実質的な範囲は、添付した請求項とそれらの等価物によって定義されるといえよう。   Although specific portions of the present invention have been described in detail as above, such specific descriptions are merely preferred embodiments for those of ordinary skill in the art, and thus the present invention. Obviously, the range is not limited. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (7)

第1主成分であるBaTiOと、第2主成分である(Na1−y)NbOとの固溶体である(1−x)BaTiO−x(Na1−y)NbO(0.005≦x≦0.5、0.3≦y≦1.0)を主成分とし、Mn、V、Cr、Fe、Ni、Co、Cu及びZnからなる群より選択される元素を含む第1副成分と、SiOまたはこれを含むガラス形成物質である第2副成分と、を含む誘電体磁器組成物。 (1-x) BaTiO 3 -x (Na 1-y K y ) NbO 3, which is a solid solution of BaTiO 3 as the first main component and (Na 1-y K y ) NbO 3 as the second main component. An element selected from the group consisting of Mn, V, Cr, Fe, Ni, Co, Cu, and Zn having (0.005 ≦ x ≦ 0.5, 0.3 ≦ y ≦ 1.0) as a main component. A dielectric ceramic composition comprising: a first subcomponent including SiO2; or a second subcomponent that is SiO 2 or a glass-forming substance including the same. 前記第1副成分は、Mn、V、Cr、Fe、Ni、Co、Cu及びZnからなる群より選択される元素の酸化物または炭酸塩である請求項1に記載の誘電体磁器組成物。   The dielectric ceramic composition according to claim 1, wherein the first subcomponent is an oxide or carbonate of an element selected from the group consisting of Mn, V, Cr, Fe, Ni, Co, Cu, and Zn. 前記第1副成分は、MnOまたはMnCOである請求項1に記載の誘電体磁器組成物。 The dielectric ceramic composition according to claim 1, wherein the first subcomponent is MnO 2 or MnCO 3 . 前記第1副成分の含量が、0.1〜5.0at%である請求項1から3のいずれか一項に記載の誘電体磁器組成物。   The dielectric ceramic composition according to any one of claims 1 to 3, wherein a content of the first subcomponent is 0.1 to 5.0 at%. 前記第2副成分中のSiOの含量が、0.1〜5.0at%である請求項1から4のいずれか一項に記載の誘電体磁器組成物。 5. The dielectric ceramic composition according to claim 1, wherein the content of SiO 2 in the second subcomponent is 0.1 to 5.0 at%. 請求項1から5のいずれか一項に記載の誘電体磁器組成物を用いて形成された誘電体を含む電子素子。   An electronic device comprising a dielectric formed using the dielectric ceramic composition according to any one of claims 1 to 5. 前記電子素子は、積層セラミックキャパシタ、圧電素子、チップインダクタ、チップバリスタ、チップ抵抗及びPTCR(Positive Temperature Coefficient Resistor)からなる群より選択される一つ以上である請求項6に記載の電子素子。   The electronic device according to claim 6, wherein the electronic device is one or more selected from the group consisting of a multilayer ceramic capacitor, a piezoelectric device, a chip inductor, a chip varistor, a chip resistor, and PTCR (Positive Temperature Coefficient Resistor).
JP2015154339A 2014-11-24 2015-08-04 Dielectric ceramic composition and electronic device using the same Active JP6636744B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0164758 2014-11-24
KR1020140164758A KR101973421B1 (en) 2014-11-24 2014-11-24 Dielectric ceramic composition and electronic device using the same

Publications (2)

Publication Number Publication Date
JP2016098169A true JP2016098169A (en) 2016-05-30
JP6636744B2 JP6636744B2 (en) 2020-01-29

Family

ID=56037488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154339A Active JP6636744B2 (en) 2014-11-24 2015-08-04 Dielectric ceramic composition and electronic device using the same

Country Status (3)

Country Link
JP (1) JP6636744B2 (en)
KR (1) KR101973421B1 (en)
CN (1) CN105622091B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026960A1 (en) * 2017-08-04 2019-02-07 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102023888B1 (en) * 2017-10-12 2019-09-23 주식회사 디아이씨 Preparing method of lead-free piezoelectric ceramics for low temperature sintering with excellent electric field induced strain property
KR102068682B1 (en) * 2017-12-27 2020-01-22 주식회사 디아이씨 Preparing method of lead-free piezoelectric ceramics for low temperature sintering with excellent electric field induced strain property
KR102609141B1 (en) * 2018-03-28 2023-12-05 삼성전기주식회사 Dielectric Composition and Electronic Component Comprising the Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227482A (en) * 2008-03-19 2009-10-08 Tdk Corp Piezoelectric ceramic and piezoelectric element employing it
JP2011195359A (en) * 2010-03-18 2011-10-06 Tdk Corp Dielectric ceramic composition
JP2011213532A (en) * 2010-03-31 2011-10-27 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP2013028478A (en) * 2011-07-27 2013-02-07 Tdk Corp Dielectric ceramic composition and electronic component
JP2013063876A (en) * 2011-09-16 2013-04-11 Tdk Corp Dielectric ceramic composition and electronic component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104951A (en) * 1990-08-20 1992-04-07 Murata Mfg Co Ltd Barium titanate-based semiconductive porcelain material
JP2008011254A (en) 2006-06-29 2008-01-17 Sanyo Electric Co Ltd Terrestrial digital broadcasting receiver
CN101239824B (en) * 2007-02-06 2010-08-25 香港理工大学 Sodium potassium niobate barium zirconate titanate series lead-free piezoelectric ceramic composition
JP5760890B2 (en) 2011-09-16 2015-08-12 Tdk株式会社 Dielectric porcelain composition and electronic component
KR20140112779A (en) * 2013-03-14 2014-09-24 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR101994709B1 (en) * 2013-04-17 2019-07-01 삼성전기주식회사 Dielectric composition, multilayer ceramic capacitor using the same, and method for preparing multilayer ceramic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227482A (en) * 2008-03-19 2009-10-08 Tdk Corp Piezoelectric ceramic and piezoelectric element employing it
JP2011195359A (en) * 2010-03-18 2011-10-06 Tdk Corp Dielectric ceramic composition
JP2011213532A (en) * 2010-03-31 2011-10-27 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP2013028478A (en) * 2011-07-27 2013-02-07 Tdk Corp Dielectric ceramic composition and electronic component
JP2013063876A (en) * 2011-09-16 2013-04-11 Tdk Corp Dielectric ceramic composition and electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026960A1 (en) * 2017-08-04 2019-02-07 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device
JP2019031430A (en) * 2017-08-04 2019-02-28 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device
US11509244B2 (en) 2017-08-04 2022-11-22 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic equipment

Also Published As

Publication number Publication date
CN105622091B (en) 2021-01-15
CN105622091A (en) 2016-06-01
KR101973421B1 (en) 2019-04-29
JP6636744B2 (en) 2020-01-29
KR20160061829A (en) 2016-06-01

Similar Documents

Publication Publication Date Title
KR101792368B1 (en) Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same
JP6656882B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
KR101883027B1 (en) Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same
JP2007031273A (en) Dielectric porcelain composition for low temperature firing and laminated ceramic condenser using the same
KR101933420B1 (en) Multilayer ceramic capacitor
TWI803471B (en) Dielectric ceramic composition and ceramic electronic component
JP6834090B2 (en) Dielectric composition and multilayer ceramic capacitors containing it
JP6988039B2 (en) Dielectric porcelain compositions, dielectric materials and multilayer ceramic capacitors containing them
KR102097326B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
JP6636744B2 (en) Dielectric ceramic composition and electronic device using the same
US9458063B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
KR101994760B1 (en) Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same
KR20150121569A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR101659143B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR20170081979A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
TWI796464B (en) Dielectric ceramic composition and ceramic electronic part
TWI798412B (en) Dielectric ceramic composition and ceramic electronic part
JP6760689B2 (en) Dielectric porcelain compositions, dielectric materials, and multilayer ceramic capacitors containing them
US20140293502A1 (en) Dielectric ceramic composition and multi-layer ceramic capacitor comprising the same
KR102064105B1 (en) Dielectric ceramic composition and electronic device using the same
KR101548864B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
US9601275B1 (en) Dielectric ceramic composition and electronic device using the same
KR20170017285A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR101420535B1 (en) Dielectric composition and multilayer ceramic condenser comprising dielectric layer thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191219

R150 Certificate of patent or registration of utility model

Ref document number: 6636744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250