JP4502741B2 - Multilayer ceramic capacitor and manufacturing method thereof - Google Patents

Multilayer ceramic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP4502741B2
JP4502741B2 JP2004221994A JP2004221994A JP4502741B2 JP 4502741 B2 JP4502741 B2 JP 4502741B2 JP 2004221994 A JP2004221994 A JP 2004221994A JP 2004221994 A JP2004221994 A JP 2004221994A JP 4502741 B2 JP4502741 B2 JP 4502741B2
Authority
JP
Japan
Prior art keywords
powder
batio
tio
dielectric
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004221994A
Other languages
Japanese (ja)
Other versions
JP2006041371A (en
Inventor
芳博 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004221994A priority Critical patent/JP4502741B2/en
Priority to US11/193,284 priority patent/US7057876B2/en
Priority to TW094125615A priority patent/TWI347624B/en
Publication of JP2006041371A publication Critical patent/JP2006041371A/en
Application granted granted Critical
Publication of JP4502741B2 publication Critical patent/JP4502741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、積層セラミックコンデンサおよびその製法に関し、特に、パソコン、携帯電話など、高機能の電子機器に使用され、それぞれ極めて薄い誘電体層と内部電極層とが交互に積層され、容量温度特性および高温負荷寿命などの信頼性に優れた小型高容量の積層セラミックコンデンサおよびその製法に関する。   The present invention relates to a multilayer ceramic capacitor and a method for producing the same, and in particular, is used for high-functional electronic devices such as personal computers and mobile phones, and extremely thin dielectric layers and internal electrode layers are alternately laminated, respectively. The present invention relates to a small-sized and high-capacity multilayer ceramic capacitor excellent in reliability such as a high-temperature load life and a manufacturing method thereof.

近年、電子機器の小型化、高機能化に伴い、これに用いる積層セラミックコンデンサは小型高容量化が求められており、このため誘電体層および内部電極層の積層数の増加と誘電体層自体の薄層化が進められ、また、積層セラミックコンデンサとしての特性としても容量温度特性や高温負荷寿命などの信頼性の向上が図られている。そして、このような積層セラミックコンデンサとして、例えば、下記の特許文献1〜3に開示されるようなものが知られている。   In recent years, with the downsizing and higher functionality of electronic devices, the multilayer ceramic capacitors used for this purpose have been required to be smaller and have higher capacities. For this reason, the number of dielectric layers and internal electrode layers increased, and the dielectric layers themselves. In addition, as the characteristics of a multilayer ceramic capacitor, reliability such as capacity-temperature characteristics and high-temperature load life is improved. And as such a multilayer ceramic capacitor, what is disclosed by the following patent documents 1-3 is known, for example.

まず、特許文献1に開示された積層セラミックコンデンサでは、誘電体磁器の調製において、予め、BaTiOとMgOとを仮焼し、次いで、この仮焼粉末に対して希土類元素やアクセプタ型元素の各種酸化物を添加する方法を用いている。このような2段階の混合方法を採用することにより、焼成後においても、先に固溶させたMgOのために、後に添加した希土類元素やアクセプタ型元素の各種酸化物のBaTiO結晶粒子内への拡散が抑制され、結果的に上記した所望の特性が得られると記載されている。 First, in the multilayer ceramic capacitor disclosed in Patent Document 1, in preparation of the dielectric ceramic, BaTiO 3 and MgO are preliminarily calcined, and then various kinds of rare earth elements and acceptor elements are applied to the calcined powder. A method of adding an oxide is used. By adopting such a two-stage mixing method, even after firing, because of MgO previously dissolved, it enters into the BaTiO 3 crystal particles of various oxides of rare earth elements and acceptor elements added later. It is described that the above-mentioned desired characteristics can be obtained as a result.

特許文献2では、平均粒径が0.1〜0.3μmで、かつ容量温度特性の異なる2種類以上の結晶粒子により誘電体磁器を構成することにより、容量温度特性が平坦かつDCバイアス特性に優れた積層セラミックコンデンサが得られることが記載されている。   In Patent Document 2, by forming a dielectric ceramic with two or more types of crystal particles having an average particle diameter of 0.1 to 0.3 μm and different capacity-temperature characteristics, the capacity-temperature characteristics are flat and the DC bias characteristics are achieved. It is described that an excellent multilayer ceramic capacitor can be obtained.

この公報によれば、BaTiOを主成分とする誘電体粒子において、粒子サイズが1μm以下になると平坦な容量温度特性や優れたDCバイアス特性を実現する、通称、コアシェル構造と呼ばれる結晶粒子の形成が困難となるために、このように粒子サイズが1μm以下の誘電体粒子については、さらなる微粒化を行い、誘電的活性を抑えることで、誘電体磁器全体についての平坦な容量温度特性や優れたDCバイアス特性を得ている。 According to this publication, in a dielectric particle mainly composed of BaTiO 3 , when a particle size becomes 1 μm or less, formation of a crystal particle called a core-shell structure, which realizes a flat capacity-temperature characteristic and an excellent DC bias characteristic, is realized. In this way, the dielectric particles having a particle size of 1 μm or less are further atomized to suppress the dielectric activity so that the flat capacitance-temperature characteristics and the excellent characteristics of the dielectric ceramic as a whole are excellent. DC bias characteristics are obtained.

特許文献3では、誘電体磁器を構成するBaTiOのBaの一部をCaで置換したBa1−xCaTiOとすることにより、これも平坦な容量温度特性や優れたDCバイアス特性が得られると記載されている。
特開2001−230149号公報 特開平9−241075号公報 特開2000−58378号公報
In Patent Document 3, by using Ba 1−x Ca x TiO 3 in which part of BaTiO 3 constituting the dielectric ceramic is replaced with Ca, this also has flat capacitance temperature characteristics and excellent DC bias characteristics. It is described that it is obtained.
JP 2001-230149 A JP-A-9-241075 JP 2000-58378 A

しかしながら、上記特許文献1に開示された積層セラミックコンデンサは、BaTiOとMgOを予め混合し仮焼するという予備的な工程を採用していることから、誘電体磁器の比誘電率を高くでき、かつ容量温度特性についてもB特性(温度範囲:−25℃〜85℃、容量変化率±10%以内)を満足することができるものの、容量温度特性について温度範囲の広いX7R(温度範囲:−55℃〜125℃、容量変化率±15%以内)を満足できるものではなかった。 However, since the multilayer ceramic capacitor disclosed in Patent Document 1 employs a preliminary process of pre-mixing BaTiO 3 and MgO and calcining, the dielectric constant of the dielectric ceramic can be increased, In addition, the capacity temperature characteristic can satisfy the B characteristic (temperature range: −25 ° C. to 85 ° C., capacity change rate within ± 10%), but the capacity temperature characteristic is wide X7R (temperature range: −55). C.-125.degree. C., capacity change rate within ± 15%).

次に、特許文献2に記載された誘電体磁器では、誘電体粒子の微粒化のために、比誘電率がせいぜい2100程度までしか上がらないものであった。   Next, in the dielectric ceramic described in Patent Document 2, the relative permittivity increases only to about 2100 at most due to the atomization of the dielectric particles.

特許文献3に記載された誘電体磁器についても、Ba1−xCaTiOでは、Ca置換による比誘電率の低下が大きく、比誘電率を2000より高くすることは困難であった。 Also for the dielectric ceramic described in Patent Document 3, in Ba 1-x Ca x TiO 3 , the relative permittivity decreased greatly due to Ca substitution, and it was difficult to make the relative permittivity higher than 2000.

特に、前記特許文献1〜3に記載された誘電体層を具備するコンデンサでは、0.002〜1Vrms/μmの交流電界強度範囲で比誘電率が低いものであった。   In particular, the capacitor including the dielectric layer described in Patent Documents 1 to 3 has a low relative dielectric constant in an AC electric field strength range of 0.002 to 1 Vrms / μm.

従って、本発明は、誘電体層を薄層化しても、0.002〜1Vrms/μmの交流電界強度範囲で比誘電率が高く、かつ容量温度特性および高温負荷寿命等の信頼性に優れた小型高容量の積層セラミックコンデンサおよびその製法を提供することを目的とする。   Therefore, even if the dielectric layer is thinned, the present invention has a high relative dielectric constant in the AC electric field strength range of 0.002 to 1 Vrms / μm and excellent reliability such as capacity-temperature characteristics and high-temperature load life. It is an object of the present invention to provide a small-sized and high-capacity multilayer ceramic capacitor and a manufacturing method thereof.

本発明の積層セラミックコンデンサは、BaTiO 粒子(BMTL)と、Ba 0.95 Ca 0.05 TiO 粒子(BMTH)とが共存するとともに、前記BMTLの平均粒径をL、前記BMTHの平均粒径をとしたときに、L/H=1.11.17であるとともに、前記BMTLおよび前記BMTHは、いずれも希土類元素を含み、該希土類元素の濃度勾配が、粒子表面を最高濃度として、前記粒子表面から粒子内部にかけて0.12〜0.17原子%/nmである誘電体層と、内部電極層とが交互に積層されたコンデンサ本体を具備してなることを特徴とする。 Multilayer ceramic capacitor of the present invention, the BaTiO 3 particles (BMTL), together with Ba 0.95 Ca 0.05 TiO 3 particles and (BMTH) coexist, mean an average particle size of the BMTL D L, the BMTH the particle size when D H, and, together with a D L / D H = 1.1 4 ~ 1.17, the BMTL and the BMTH are both include rare earth elements, the concentration gradient of the rare earth element And a capacitor body in which a dielectric layer of 0.12 to 0.17 atomic% / nm and an internal electrode layer are alternately laminated from the particle surface to the inside of the particle, with the particle surface being the highest concentration. It is characterized by that.

発明によれば、Ca成分濃度の異なる2種以上のチタン酸バリウム粒子が共存することにより、Ca成分濃度が低く、平均粒径の大きいBaTiO 粒子(BMTL)により高い比誘電率を発現できるとともに、Ca成分濃度の高いBa 0.95 Ca 0.05 TiO 粒子により比誘電率の温度特性を平坦化でき、さらに、これらのBaTiO 粒子(BMTL)およびBa 0.95 Ca 0.05 TiO 粒子(BMTH)が複合化することにより、0.002〜1Vrms/μmの交流電界強度範囲で高い比誘電率でかつ比誘電率の温度特性がより平坦化でき、しかもCa成分濃度の低いBaTiO 粒子とCa成分濃度の高いBa 0.95 Ca 0.05 TiO 粒子とが共存するために誘電体層を高絶縁化できる。 According to the present invention, when two or more kinds of barium titanate particles having different Ca component concentrations coexist, BaTiO 3 particles (BMTL) having a low Ca component concentration and a large average particle size can exhibit a high relative dielectric constant. At the same time, the temperature characteristics of relative permittivity can be flattened by the Ba 0.95 Ca 0.05 TiO 3 particles having a high Ca component concentration. Further, these BaTiO 3 particles (BMTL) and Ba 0.95 Ca 0.05 TiO by 3 particles (BMTH) is complexed, can more flattened temperature characteristic of and specific dielectric constant at a higher dielectric constant AC electric field intensity range of 0.002~1Vrms / μm, yet low Ca component concentration BaTiO Since the three particles and Ba 0.95 Ca 0.05 TiO 3 particles having a high Ca component concentration coexist, the dielectric layer can be highly insulated.

この場合、比誘電率を高く維持でき比誘電率の温度特性を平坦化できるという点で、前記BMTLおよび前記BMTHの平均粒径いずれも7μm以下であることが望ましく、これにより誘電体層中における粒界を増やすことができ、誘電体層全体の絶縁性を高めることができる In this case, in that the temperature characteristic of the high maintenance can dielectric constant of the dielectric constant can be flattened, the desirably an average particle diameter of BMTL and the BMTH are both at 7μm or less, Ri誘 conductive by the this Grain boundaries in the body layer can be increased, and the insulation of the entire dielectric layer can be improved .

次に、本発明の積層セラミックコンデンサの製法は、(a)平均粒径が0.05〜0.5μmのBaTiO末おび平均粒径がBaTiO粉末よりも小さいBa 0.95 Ca 0.05 TiO末を準備する工程と、(b)前記BaTiO粉末およびBa 0.95 Ca 0.05 TiO粉末それぞれにMgOを添加し、600〜850℃の温度で仮焼して、BaTiO仮焼粉末およびBa 0.95 Ca 0.05 TiO仮焼粉末を調製する工程と、(c)前記BaTiO仮焼粉末およびBa 0.95 Ca 0.05 TiO仮焼粉末と、希土類元素化合物、MnCO と、MgOと、有機ビヒクルとを混合してスラリを調製し、成形して誘電体グリーンシートを形成する工程と、(d)該誘電体グリーンシートの主面上に、内部電極パターンを形成する工程と、(e)内部電極パターンが形成された誘電体グリーンシートを複数積層してコンデンサ本体成形体を形成し、焼成する工程と、を具備することを特徴とする。 Next, production method of the multilayer ceramic capacitor of the present invention, (a) an average particle size of BaTiO 3 powder powder Contact good beauty flat Hitoshitsubu径of 0.05~0.5μm is smaller than B ATiO 3 powder Ba 0. preparing a 95 Ca 0.05 TiO 3 powder powder, (b) the BaTiO 3 each powder and Ba 0.95 Ca 0.05 TiO 3 powder of MgO was added to the tentative at a temperature of 600 to 850 ° C. baked to, BaTiO 3 calcined powder and Ba 0.95 Ca 0.05 TiO 3 calcined powder preparing a, (c) the BaTiO 3 calcined powder and Ba 0.95 Ca 0.05 TiO 3 provisional and baked powder, and a rare earth element compound, a Mn CO 3, MgO and, an organic vehicle combined mixed to prepare a slurry, and forming the molding to the dielectric green sheet, (d) dielectric grease On the main surface of the sheet, forming an internal electrode pattern, and a step of forming a capacitor body forming body is fired by stacking a plurality of dielectric green sheets are formed (e) the internal electrode pattern It is characterized by comprising.

発明の積層セラミックコンデンサの製法では、誘電体磁器を形成するための原料粉末として、最初の出発原料の段階で異なる平均粒径を有し、しかも異なる焼結性および粒成長速度を有するBaTiO粉末およびBa 0.95 Ca 0.05 TiO粉末を用いており、焼成時に、これらBaTiO 粉末とBa 0.95 Ca 0.05 TiO 粉末との反応を抑制するために、これらの粉末に、予め、MgOを、600〜850℃という低い温度で一部固溶さ、BaTiO 仮焼粉末およびBa 0.95 Ca 0.05 TiO 仮焼粉末の表面層付近に
MgOを固溶させておくことにより、Caを含むBa 0.95 Ca 0.05 TiO 仮焼粉末側から、Caを有しないBaTiO 仮焼粉末側へのCaの拡散を抑制でき、誘電体層内におけるCa成分濃度の異なる誘電体粒子の共存状態を維持できる。
In preparation of the multilayer ceramic capacitor of the present invention, BaTiO 3 having a raw material powder for forming the dielectric ceramic has an average particle size that is different at the stage of initial starting material, yet different sinterability and grain growth rate It uses a powder and Ba 0.95 Ca 0.05 TiO 3 powder, during firing, in order to suppress the reaction between these BaTiO 3 powder and Ba 0.95 Ca 0.05 TiO 3 powder, these both powder, previously, MgO and by solid solution partially at temperatures as low as 600 to 850 ° C., on the front surface layer near the BaTiO 3 calcined powder and Ba 0.95 Ca 0.05 TiO 3 calcined powder
By keeping a solid solution of MgO, from Ba 0.95 Ca 0.05 TiO 3 calcined powder side containing Ca, can suppress the diffusion of Ca to BaTiO 3 calcined powders side having no Ca, dielectric The coexistence state of the dielectric particles having different Ca component concentrations in the body layer can be maintained.

また、上記したBaTiO 粉末およびBa 0.95 Ca 0.05 TiO 粉末の両原料粉末にMgO600〜850℃の温度で一部固溶させておく手法によれば、後に添加する希土類元素やその他の添加物のBaTiO 仮焼粉末およびBa 0.95 Ca 0.05 TiO 仮焼粉末に対する固溶をも抑制できる。 Further, according to the method to be a solid solution partially MgO in both raw material powder BaTiO 3 powder and Ba 0.95 Ca 0.05 TiO 3 powder were mixed with each other at the temperature of 600 to 850 ° C., rare earth added after It is also possible to suppress solid solution of elements and other additives to BaTiO 3 calcined powder and Ba 0.95 Ca 0.05 TiO 3 calcined powder .

この場合、(b)工程において添加するMgOの割合が、モル比で、(b)工程および
(c)工程で添加する全MgOの30〜60%とすることにより、MgOの添加効果を高めることができる。特に、添加成分がMgOであれば、BaTiOのBaイオンとのイオン半径に大きな差があることから、BaTiOへのイオンの固溶量を小さくできる。
In this case , the ratio of MgO added in step (b) is 30 to 60% of the total MgO added in steps (b) and (c) in terms of molar ratio, thereby enhancing the effect of adding MgO. It is Ru can. In particular, when the additive component is MgO, there is a large difference in the ion radius of BaTiO 3 with the Ba ion, so that the amount of ions dissolved in BaTiO 3 can be reduced.

つまり、B1−xTiO粉末におけるMをCaとすると、BaTiO中に予めMgのような前記Mよりも小さい元素が固溶しているために、後で拡散してくるCaなど大きなイオン半径を有するアルカリ土類元素の拡散を抑制できる。つまり、本発明におけるBaTiO粉末に対するMgOの添加効果は、BaTiO粉末に先に添加するアルカリ土類元素のイオン半径の小さい元素を用いるほど、Ba1−xTiO粉末側からのアルカリ土類成分の拡散を抑制できる That is, when the M in B a 1-x M x TiO 3 powder and Ca, for small elements in solid solution than the M as previously Mg in BaTiO 3, come to spread later Ca It is possible to suppress the diffusion of alkaline earth elements having a large ionic radius. In other words, the effect of adding MgO to the BaTiO 3 powder in the present invention is that the alkali ion from the Ba 1-x M x TiO 3 powder side is increased as the element having a smaller ionic radius of the alkaline earth element added to the BaTiO 3 powder is used. Diffusion of earth components can be suppressed .

(積層セラミックコンデンサ構造)
本発明の積層セラミックコンデンサについて、図1の概略断面図をもとに詳細に説明する。本発明の積層セラミックコンデンサは、コンデンサ本体1の両端部に外部電極3を形成して構成されている。この外部電極3は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成されている。
(Multilayer ceramic capacitor structure)
The multilayer ceramic capacitor of the present invention will be described in detail based on the schematic sectional view of FIG. The multilayer ceramic capacitor of the present invention is configured by forming external electrodes 3 at both ends of a capacitor body 1. The external electrode 3 is formed, for example, by baking Cu or an alloy paste of Cu and Ni.

コンデンサ本体1は誘電体層5と内部電極層7とを交互に積層してなるものである。この誘電体層5はCa成分濃度の低い、Ba及びTiを主成分とする誘電体粒子であるBaTiO 粒子11と、Ca成分濃度の高い、Ba及びTiを主成分とする誘電体粒子であるBa 0.95 Ca 0.05 TiO 粒子13と粒界相15とからなり、その厚みは4μm以下が望ましく、特に、静電容量を高めるという点で3μm以下、一方、絶縁性を高く維持するという点で0.5μm以上、特に1μm以上が望ましい。さらに本発明では、静電容量のばらつきおよび容量温度特性の安定化のために、誘電体層5の厚みばらつきが10%以内であることがより望ましい。 The capacitor body 1 is formed by alternately laminating dielectric layers 5 and internal electrode layers 7. The dielectric layer 5 is low Ca component concentration, and BaTiO 3 particles 11 is dielectric particles composed mainly of Ba and Ti, are dielectric particles high Ca component concentration, Ba, and Ti as a main component It is composed of Ba 0.95 Ca 0.05 TiO 3 particles 13 and a grain boundary phase 15, and the thickness is preferably 4 μm or less, particularly 3 μm or less in terms of increasing capacitance, while maintaining high insulation. In this respect, 0.5 μm or more, particularly 1 μm or more is desirable. Furthermore, in the present invention, it is more desirable that the thickness variation of the dielectric layer 5 is within 10% in order to stabilize the capacitance variation and capacitance temperature characteristics.

内部電極層7は、高積層化しても製造コストを抑制できるという点で、NiやCuなどの卑金属が望ましく、特に、本発明の誘電体層との同時焼成を図るという点でNiがより望ましい。この内部電極層7の厚みは平均2μm以下が好ましい。   The internal electrode layer 7 is preferably a base metal such as Ni or Cu from the viewpoint that the manufacturing cost can be suppressed even if the internal electrode layer 7 is made highly laminated, and particularly Ni is more preferable from the viewpoint of simultaneous firing with the dielectric layer of the present invention. . The thickness of the internal electrode layer 7 is preferably 2 μm or less on average.

特に本発明では、誘電体層5において、BaTiO粒子(BMTL)と、Ba 0.95 Ca 0.05 TiO粒子(BMTH)とが共存するとともに、BMTLの平均粒径をL、BMTHの平均粒径をとしたときに、L/H=1.11.17であることが重要である。 In particular, according to the present invention, the dielectric layer 5, the BaTiO 3 particles (BMTL), along with and the Ba 0.95 Ca 0.05 TiO 3 particles (BMTH) coexist, the average particle diameter of BMTL D L, the BMTH when the average particle diameter D H, and, it is important that the D L / D H = 1.1 4 ~ 1.17.

MTLのCa成分濃度が0.3原子%以上、一方、BMTHのCa成分濃度が0.4原子%以下では、BMTLとBMTHとのCa成分濃度が重なってしまい、Caの濃度差による誘電体粒子の比誘電率や温度特性の特徴が発現しにくくなり、BMTLおよびBMTHの両誘電体粒子の共存効果が低下する。また、BMTHのCa成分濃度が2.5原子%以上ではBMTHの比誘電率の低下が大きくなる。 When the Ca component concentration of BMTL is 0.3 atomic% or more, while the Ca component concentration of BMTH is 0.4 atomic% or less, the Ca component concentrations of BMTL and BMTH overlap, and the dielectric due to the Ca concentration difference The characteristics of the relative dielectric constant and temperature characteristics of the body particles are difficult to express, and the coexistence effect of both the dielectric particles of BMTL and BMTH is reduced. Further, when the Ca component concentration of BMTH is 2.5 atomic% or more, the decrease in the relative dielectric constant of BMTH becomes large.

さらに、L/H比が1.1より小さい場合には、0.002〜1Vrms/μmの交流電界における比誘電率の増加が大きくな、一方、DLDH比が2より大きい場合には、容量温度特性が大きくなる。そして、上記比誘電率およびその温度特性をさらに向上させるという点で、BL/BH=1.14〜1.17よい Furthermore, D when L / D H ratio is less than 1.1 is, 0.002~1Vrms / μm Ri ratio Na large increase in the dielectric constant in an alternating current electric field, whereas, if the DL / DH ratio is greater than 2 However, the capacity-temperature characteristic becomes large. And BL / BH = 1... In terms of further improving the relative dielectric constant and its temperature characteristics . 14-1. 17 is good .

また、本発明におけるCa成分濃度の高い比率を有するBMTHに固溶しているCa成分は、BaTiOへの固溶率が高く、BaTiOの比誘電率向上およびその温度特性向上という点でCaがよいFurther, Ca component in solid solution in BMT H having a high proportion of Ca component concentration in the present invention has a high rate of solid solution to B ATiO 3, that the dielectric constant of BaTiO 3 increased and its temperature characteristics improved And Ca is good .

また本発明によれば、BMTLおよびBMTHの平均粒径はいずれも0.7μm以下、特に0.6μm以下であることが高絶縁性化という点でより望ましく、比誘電率を高めるという点で0.2μm以上が望ましい。   Further, according to the present invention, the average particle diameters of BMTL and BMTH are both 0.7 μm or less, particularly 0.6 μm or less, which is more desirable in terms of achieving high insulation and 0 in terms of increasing the relative dielectric constant. .2 μm or more is desirable.

さらには、誘電体層5の厚みが4μm以下、内部電極層7は卑金属(Cu、Ni、Coなど)のうち、特に、金属の焼結温度が上記誘電体材料の焼結温度と一致するという点でNiが好ましい。   Furthermore, the dielectric layer 5 has a thickness of 4 μm or less, and the internal electrode layer 7 is made of a base metal (Cu, Ni, Co, etc.), in particular, the sintering temperature of the metal matches the sintering temperature of the dielectric material. Ni is preferable in this respect.

また、本発明における誘電体層5では、希土類元素粒子表面である粒界相15を最高濃度として結晶粒子表面から粒子内部にかけて0.12〜0.17原子%/nmの濃度勾配を有するFurther, the dielectric layer 5 that put the present invention, the concentration gradient of the rare earth element is the particle surface from the crystal grain surface and grain boundary phases 15 as the highest concentration toward inside of the grain from 0.12 to 0.17 atomic% / nm Have .

つまり、希土類元素の濃度勾配がこのような条件であれば、比誘電率および高温負荷寿命の向上とともに容量温度特性としてもX7R規格を満たすものを得ることができる。   That is, when the concentration gradient of the rare earth element is in such a condition, it is possible to obtain a capacitor that satisfies the X7R standard as a capacity temperature characteristic as well as an improvement in relative permittivity and high temperature load life.

ここで本発明における希土類元素としては、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Y、Er、Tm、Yb、Lu、Scのうち少なくとも1種が好ましく、特にYが好ましい。   Here, as the rare earth element in the present invention, at least one of La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y, Er, Tm, Yb, Lu, and Sc is preferable, and Y is particularly preferable. preferable.

さらに、本発明
におけるBaTiO 子は、前述のように、仮焼により、Mgが表面領域に固溶されたものであるが、BaTiO 子の表面領域におけるMgの濃度勾配は、希土類元素の拡散固溶の抑制を高めるという点で、粒界部を高濃度側として、粒内へ向けて0.003原子%/nm以上、望ましくは0.01原子%/nm以上であることが望ましい。
Furthermore, the present invention
BaTiO 3 grain transducer in, as before mentioned, by calcination, but in which Mg is dissolved in the surface region, a concentration gradient of Mg in the surface region of the BaTiO 3 grains element is solid diffusion of the rare earth element From the viewpoint of enhancing the suppression of dissolution, it is desirable that the grain boundary portion is at a high concentration side and is 0.003 atomic% / nm or more, preferably 0.01 atomic% / nm or more toward the inside of the grain.

(製法)
本発明の積層セラミックコンデンサの製法は、(a)平均粒径が0.05〜0.5μmのBaTiO粉末、および平均粒径が前記BaTiO粉末よりも小さいBa 0.95 Ca 0.05 TiO 末を準備する工程と、(b)前記BaTiO粉末および前記Ba 0.95 Ca 0.05 TiO粉末それぞれにMgOを添加し、600〜850℃の温度で仮焼して、BaTiO 仮焼粉末およびBa 0.95 Ca 0.05 TiO 焼粉末を調製する工程と、を具備することを特徴とする。ここで、BaTiO粉末およびBa 0.95 Ca 0.05 TiO粉末に対して、600〜850℃の温度で仮焼して、MgOBaTiO 粉末およびBa 0.95 Ca 0.05 TiO 粉末の両粉末表面に固溶形成された仮焼粉末を調製することが重要であり、MgOBaTiO 粉末およびBa 0.95 Ca 0.05 TiO 粉末の両粉末の表面に存在している。
(Manufacturing method)
The production method of the multilayer ceramic capacitor of the present invention is as follows: (a) BaTiO 3 powder having an average particle diameter of 0.05 to 0.5 μm and Ba 0.95 Ca 0.05 TiO having an average particle diameter smaller than that of the BaTiO 3 powder. 3 preparing a flour powder, and calcined at (b) was added to MgO to each of the BaTiO 3 powder and the Ba 0.95 Ca 0.05 TiO 3 powder, temperature of 600 to 850 ° C., BaTiO 3 it is preparing a calcined powder and Ba 0.95 Ca 0.05 TiO 3 calcined powder, characterized by including the. Here, BaTiO 3 with respect to the powder and Ba 0.95 Ca 0.05 TiO 3 powder was calcined at a temperature of 600 to 850 ° C., MgO is BaTiO 3 powder and Ba 0.95 Ca 0.05 It is important to prepare a calcined powder that is formed as a solid solution on the surface of both TiO 3 powders , and MgO is present on the surface of both BaTiO 3 powder and Ba 0.95 Ca 0.05 TiO 3 powder. you are.

ここで用いる主原料のBaTiO粉末およびBa 0.95 Ca 0.05 TiO粉末としては粒度分布が狭く結晶性が高いという理由から水熱合成法により得られた粉末が望ましく、その平均粒径は0.2μm以上、0.4μm以下が望ましい。また、このように微細な粉末の比表面積としては1.7〜6.6(m/g)が好ましい。一方、Ba 0.95 Ca 0.05 TiO粉末の平均粒径は、BaTiO粉末よりも小さいことが重要であり、0.04〜0.4μm、特に、0.15〜0.35μmであることがより好ましい。 The BaTiO 3 powder and Ba 0.95 Ca 0.05 TiO 3 powder of the main raw material used here, the powder is preferably obtained by hydrothermal synthesis because of high crystallinity narrow particle size distribution, the average particle The diameter is preferably 0.2 μm or more and 0.4 μm or less. In addition, the specific surface area of such a fine powder is preferably 1.7 to 6.6 (m 2 / g). On the other hand, the average particle size of Ba 0.95 Ca 0.05 TiO 3 powder, it is important that less than B ATiO 3 powder, 0.04~0.4Myuemu, especially in 0.15~0.35μm More preferably.

また、本発明においては、低温での仮焼により、例えば、MgOが表面に固溶したBaTiO粉末を形成し、焼成後における交流電界特性を高めるという理由から適正な粒成長を伴い、高い反応性を有する粉末としておくことが必要であることから、平均粒径とともに比表面積までも上記の範囲に規定しておくことが望ましい。 Further , in the present invention, for example, BaTiO 3 powder in which MgO is solid-dissolved on the surface is formed by calcining at a low temperature , and due to the reason that the AC electric field characteristics after firing are enhanced, a high reaction is accompanied by appropriate grain growth. Therefore, it is desirable to define the average particle size as well as the specific surface area within the above range.

本発明の積層セラミックコンデンサの製法における仮焼温度としては、MgOが表面固溶したBaTiO粉末およびBa 0.95 Ca 0.05 TiO 末におけるMgOの固溶を抑制するという理由から、850℃以下、特に750℃以下が望ましいが、一方、BaTiO粉末表面へのMgOの拡散固溶を確実なものにするという理由から600℃以上、特には、650℃以上が望ましい。尚、MgO粉末の平均粒径は、BaTiO粉末表面へのコート率が高まるという点で、0.3μm以下が望ましい。本発明では、このように予めMgOとの仮焼を行ったBaTiOを用いることにより、希土類元素の拡散固溶を抑制することができ、粒成長も抑制できる。 The calcination temperature in the production method of the multilayer ceramic capacitor of the present invention, the reason of suppressing dissolution of MgO in BaTiO 3 powder and Ba 0.95 Ca 0.05 TiO 3 powder powder that M gO surfaced solid solution, The temperature is preferably 850 ° C. or lower, particularly 750 ° C. or lower. On the other hand, 600 ° C. or higher, particularly 650 ° C. or higher is preferable for ensuring the diffusion and solid solution of MgO on the surface of the BaTiO 3 powder. The average particle size of M gO powder, in that coating rate to BaTiO 3 powder surface is increased, less desirable 0.3 [mu] m. In the present invention, by using a BaTiO 3 powder powder that was calcined in this manner beforehand MgO, it is possible to suppress the diffusion solid solution of a rare earth element, grain growth can be suppressed.

これに対して、BaTiO 粉末およびBa 0.95 Ca 0.05 TiO粉末に、MOを固溶させるための仮焼温度が850℃よりも高いと、粒界近傍でのアルカリ土類元素の酸化物が拡散固溶しやすくなり、そのため希土類元素の拡散固溶が進んでしまうため、Ca成分濃度の低い、チタン酸バリウムを主成分とする誘電体粒子の粒成長が生じやすく、静電容量の温度特性が所望の特性を満足できなくなる。 In contrast, the BaTiO 3 powder and Ba 0.95 Ca 0.05 TiO 3 powder, the calcining temperature for a solid solution of M g O is higher than 850 ° C., an alkaline earth at grain boundaries near Since elemental oxides tend to diffuse and dissolve, and thus rare earth elements diffuse and dissolve, dielectric particles having a low Ca component concentration and containing barium titanate as a main component are likely to grow. The temperature characteristics of the capacitance cannot satisfy the desired characteristics.

また、本発明の上記処理に対して、BaTiO粉末およびBa 0.95 Ca 0.05 TiO粉末に、MgOを先に固溶させる処理をしないで、BaTiO粉末やBa 0.95 Ca 0.05 TiO 粉末 希土類元素などの添加物とともに一括で添加した場合には、BaTiO 粉末の表面層に、MgOが固溶したものを形成しにくくなるために、Ba1−xTiOからのM成分などの拡散が多くなり、BaTiO本来の比誘電率を維持できず静電容量の低下をきたす。また、粒成長が起こりやすくなる。Ba 0.95 Ca 0.05 TiO は比誘電率を高め、かつ容量温度特性を平坦化できるという理由から望ましい。 Further, with respect to the process of the present invention, the BaTiO 3 powder and Ba 0.95 Ca 0.05 TiO 3 powder, without the processing to solid solution of M gO above, BaTiO 3 powder and Ba 0.95 Ca 0.05 When added together with additives such as TiO 3 powder and rare earth elements , it is difficult to form a solid solution of MgO on the surface layer of BaTiO 3 powder , so that Ba 1-x M x The diffusion of M component and the like from TiO 3 increases, the original relative dielectric constant of BaTiO 3 cannot be maintained, and the capacitance decreases. In addition, grain growth tends to occur. Ba 0.95 Ca 0.05 TiO 3 is desirable because it can increase the dielectric constant and flatten the capacitance-temperature characteristics.

また、本製法の(b)工程において添加するMgOの割合は、モル比で、(b)工程および(c)工程で添加する全アルカリ土類元素の酸化物の30〜60%が好ましく、アルカリ土類元素としてはMgOが好ましい。また、本発明における誘電体層はガラス相を含むものであるが、このガラス相として、Si―Li−Ca系のガラス粉末が好適である。 The ratio of MgO to be added in step (b) of this process is the molar ratio is preferably 30% to 60% of oxides of the total alkaline earth element added in step (b) and (c) step, alkali arbitrariness preferred is MgO as the earth element. The dielectric layer that put the present invention are those comprising a glass phase, a glass phase, the glass powder of Si-Li-Ca system is preferred.

次に、(c)工程では、BaTiO仮焼粉末と、B 0.95 Ca 0.05 TiO仮焼粉末と、希土類元素化合物、Mn化合物、および残りのMgOと、有機ビヒクルとを所定の割合で混合してスラリを調製し、成形して誘電体グリーンシートを形成する。上記したスラリを用いた成形はダイコータなどのシート成形法が好適であり、このような成形法により形成される誘電体グリーンシートの厚みは5μm以下、特に、4μm以下が好ましい。 Next, (c) In the step, a BaTiO 3 calcined powder, and B a 0.95 Ca 0.05 TiO 3 calcined powder, a rare earth element compound, Mn compound, a and remaining MgO, organic vehicle Are mixed at a predetermined ratio to prepare a slurry, which is then molded to form a dielectric green sheet. The molding using the above-described slurry is preferably a sheet molding method such as a die coater, and the thickness of the dielectric green sheet formed by such a molding method is preferably 5 μm or less, and particularly preferably 4 μm or less.

次に、(d)工程では、誘電体グリーンシートの主面上に内部電極パターンを形成する。内部電極パターンは、例えば、NiやCuなどの卑金属粉末を有機樹脂や溶剤とともにペースト化したものをスクリーン印刷により形成する。内部電極パターンの厚みは、誘電体グリーンシート上における段差を小さくするという点で、誘電体グリーンシートの厚みよりも薄く4μm以下であることが望ましい。 Next, in step (d), an internal electrode pattern is formed on the main surface of the dielectric green sheet. The internal electrode pattern is formed, for example, by screen printing of a base metal powder such as Ni or Cu that is pasted together with an organic resin or a solvent. The thickness of the internal electrode pattern is preferably smaller than the thickness of the dielectric green sheet and 4 μm or less in terms of reducing the level difference on the dielectric green sheet.

次に、(e)工程では、内部電極パターンが形成された誘電体グリーンシートを複数積層してコンデンサ本体成形体を形成し、この後、コンデンサ本体を大気中で40〜80℃/hの昇温速度で400〜500℃にて脱バインダ処理を行い、その後、還元雰囲気中で500℃からの昇温速度を100〜400℃/hとし、1100〜1300℃の温度で2〜5時間焼成し、続いて80〜400℃/hの降温速度で冷却し、大気雰囲気中750〜1100℃で再酸化処理を行う。 Next, in step (e), a plurality of dielectric green sheets on which internal electrode patterns are formed are stacked to form a capacitor body molded body. Thereafter, the capacitor body 1 is heated to 40-80 ° C./h in the atmosphere. The binder removal treatment is performed at a temperature rising rate of 400 to 500 ° C., and then the temperature rising rate from 500 ° C. is set to 100 to 400 ° C./h in a reducing atmosphere, and firing is performed at a temperature of 1100 to 1300 ° C. for 2 to 5 hours. Subsequently, cooling is performed at a temperature drop rate of 80 to 400 ° C./h, and reoxidation is performed at 750 to 1100 ° C. in an air atmosphere.

最後に、焼成したコンデンサ本体の両端面に、外部電極用ペーストを塗布して窒素中で焼き付けることによって、外部電極3を形成し、本発明の積層セラミックコンデンサを得ることができる。 Finally, an external electrode paste is applied to both end faces of the fired capacitor body 1 and baked in nitrogen, whereby the external electrode 3 is formed and the multilayer ceramic capacitor of the present invention can be obtained.

本発明の積層セラミックコンデンサを以下のようにして作製した。まず、予め表1に示す平均粒径のBaTiO(BT)+(Ba0.95Ca0.05)TiO(BCT)100モル部に対し、MgOを0.25モル部を秤量し、十分混合し、表1に示す温度で2時間加熱した。次に、この仮焼したBaTiO+(Ba0.95Ca0.05)TiOとした混合粉末100モル部に対して、希土類元素を表1に示す量、MnCOを0.3モル部、MgOを0.25モル部混合した。 The multilayer ceramic capacitor of the present invention was produced as follows. First, with respect to 100 mol parts of BaTiO 3 (BT) + (Ba 0.95 Ca 0.05 ) TiO 3 (BCT) having an average particle diameter shown in Table 1, 0.25 mol parts of MgO are weighed sufficiently. Mix and heat at the temperature shown in Table 1 for 2 hours. Next, the amount of rare earth elements shown in Table 1 and 0.3 mol part of MnCO 3 with respect to 100 mol parts of the mixed powder of BaTiO 3 + (Ba 0.95 Ca 0.05 ) TiO 3 calcinated. , 0.25 mol part of MgO was mixed.

次に、BaTiO 仮焼粉末+(Ba0.95Ca0.05)TiO 仮焼粉末100質量部に対してLiOとSiOとCaOからなる添加成分を0.5質量部混合して、この混合粉末を直径5mmφのZrOボールを用いたボールミルにて湿式粉砕し有機バインダを加えてスラリーを調製した。次に、このスラリーを用いてドクターブレードにより厚み4μmの誘電体グリーンシートを作製した。 Next, 0.5 parts by mass of additive components composed of Li 2 O, SiO 2 and CaO are mixed with 100 parts by mass of BaTiO 3 calcined powder + (Ba 0.95 Ca 0.05 ) TiO 3 calcined powder. The mixed powder was wet pulverized by a ball mill using ZrO 2 balls having a diameter of 5 mmφ, and an organic binder was added to prepare a slurry. Next, using this slurry, a dielectric green sheet having a thickness of 4 μm was prepared by a doctor blade.

次に、焼成して得られたコンデンサ本体をバレル研磨した後、その両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃、窒素中で焼き付けを行い、外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiおよびSnメッキを行い、積層セラミックコンデンサを作製した。 Next, the capacitor body obtained by firing was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends thereof, followed by baking in nitrogen at 850 ° C. to form external electrodes. . Then, using an electrolytic barrel machine, Ni and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

次に、内部電極パターンを形成した誘電体グリーンシートを388枚積層し、その上下面に、内部電極パターンを形成していない誘電体グリーンシートをそれぞれ20枚積層しプレス機を用いて一体化し母体積層体を得た。   Next, 388 dielectric green sheets on which internal electrode patterns are formed are stacked, and 20 dielectric green sheets on which internal electrode patterns are not formed are stacked on the upper and lower surfaces, and are integrated using a press. A laminate was obtained.

この後、母体積層体を格子状に切断して、2.3mm×1.5mm×1.5mmのコンデンサ本体成形体を作製した。   Thereafter, the base laminate was cut into a lattice shape to produce a capacitor body molded body of 2.3 mm × 1.5 mm × 1.5 mm.

次に、このコンデンサ本体成形体を50℃/hの昇温速度で大気中500℃にて脱バインダ処理を行い、500℃からの昇温速度が200℃/hの昇温速度で、1240℃(酸素分圧10−11atm)で2時間焼成し、200℃/hの降温速度で800℃まで冷却し、続いて、大気雰囲気中800℃で4時間再酸化処理をし、200℃/hの降温速度で冷却しコンデンサ本体を作製した。誘電体層の厚みは2.3μmであった。 Next, this capacitor body molded body was subjected to binder removal treatment at 500 ° C. in the atmosphere at a temperature increase rate of 50 ° C./h, and the temperature increase rate from 500 ° C. was 1240 ° C. (Oxygen partial pressure 10 −11 atm) calcination for 2 hours, cooling to 800 ° C. at a temperature decrease rate of 200 ° C./h, followed by re-oxidation treatment at 800 ° C. for 4 hours in air atmosphere, 200 ° C./h The capacitor body was manufactured by cooling at a temperature drop rate of. The thickness of the dielectric layer was 2.3 μm.

次に、焼成したコンデンサ本体をバレル研磨した後、その両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃、窒素中で焼き付けを行い、外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiおよびSnメッキを行い、積層セラミックコンデンサを作製した。   Next, the fired capacitor body was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends thereof, and baked in nitrogen at 850 ° C. to form external electrodes. Then, using an electrolytic barrel machine, Ni and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

次に、作製した積層セラミックコンデンサであるこれらの試料を、LCRメーター4284Aを用いて周波数1.0kHz、入力信号レベル0.5Vにて静電容量、誘電損失を測定した。比誘電率は、静電容量と内部電極層の有効面積、誘電体層の厚みから算出した。   Next, the capacitance and dielectric loss of these samples, which were the produced multilayer ceramic capacitors, were measured at a frequency of 1.0 kHz and an input signal level of 0.5 V using an LCR meter 4284A. The relative dielectric constant was calculated from the capacitance, the effective area of the internal electrode layer, and the thickness of the dielectric layer.

続いて、静電容量の温度特性を25℃の時の静電容量を基準として、−55〜125℃の範囲において測定した。高温負荷試験は、温度125℃、電圧は9.45Vの条件で、1000時間行い、試料数30個につき絶縁抵抗の変化を測定した。この場合不良なきものを良とした。また、結晶粒子径およびそのばらつきはインターセプト法により電子顕微鏡にて撮影した写真を用いて測定した。   Subsequently, the temperature characteristics of the capacitance were measured in a range of −55 to 125 ° C. with reference to the capacitance at 25 ° C. The high temperature load test was performed for 1000 hours under the conditions of a temperature of 125 ° C. and a voltage of 9.45 V, and the change in insulation resistance was measured for 30 samples. In this case, a non-defective one was considered good. In addition, the crystal particle diameter and its variation were measured using photographs taken with an electron microscope by the intercept method.

また、誘電体層を構成する結晶粒子中の希土類元素の存在については断面研磨した試料について透過電子顕微鏡と制限視野電子回折像解析を用いて評価した。   In addition, the presence of rare earth elements in the crystal grains constituting the dielectric layer was evaluated using a transmission electron microscope and limited-field electron diffraction image analysis on a cross-polished sample.

また、Ca濃度に関しては、透過電子顕微鏡及びEDSを用いて、中心部近傍の任意の場所を分析した。その際、Ca濃度が0.3原子%よりも高いもの(小数点2位四捨五入)に関して、Ca濃度の高い誘電体粒子とした。この分析は、主結晶粒子100〜150個に関して行った。 Moreover, regarding the Ca concentration, an arbitrary place in the vicinity of the central portion was analyzed using a transmission electron microscope and EDS. At that time, those having a Ca concentration higher than 0.3 atomic % (rounded to the second decimal place) were used as dielectric particles having a high Ca concentration. This analysis was performed on 100 to 150 main crystal particles.

本発明の試料における結晶粒子の平均粒径は、Ca濃度の低いBa及びTiを主成分とする誘電体粒子であるBaTiO 粒子(BMTL)は0.4μm、Ca濃度の高い、Ba及びTiを主成分とする誘電体粒子であるBa 0.95 Ca 0.05 TiO (BMTH)は0.3μmであった。また、これらBMTLおよびBMTH共に平均粒径のばらつき(CV値)は、0.5以下であった。 Rights Hitoshitsubu diameter of the crystal grains in the sample of the present invention, BaTiO 3 particles are dielectric particles mainly composed of low Ca concentration Ba, and Ti (BMTL) is 0.4 .mu.m, a high Ca concentration, Ba and Ti Ba 0.95 Ca 0.05 TiO 3 (BMTH), which is a dielectric particle containing as a main component, was 0.3 μm. Further, variation in the flat Hitoshitsubu diameter thereto BMTL and BMT H co (CV value) was 0.5 or less.

また、比較例として、原料粒径をBaTiOが0.4μm、(Ba0.95Ca0.05)TiOが0.35μmとした場合で、BaTiOへのMgOの仮焼温度を1150℃とし、これ以外の添加物組成や手順は上記本発明の工程と同じとしたものを作製した(No.1)。また、比較例として、BaTiO粉末のみで、もしくは、(Ba0.95Ca0.05)TiO粉末のみで、これ以外の添加物組成や手順は上記本発明の工程と同じとした。(No.2、3)

Figure 0004502741
As a comparative example, the raw material particle size is 0.4 μm for BaTiO 3 and 0.35 μm for (Ba 0.95 Ca 0.05 ) TiO 3 , and the calcining temperature of MgO to BaTiO 3 is 1150 ° C. The other additive compositions and procedures were the same as those in the process of the present invention (No. 1). In addition, as a comparative example, only BaTiO 3 powder or (Ba 0.95 Ca 0.05 ) TiO 3 powder was used, and the other additive compositions and procedures were the same as those of the above-described process of the present invention. (No. 2, 3)
Figure 0004502741

Figure 0004502741
Figure 0004502741

表1、2から明らかなように、本発明の製法を用いて作製した試料No.4〜No.11では、交流電界0.02〜1Vrms/μmの範囲において、比誘電率が3100以上となり、容量温度特性がX7R規格を満足し、絶縁抵抗も10GΩを満足するものであった。   As is apparent from Tables 1 and 2, sample Nos. Produced using the production method of the present invention. 4-No. 11, the relative dielectric constant was 3100 or more in the range of the AC electric field of 0.02 to 1 Vrms / μm, the capacitance-temperature characteristic satisfied the X7R standard, and the insulation resistance also satisfied 10 GΩ.

一方、1150℃で一括仮焼した試料No.1においては、DL/DH=0.9となり、静電容量の温度特性が大きくなり、X7R特性を満たすものではなかった。また、BMTL単独の場合についてもX7R特性を満たすものではなかった。また、BMTH単独の誘電体粒子の場合には絶縁抵抗が0.2GΩと低かった。   On the other hand, sample No. 1 calcined at 1150 ° C. In No. 1, DL / DH = 0.9, the temperature characteristics of the capacitance were increased, and the X7R characteristics were not satisfied. Also, BMTL alone did not satisfy the X7R characteristics. In addition, in the case of dielectric particles of BMTH alone, the insulation resistance was as low as 0.2 GΩ.

本発明の積層セラミックコンデンサの概略断面図である。It is a schematic sectional drawing of the multilayer ceramic capacitor of this invention.

符号の説明Explanation of symbols

1・・・コンデンサ本体
5・・・誘電体層
7・・・内部電極層
11・・M濃度の低い、Ba及びTiを主成分とする誘電体粒子であるBaTiO 粒子
13・・M濃度の高い、Ba及びTiを主成分とする誘電体粒子であるBa 0.95 Ca 0.05 TiO 粒子
15・・粒界相
1 ... capacitor body 5 ... dielectric layer 7 ... internal electrode layer 11 · · M a low concentration, BaTiO 3 particles 13 · · M concentration of a dielectric particles composed mainly of Ba and Ti Ba 0.95 Ca 0.05 TiO 3 particles 15 which are high dielectric particles mainly composed of Ba and Ti 15 .. grain boundary phase

Claims (3)

BaTiO 粒子(BMTL)と、Ba 0.95 Ca 0.05 TiO 粒子(BMTH)とが共存するとともに、前記BMTLの平均粒径をL、前記BMTHの平均粒径をとしたときに、L/H=1.11.17であるとともに、前記BMTLおよび前記BMTHは、いずれも希土類元素を含み、該希土類元素の濃度勾配が、粒子表面を最高濃度として、前記粒子表面から粒子内部にかけて0.12〜0.17原子%/nmである誘電体層と、内部電極層とが交互に積層されたコンデンサ本体を具備してなることを特徴とする積層セラミックコンデンサ。 BaTiO 3 and particles (BMTL), along with and the Ba 0.95 Ca 0.05 TiO 3 particles (BMTH) coexist, the average particle size of the BMTL the D L, the average particle size of the BMTH D H, and Occasionally, as well as a D L / D H = 1.1 4 ~ 1.17, the BMTL and the BMTH are both include rare earth elements, the concentration gradient of the rare earth element, as the highest concentration of particle surfaces, A multilayer ceramic capacitor comprising a capacitor body in which dielectric layers of 0.12 to 0.17 atomic% / nm and internal electrode layers are alternately stacked from the particle surface to the inside of the particle. . 前記BMTLおよび前記BMTHの平均粒径がいずれも0.7μm以下であることを特徴とする請求項1に記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1, wherein the average particle size of the BMTL and the BMTH are both at 0.7μm or less. 請求項1または請求項2に記載の積層セラミックコンデンサの製法であって、(a)平均粒径が0.05〜0.5μmのBaTiO末おび平均粒径がBaTiO粉末よりも小さいBa 0.95 Ca 0.05 TiO末を準備する工程と、(b)前記BaTiO粉末およびBa 0.95 Ca 0.05 TiO粉末それぞれにMgOを添加し、600〜850℃の温度で仮焼して、BaTiO仮焼粉末およびBa 0.95 Ca 0.05 TiO仮焼粉末を調製する工程と、(c)前記BaTiO仮焼粉末およびBa 0.95 Ca 0.05 TiO仮焼粉末と、希土類元素化合物、MnCO と、MgOと、有機ビヒクルとを混合してスラリを調製し、成形して誘電体グリーンシートを形成する工程と、(d)該誘電体グリーンシートの主面上に、内部電極パターンを形成する工程と、(e)内部電極パターンが形成された誘電体グリーンシートを複数積層してコンデンサ本体成形体を形成し、焼成する工程と、を具備することを特徴とする積層セラミックコンデンサの製法。 A method of multilayer ceramic capacitor according to claim 1 or claim 2, (a) an average particle size of the BaTiO 3 powder powder Contact good beauty flat Hitoshitsubu径of 0.05 to 0.5 [mu] m B ATiO 3 powder preparing a small Ba 0.95 Ca 0.05 TiO 3 powder powder than, MgO is added to each of (b) the BaTiO 3 powder and Ba 0.95 Ca 0.05 TiO 3 powder, 600 and calcined at a temperature of 850 ° C., preparing a BaTiO 3 calcined powder and Ba 0.95 Ca 0.05 TiO 3 calcined powder, (c) the BaTiO 3 calcined powder and Ba 0.95 Ca and 0.05 TiO 3 calcined powder, a rare earth element compound, a Mn CO 3, and forming the MgO, and an organic vehicle combined slurry was prepared by mixing, molding and a dielectric green sheet (D) the dielectric green sheet on a main surface, forming a step of forming an internal electrode pattern, a capacitor body forming body by stacking a plurality of dielectric green sheets are formed (e) the internal electrode pattern And a step of firing. A method of producing a multilayer ceramic capacitor, comprising:
JP2004221994A 2004-07-29 2004-07-29 Multilayer ceramic capacitor and manufacturing method thereof Active JP4502741B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004221994A JP4502741B2 (en) 2004-07-29 2004-07-29 Multilayer ceramic capacitor and manufacturing method thereof
US11/193,284 US7057876B2 (en) 2004-07-29 2005-07-28 Multilayer ceramic capacitor and manufacturing method thereof
TW094125615A TWI347624B (en) 2004-07-29 2005-07-28 Laminated ceramic condenser and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221994A JP4502741B2 (en) 2004-07-29 2004-07-29 Multilayer ceramic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006041371A JP2006041371A (en) 2006-02-09
JP4502741B2 true JP4502741B2 (en) 2010-07-14

Family

ID=35906012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221994A Active JP4502741B2 (en) 2004-07-29 2004-07-29 Multilayer ceramic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4502741B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937068B2 (en) * 2006-09-27 2012-05-23 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
KR101053945B1 (en) 2006-09-27 2011-08-04 쿄세라 코포레이션 Multilayer Ceramic Capacitor and its Manufacturing Method
TW200834620A (en) * 2006-11-29 2008-08-16 Kyocera Corp Multilayered ceramic capacitor
JP4872085B2 (en) * 2007-03-13 2012-02-08 国立大学法人秋田大学 Copper-nickel-containing paste, multilayer ceramic electronic component, and method for producing copper-nickel-containing paste
JP5354867B2 (en) * 2007-04-25 2013-11-27 京セラ株式会社 Dielectric porcelain and multilayer ceramic capacitor
JP4925958B2 (en) 2007-07-27 2012-05-09 京セラ株式会社 Multilayer ceramic capacitor
JP4949219B2 (en) * 2007-12-25 2012-06-06 京セラ株式会社 Dielectric porcelain and capacitor
JP5668037B2 (en) * 2012-09-27 2015-02-12 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP5857116B2 (en) * 2014-12-15 2016-02-10 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230149A (en) * 2000-02-16 2001-08-24 Taiyo Yuden Co Ltd Laminated ceramic capacitor and method of manufacturing it
JP2001313225A (en) * 2000-04-28 2001-11-09 Taiyo Yuden Co Ltd Ceramic capacitor
JP2002274935A (en) * 2001-03-16 2002-09-25 Kyocera Corp Dielectric ceramic and laminated electronic part
JP2002362970A (en) * 2001-06-12 2002-12-18 Taiyo Yuden Co Ltd Dielectric ceramic composition and ceramic capacitor
JP2003040671A (en) * 2001-07-30 2003-02-13 Kyocera Corp Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts
JP2003063863A (en) * 2001-08-29 2003-03-05 Kyocera Corp Dielectric porcelain and laminated electronic part and method for producing the latter
JP2003068559A (en) * 2001-08-29 2003-03-07 Kyocera Corp Laminated ceramic capacitor and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230149A (en) * 2000-02-16 2001-08-24 Taiyo Yuden Co Ltd Laminated ceramic capacitor and method of manufacturing it
JP2001313225A (en) * 2000-04-28 2001-11-09 Taiyo Yuden Co Ltd Ceramic capacitor
JP2002274935A (en) * 2001-03-16 2002-09-25 Kyocera Corp Dielectric ceramic and laminated electronic part
JP2002362970A (en) * 2001-06-12 2002-12-18 Taiyo Yuden Co Ltd Dielectric ceramic composition and ceramic capacitor
JP2003040671A (en) * 2001-07-30 2003-02-13 Kyocera Corp Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts
JP2003063863A (en) * 2001-08-29 2003-03-05 Kyocera Corp Dielectric porcelain and laminated electronic part and method for producing the latter
JP2003068559A (en) * 2001-08-29 2003-03-07 Kyocera Corp Laminated ceramic capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006041371A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP4965435B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
KR100822178B1 (en) Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
JP4809152B2 (en) Multilayer ceramic capacitor
KR101494851B1 (en) Laminated ceramic capacitor and method for producing laminated ceramic capacitor
JP5121311B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2004224653A (en) Dielectric ceramic and its manufacturing method as well as multilayer ceramic capacitor
WO2008066140A1 (en) Multilayered ceramic capacitor
JP4506084B2 (en) Non-reducing dielectric ceramic, method for manufacturing the same, and multilayer ceramic capacitor
JP2005277393A (en) Laminated ceramic capacitor and its manufacturing method
JP2004214539A (en) Dielectric ceramic and laminated ceramic capacitor
JP5354867B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5558249B2 (en) Multilayer ceramic capacitor
JP2004155649A (en) Dielectric ceramic, method of producing the same, and multilayer ceramic capacitor
JP3389408B2 (en) Multilayer capacitors
JP4502741B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4502740B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2008135638A (en) Multilayer ceramic capacitor
JP4423052B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP6107367B2 (en) Multilayer electronic components
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2002265260A (en) Dielectric ceramic and lamination type electronic part
JP4508858B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4463093B2 (en) Multilayer ceramic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Ref document number: 4502741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4